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Abstract

This thesis contains a description of a novel generalized SOR algorithm for acceler-
ating the convergence of the dynamic iteration method known as waveform relaxation.
The new waveform convolution SOR. algorithm is presented, along with a theorem for
determining the optimal convolution SOR parameter. Both analytic and experimental
results are given to demonstrate that the convergence of the waveform convolution SOR
algorithm is substantially faster than that of the more obvious ordinary waveform SOR
algorithm. To demonstrate the general applicability of this new method, it is used to solve
the differential-algebraic system generated by spatial discretization of the time-dependent
semiconductor device equations.

The accelerated waveform relaxation algorithm is compared to pointwise direct and
iterative methods for the transient simulation of semiconductor devices on both serial
and parallel machines. In particular, experimental results are presented for simulations
on a small cluster of workstations running the Parallel Virtual Machine (PVM) software,
as well as for simulations on a 32-processor Intel iPSC/860. The results show that
the accelerated waveform method is competitive with standard pointwise methods on
serial machines, and is significantly faster on commonly available loosely-coupled MIMD
machines. The parallel accelerated waveform method achieves nearly linear speed-up on
the 32 processor Intel iPSC/860 hypercube. The strong implication of the results is that,
as MIMD machines become more prevalent, accelerated waveform methods may gain in
importance for all areas of simulation requiring the solution of initial value problems.

Thesis Supervisor: Jacob K. White

Associate Professor



To Kim, with thanks and all my love



Acknowledgments

First, I thank my mother and father, brother, extended family and in-laws for unend-
ing support and encouragement.

_ I thank my advisor, Prof. Jacob White, who made this work possible with his support
and guidance. Thanks also to Prof. Jonathan Allen for his support, and to Prof. Dimitri
Antoniadis for his advice and interest.

Special thanks to my friends on the 8th floor, including but not limited to, Don Baltus,
Bob Armstrong, Andrew Lumsdaine, Abe Elfadel, Steve McCormick, Matt Kamon, Joel
Phillips, Andrew Grumet, Ricardo Telichevesky, Keith Nabors, Miguel Silveira, Mark
Seidel, Khalid Rahmat, Ig McQuirk, Chris Umminger, Amelia Shen, Jose Monteiro and
Denny Freeman. Don was a perfect office-mate; he, Bob and Abe were always there for
technical and philosophical discussions. I thank Prof. Lumsdaine for his collaboration
on the pWORDS project, and for encouraging words when times got hectic.

1 would also like to thapk the many people 1 have encountered along the way for
their valuable suggestions and their friendship. These people include: Professors Nick
Trefethen, Don Rose, Paul Lanzcron, and Alar Toomre; my friends at Intel, especially
Don Scharfetter, Tim Thurgate and Peter Saviz; and my friends at Bell Labs, espe-
cially Wayne Wolf, Wolfgang Fichtner, Mark Pinto, Enrico SanGiorgi, Kurt Keutzer, Al
Dunlop, Ted Kowalski, and Mike McFarland.

Above all, I give thanks to my wife Kimberly, who has helped me through it all and
more. | cannot thank her enough, though I will continue to try.

This work was supported by a grant from IBM, the Defense Advanced Research
Projects Agency contracts N00014-87-K-825 and MIP-88-14612, the National Science

Foundation.



Contents

1 Introduction 11
1.1 Initial Value Problems on Parallel Machipes . . . . .. ... ... .. .. 11
1.2 Device Transient Simulation . . . . . . . .« « o oot s s e 12
1.3 OVEIVIEW . « v v o e e e e e e e e a e e e e e e e e e e 15

2 Review of Numerical Techniques 16
21 Tntroduchlon . . o v v v o e e e e e e e e e e e e e e e e e e e e e e 16
2.2 Solution of Linear Systems . . . . . . . o o o v oo oo .16

291 QGaussian Elimination . . . . - &« o o v oo e e 16
999 (Gauss-Jacobi and Gauss-Seidel Relaxation . . . . . .. ... ... 17
9293 Successive Qverrelaxation . . . . . . . . .« oo 20
994 Block Relaxation . . . . -« v v o v v v e v v vt e e 22
9.3 Solution of Nonlinear Systems . . . . . .« . .« v« o v v oo o e 23
231 Newton’s Method . . . . . ¢ o o vt v v i it v v i e e 24
9.3.2 Nonlinear Relaxation . . . . - ¢ v v v v o v o v v vt o v b s 25
9 4  Solution of Initial Value Problems . . . . . . . . . . o v v v v v oo 25
924.1 Pointwise Methods . . . . . . o« v v v v v 26
9492 Waveform Methods . . . . . . .« o v o v it i i v o e 29

3 WR Applied to Device Simulation 34
3.1 Tntroduction . . - v v v v v e e e e e e e e e e e e e e e e e e e e 34
3.2 WR CODVETZENCE . o v v v v v oo a e e m e e e 35
3.3 Sup-norm CONVETZENCe . . . . . ¢ o« o o v o v v oo o e 39

4 The WORDS Program 45
4.7 Introduction . . v o v v e e e e e e e e e e e e e e e e e e e e 45
4.2 Implementation: the WORDS Program . . . . . ..« o o oo v e v s 45

4.2.1 Vertical-Line Block WR . . . . . .« it o v v v v e e e et 45
499 Waveform Relaxation Newton Acceleration . . . . . . ... . ... 47
4.2.3 Integration Method . . . . . . . .. ..o e 47
4.2.4 Timestep Selection Strategy for Multirate WR . . . .. .. .. - 47
4925 Terminal Current Calculation . . . . . . . . -« o v oo oo oo 49
4.2.6 Convergence Testing . . . . . .« . v v o oo 50
4.2.7 Convergence-Driven Timestep Refinement . . . . ... ... - 51



4.3 Experimental Results . . . . . o oo oo vv o

4.3.1 Comparisons to Direct Solution . . . . . ... vvv v oee e me
4.3.2 Terminal Current Accuracy . . - « « « =« ot o s v oo o
4.3.3 Multirate Behavior . . -« o o v v v m i
5 Convolution Successive Overrelaxation
5.1 IntTodUCHION . « v v v v o v v v s m e s e e e e e e e
52 Waveform SOR . . . .« v i i it ot
5.3 Relation to Pointwise SOR . . . . . . ..o oo v oo oo
5.4 Informal Fourier Analysis and Convolution SOR . . ..« i et e e
55 Discrete-Time Analysis . . « . .« o o o v v v oo
5.6 Implementation of Convolution 510 & PR
5.7 Experimental Results . . . . .« . oo v ottt
6 Parallel WR for Device Simulation
6.1 Introduction . . « v v v e e e w e e e e e e e e
6.2 Parallel Machines . . . .« v v v v ot v o oo
6.2.1 Intel iPSC/860 . . . . . o oot i
6.229 PVMCIuster . . . v o v v oo v o v oo e e
6.3 Parallel Implementation . . . . . . oo oo e
6.3.1 Parallel Waveform Methods . . . . .. .o v v oo o e e e
6.3.2 Pointwise GMRES . . . . . . oo i e
6.4 Experimental Results . . . . . . .o c v oo oo e .

7 Conclusions



1-1

1-2

2-2
2-3

2-5

3-1

3-2

3-3

4-1
4-2
4-3

4-4

List of Figures

Example of a rectangular discretization mesh covering a two-dimensional
slice of a MOSFET device, indicating the gate, source, drain and substrate
COMEACES. + v v v v o e e e e e e e e e e e e e e e e e e e e
Ilustration of a mesh node i, the area A; of its Voromoi box, and the
lengths d,'j a,nd L.,‘j ...............................

With the standard relaxation splitting, matrix A is structurally split into
its lower triangular, upper triangular, and diagonal pieces such that A =
o N A 5 T IR
Tllustration of red/black coloring for one and two dimensional meshes. . .
lustration of two possible red/black colorings for block relaxation.

In each iteration of a WR algorithm, waveform z; is computed for ¢ € [0,T],

while waveforms z;, 2k, %1, Tm are held fixed. Then z; is computed, etc. ..

A system is said to exhibit multirate behavior if different components of
the system change at different times and/or at different rates. . . ... .

In node-by-node WR, solutions at a node are computed by holding the
waveforms of neighboring mesh nodes fixed and solving a small 3 x 3
systemn of equations. . . . . ... oo e
Sup-norm contractivity of electron concentration waveforms at a channel

Experimental setup for demonstration of sup-norm contractivity. . . . . .
A one dimensional mesh consisting of N evenly-spaced nodes and bound-
ary conditions at eitherend. . . . ... ... e e

The contacts and contact edges of a MOSFET device. . . . . . .-« - - -
The drain-driven karD example. . . . . . . . .« v o v oo e
Terminal current accuracy comparison between a waveform method and
direct methods, showing the sum of resistive and displacement currents
into the drain and gate terminals, in response to the 50 psec gate ramp
from 0 to 5 volts in the karG test. . . . . . v v o v v v o
Multirate behavior in the karD WR test. . . . . . . .« o v v e oo

14

18
20
23
31

32



5-2

5-3

5-3

57
5-8

Convergence of waveform SOR using the pointwise optimal parameter
(PT) compared to waveform relaxation (WR), and waveform convolution
SOR (CSOR), with 64, 128, 256 and 512 timesteps. Note that the four
CSOR runs have the same convergence rate. . . . . .« .« .« - -« -
Effect on convergence of the 256-timestep waveform SOR of varying the
SOR parameter from the pointwise optimum wep: = 1.482. . . .. . . ..
Delta waveform Az’ (t) = 238 () — 254(t) versus time after iterations
250 and 500, for the 256-timestep waveform SOR method using w = 1.70,
showing the growth and translation of an oscillating region. Note that the
vertical scales on the axes differ by two orders of magnitude. . . . ...
The spectral radii as functions of frequency Q of the Gauss-Jacobi WR,
Gauss-Seidel WR (dashed) and waveform SOR iteration matrices for the
39 x 32 version of the continuous-time problem of Example 5.3.1, with
w = 1.70 for waveform SOR. For comparison, the plot also shows the
spectral radius versus frequency for the convolution SOR method using
the optimal convolution SOR sequence. . . . . . ... ov oo a e s
The region D and branch cuts in the complex w-plane. . . .. ... ...
The optimal CSOR parameter theorem requires the spectrum g(z) to lie
on a line segment [—p1(2), p1(2)], with p1(2) € € and | (2)] < 1.

Mlustration of the drain-driven karD example. . . . . . ..« oo
Terminal current error versus iteration, for WR (dashed) and waveform
convolution SOR (solid). . . . . . . oo i i

Illustration of the communication and computation steps petformed by
compute node i during one parallel waveform method iteration. . .. ..
When less than N/2 compute nodes are available, each may be assigned
several adjacent pairs of red/black lines. . . . .. ... ..o
To partition the matrix-vector product, each processor is assigned the
block rows corresponding to a pair of vertical line blocks. . . . . . . ...



6-2

6-4

List of Tables

Description of MOS devices: gate length L (um), effective channel length
Less (pm), oxide thickness ¢,; (nm), mesh size (rowsxcols), and total
number of u, n and p unknowns. Silicon thickness of soi is £ = 0.1 pm. .
Applied bias conditions in the simulation examples. . . .. .. ... ...
CPU times for direct solution, the WR method and WRN with timestep
refinement, simulating a drain ramp and a gate ramp applied to the three
dEVICES. . v o e e e e e e e e e e e e e e e e e e e e e e

Description of MOS devices. . . . - . . ..o v oo oo
Comparison of serial times required for pointwise methods and waveform
methods. Serial experiments were conducted on an IBM RS/6000 Model
540 workstation. . . . v v v v v e e e e e e e e e e e e e e e e e e e

Comparison of parallel and serial times for the convolution SOR and point-
wise Newton-GMRES methods, on a PVM cluster of 2 workstations. The
time required by the pointwise Newton-GMRES method on the PVM clus-
ter was roughly proportional to the total number of GMRES iterations. .
Waveform Relaxation Newton timing results on the iPSC/860. . . . . . .
Convolution SOR timing results on the iPSC/860. . . . . ... ... ...
Summary of the best timing results for each method on the iPSC/860.

52
92

83
34
84
85



Tho’ much is taken, much abides; and tho’

We are not now that strength which in old days
Moved earth and heaven, that which we are, we are,—
One equal temper of heroic hearts,

Made weak by time and fate, but strong in will

To sirive, to seek, to find, and not to yield.

— ALFRED TENNYSON, Ulysses (1833)
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Introduction

1.1 Initial Value Problems on Parallel Machines

Simulation tools for the analysis of complex systems have become indispensable for
engineering design and testing. As in almost any enterprise, success in the art of simula-
tion depends on using the right tool for the right job. In today’s ever evolving computing
environment, this often means combining a specific numerical algorithm with a specific
type of computer architecture.

At the heart of many interesting and important simulation problems, such as the
transient simulation of semiconductor devices, there lies an initial value problem, a system
of differential equations in time with a known initial condition. This thesis will show
that a particularly efficient way to solve the initial value problem arising from device
simulation is to use accelerated waveform relazation algorithms on coarse-grain, loosely-
coupled parallel machines.

The primary theoretical contribution of this thesis is the introduction and develop-
ment of convolution SOR, a novel technique for accelerating the convergence of waveform
relaxation. Using a suite of device transient simulation examples, the performance of the
waveform relaxation algorithm, accelerated with convolution SOR, is compared to that
of standard direct and iterative methods on two commonly-available parallel machines,
a small cluster of workstations running the Parallel Virtual Machine software, and a
32-processor Intel iPSC/860.

The results show that accelerated waveform methods are competitive with standard
pointwise methods on serial machines, and that the accelerated waveform method is sig-
nificantly faster on the parallel machines. In particular, the parallel accelerated waveform

method achieves nearly linear speed-up on the 32 processor Intel iPSC/860 hypercube,
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whereas experiments with parallel versions of standard pointwise methods do not exhibit
any parallel speed-up. The strong implication of these results is that, as MIMD (Multiple
Instruction Multiple Data) parallel machines become more prevalent, accelerated wave-
form methods will gain in importance for all areas of simulation requiring the solution of

injtial value problems.

1.2 Device Transient Simulation

An initial value problem (IVP) which can be used to simulate the transient behavior
of semiconductor devices is derived from simplified device physics. Charge transport
within a semiconductor device is assumed to be governed by the Poisson equation, and

the electron and hole continuity equations:

ET
?V'(EVU)-I-q(p—n-{-ND—NA) =0 : (1.1}
on
v'In_Q(E'*'R) =0 (12)
VJP-I—Q(%_I;_*'R) = 0 (13)

where u is the normalized electrostatic potential in thermal volts, n and p are the electron
and hole concentrations, J, and J, are the electron and hole current demnsities, Np and
N4 are the donor and acceptor concentrations, R is the net generation and recombination
rate, ¢ is the magnitude of the charge of an electron, and ¢ is the spatially-dependent
dielectric permittivity [2, 41].

The current densities J, and J, are given by the drift-diffusion approximations:

kT

J, = —qu.nV (? u) +¢D,Vn = —kTu.nVu+4¢D,Vn (1.4)
kT

Jp = —qupV (? U) —¢D,Vp = —kTp,pVu—gqD,Vp (1.5)

where p, and g, are the electron and hole mobilities, and D, and D, are the diffusion
cocfficients. The diffusion constants D, and D, are related to the mobilities by the
Einstein relations

kT kT
Dn=--q—pn and D, = ?up.

The mobilities g, and g, are used to model many physical mechanisms. One standard

approach is to model the mobilities as nonlinear functions of the electric field E, i.e.

n E ,B "(1/18)
Hn = HBng {1+ (”_'O_) ]
Vsat

12



where v,,; and § are constants and gn, is a doping-dependent mobility [26]. The drift-
diffusion approximations (1.4) and (1.5) are typically used to eliminate the current den-

sities J, and J, from the continuity equations (1.7) and (1.8),
kT

?V-(EVU)—l—q(p—n—i—ND—NA) = 0 (1.6)

V - (=kTp,nVu + ¢D,Vn) — ¢ (%% + R) =0 (1.7)
e

V - (=kTp,pVu — qD,Vp) + ¢ (6_]; + R) = 0 (1.8)

leaving a differential-algebraic system of three equations (1.6)-(1.8) in three unknowns,

u, n, and p.

i

SUB

FIGURE 1-1: Example of a rectangular discretization mesh covering a two-dimensional
slice of a MOSFET device, indicating the gate, source, drain and substrate contacts.

Given a rectangular mesh covering a two-dimensional slice of a MOSFET, such as that
shown in Figure 1-1, a common approach to spatially discretizing the device equation
system (1.6)—(1.8) is to use a finite-difference formula to discretize the Poisson equation,
and a exponentially-fit finite-difference formula to discretize the continuity equations
(the Scharfetter-Gummel method [40]). On an N-node mesh, this spatial discretization
yields a sparsely-coupled nonlinear initial value problem consisting of 3N equations in

3N unknowns, denoted by

Fy(u(t),n(t),p(t),t) = 0 (1.9)
2 n + Fy(u(t),n(t),p(t),t) = 0 (1.10)
1 p + Fy(u(t),n(t),p(t),t) = 0 (1.11)
u(0) = uo
n(0) = mno
p(0) = po

13



where t € [0,T], and u(t), n(t),p(t) € RN are vectors of normalized potential, elec-
tron concentration, and hole concentration. Note that because the Poisson equation is
an algebraic constraint with no time derivative term, the device equation system is a
differential-algebraic (DAE) system.

In equations (1.9)-(1. 11) Fy, Fy, F5: 2% — ®Y can be specified component-wise as

dz £
Fl;(ut')niaphuj) = Z{ Jej[ t_uJ]} _in (pi'_ni"}"ND.‘ —NA,') (112)
le.(u,,-,n,;,uj, nj) = Z{ ] Mn” [n;B(u.,;—uj) — njB(uj—u;)]} + Ai&(1.13)
B (ui, pi, uj ps) = Z{ 2 MP" [ B (uj—ui) — ij(’U;,:—Uj)]} + A; B:.(1.14)

The summations are taken over the silicon nodes j adjacent to node ¢. As shown in
Figure 1-2, for each node j adjacent to node ¢, L;; is the distance from node ¢ to node jp,
d;; is the length of the side of the Voronoi box that encloses node ¢ and bisects the edge
between nodes 7 and j, and A; is the area of the Voronoi box. Similarly, the quantities
€ijy Pny; and pp,; are the dielectric permittivity, electron and hole mobility, respectively,
on the edge between nodes 7 and j. The Bernoulli function, B (z) = z/(e* — 1), 1s used
to exponentially fit potential variation to electron and hole concentration variations, and

effectively upwinds the current equations.

Lix

FiGURE 1-2: Illustration of a mesh node 7, the area A; of its Voronoi box, and the lengths
dij and L,‘j.

The standard approach used to solve the device differential-algebraic equation sys-
tem (1.9)-(1.11) is to discretize the system in time with a low-order implicit infegra-
tion method such as the second-order backward difference formula (BDF) or a hybrid
trapezoidal /BDF method {2]. For an N-node mesh, the resulting sequence of nonlinear
algebraic systems in 3N unknowns is typically solved with some variant of Newton’s
method and/or relaxation [2, 23]. This approach can be disadvantageous for a parallel

implementation, especially for MIMD parallel computers having a high communication
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latency, since the processors will have to synchronize repeatedly (at every iteration)
for each timestep. The following chapters will show that a more effective approach
to solving (1.9)-(1.11) with a parallel computer is to decompose the device equation
system into subsystems before time discretization, with a waveform relaxation (WR)
algorithm [18, 33, 22].

1.3 Overview

Chapter 2 is a review of numerical techniques relevant to device simulation. In Chap-

ter 3, the waveform relaxation (WR) algorithm for device simulation is examined, and
theorems are presented guaranteeing convergence of the method. Chapter 4 is a detailed

- description of the implementation of WR for devices used in the WORDS simulation
program. The convolution successive overrelaxation (CSOR) acceleration technique is
introduced and developed in Chapter 5. Parallel implementations of the simulation
methods and parallel experimental results are given in Chapter 6. Finally, Chapter 7

summarizes the contributions of this thesis.
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Review of Numerical Techniques

2.1 Introduction

In this chapter, some of the techniques for solving time-dependent nonlinear initial-
value problems are briefly reviewed. Because there are hundreds of different techniques,
and dozens of excellent texts on the subject (for example [7, 9, 11, 12, 13, 29, 28, 44, 48,
52]), the list of methods mentioned in this chapter is by no means exhaustive. Rather,
the following is intended only as a review of some of the methods relevant to the transient

simulation of semiconductor devices with standard and waveform methods.

2.2 Solution of Linear Systems

This section describes a few of the standard solution methods for solving linear sys-
tems of the form
Az =b, (2.1)

where A € R***, b € R*, and vector € R is the unknown. Because of their importance
and variety of application, there are many different numerical methods for solving linear
systems. These methods lie at the heart of most nonlinear system solution methods.

Though this is a very mature field, there is still active research.

2.2.1 Gaussian Elimination

Gaussian elimination is a process of LU-factorization, in which the non-singular
matrix A of (2.1) is factored into a product of a lower triangular matrix L and an upper

triangular matrix U. It is probably the most widely used of all numerical algorithms,
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and accordingly, descriptions of the method and its variants can be found in most linear
algebra texts [45, 12]. The solution #* = A7'b to (2.1) is computed by first solving
the lower triangular matrix problem Ly = b in a process known as forward elimination
and then solving the upper triangular matrix problem Uz = y in a process known as
backward substitution.

As a direct method for solving (2.1), elimination produces the solution @™ in a finite
number of steps for any non-singular matrix A (assuming exact arithmetic). Though
an extremely robust algorithm, the disadvantage of elimination is its computational and
storage cost. In general, elimination requires O(n®) operations and O(n?) storage. For
sparse problems, in which A contains many more zeros than non-zeros, the computa-
tional cost of elimination depends enormously on the sparsity pattern of the mairix, e.g.
matrices associated with trees factor in O(n) operations. For sparse matrices arising from
9D finite-difference discretizations, the operation count of elimination is about O(n’-),
and for 3D discretizations, the operation count is about O(n?) [10]. During the forward
elimination and backward substitution phases, the matrix A and its LU factorization
must be stored in memory, requiring up to O(n?) storage. Finally, Gaussian elimination
is difficult to parallelize efficiently. This, and the tradeoff between general reliability and

cost has led to a proliferation of highly competitive iterative methods.

2.2.2 Gauss-Jacobi and Gauss-Seidel Relaxation

An iterative method for solving Az = b begins with a guess solution #° € R*, and
operates on this solution in some way to produce a sequence of solutions {2*} that
approach the exact solution * = A™'b as k — oco. Typically, if A satisfies certain
properties, then the convergence of &* to £* for any initial guess % can be guaranteed.
Of course, the conditions on A depend on the iterative method used. '

Two simple iterative methods are the Gauss-Jacobi (GJ) and Gauss-Seidel (GS) re-
laxation algorithms [48, 52, 28], which generate the new solution x*+! by solving for

1

element  of ! with the equations

k41 k
agzit =b— > aiz;, (2.2)
: i#]
for GJ relaxation, or
X 1=1 i n N
+1 +1
a;z; =b;— Zaz’j r; - Z i3 Ty (2.3)

for GS relaxation.
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FIGURE 2-1: With the standard relaxation splitting, matrix A is structurally split info
its lower triangular, upper triangular, and diagonal pieces such that A =D — L - U.

Let L.U,D € ®R™" denote the strictly lower triangular, strictly upper triangular,
and diagonal pieces of A, such that A = D — L — U, as shown in Figure 2-1. This
splitting should not be confused with the A = LU of Gaussian elimination. With the
relaxation splitting, the GJ and GS update equations (2.2) and (2.3), respectively, may

be expressed succinctly in matrix form as

D" = b4 (L+U)" (2.4)

(L + D)z = b+ U~ (2.5)

Subtracting successive iterations and denoting Az*+! = zF*1 — 2* yields iteration equa-
tions

Ax*t! = H Az* (2.6)

where the iteration matrices Hgy, Hgs € R**™ are given by

Heoy = D_I(L+U) (27)
Hes = (D+L)_1U (28)

The advantage of representing the relaxation process with equation (2.6} is that the
restrictions on A to obtain convergence may be concisely expressed in terms of the
spectral radius p(H ), defined as

p(H) = max || (2.9

1<i<n

where A; are the eigenvalues of H [48, 52, 28].

THEOREM 2.2.1. If D™ and A" ezist, then the iterates x* produced by tteration
equation (2.6) converge to * = A™'b for any initial guess 2° if and only if p(H} < 1.

For GJ relaxation, the requirement that p(Hgy) < 1 is satisfied by the common
class of irreducibly diagonally dominant matrices. Such matrices arise naturally from
finite difference discretizations of differential equations. Their significance is given by the

following definitions and theorem.
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DEFINITION 2.2.2. A matriz A € C"*" is irreducible if there does not exist a

permutation matriz P such that

(2.10)

PAP_lz |:Bll BIZ]

0 Bzg

where By1 and Ba; are square matrices. Equivalently, A is irreducible if and only if for
any two distinct indices 1 < i,j < n, there is a sequence of nonzero elements of A of the

form

{a‘i,kl LT T P a'km,j} (211)

DEFINITION 2.2.3. A matriz A € C**™ is diagonally dominant &f

[a,-,-| 22|a;j| for = 1,...,1?, (2.12)
i#
and strictly diagonally dominant if strict inequality hold in (2.12) for all i. The matriz
is irreducibly diagonally dominant if it is irreducible, diagonally dominant, and strict
inequality holds in (2.12)} for at least one 1.

THEOREM 2.2.4. If A € R™" is either strictly or irreducibly diagonally dominant
then p(Hgy) <1 and p(Hgs) < 1, where Hgy and Hgs are given by (2.7)-(2.8).

In an implementation on a serial machine, the primary difference between the GJ and
GS relaxation equations {2.2) and (2.3) is that the GS equation immediately uses the new
value z5*? to compute all components mi—‘“ where j > ¢. Although this typically causes
GS relaxation to converge more quickly than GJ, it also implies that the GS algorithm
depends on the specific ordering of the unknowns. This dependence on serial ordering
implies that the GS method is not as easily parallelized as GJ relaxation, and leads to
the conclusion that on a parallel machine, GJ relaxation is faster [43].

For problems spatially discretized on rectangular meshes, one way to parallelize GS
is to color the nodes red and black in an alternating or checkerboard fashion, as shown in
Figure 2-2, such that red nodes have only black nodes as neighbors and the black nodes
have only red nodes as neighbors. Then, with a simple finite-difference discretization,
the variables at red nodes depend only on the variables at black nodes, and all of the red
nodes may be solved simultaneously in parallel. Similarly, all of the black nodes may be
solved simultaneously in parallel.

An additional advantage of using red/black ordering is that the resulting matrices

belong to a common class known as consistently ordered matrices. As will be discussed
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FIGURE 2-2: Dlustration of red/black coloring for one and two dimensional meshes.

in the next section, it is possible to accelerate the convergence of GS relaxation on con-
sistently ordered matrices with the successive overrelaxation (SOR) technique, without
sacrificing the parallelizability of the red/black GS method. The result is that paral-
lel red/black SOR can be significantly faster than the unaccelerated parallel GJ or GS

relaxation algorithms.

2.2.3 Successive Overrelaxation

The convergence of GS relaxation may be accelerated with a technique known as
successive overrelaxation (SOR) [48, 52]. To derive the SOR iteration equation, compute

an intermediate value ' by solving

i—1 n
125 J”‘:‘?H = b,‘ — Z aiz .’II?H — Z (228 .'Ei-c, (2.13)
j=1 j=i+1

similar to the GS equation (2.3), and then update z¥ in the iteration direction by multi-

plication with an overrelaxation parameter w € R,

e —aftw- [5:'-“"’1 —a:’-’]. (2.14)

% ] t

Combining equations (2.13) and (2.14) yields

i—1 n
ai; :U?H = (1 — w) (1 X5 (L'ic + w [b, — Ea,-jasfﬂ — Z a.:-ja::-‘i\ . (2.15)
i=1 j=i+1

After subtracting successive waveform relaxation iterations, and using the relaxation
splitting A = D — L — U, this leads to

(D —wL) Az™ =[(1 —w)D +wU] Az*, (2.16)
where Azl — @* _ gk Therefore the SOR iteration equation may be written as
A$k+1 = HSOR A:Ek (217)
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where Hsop € R**" is dependent on the choice of SOR parameter w, and is given by
Hgop = (D —wL)'[(1 —w)D +wU]. (2.18)

Note that when w =1,
Hsor = Hgs, (2.19)

and the SOR method reduces to ordinary GS relaxation.

The rate of convergence of SOR is critically dependent on the selection of the SOR
parameter w. Indeed, incorrectly chosen values of w may cause p(Hsor) > 1 so that
SOR does not converge. One general restriction on w is given by the following theorem,

which implies that for any matrix, SOR will diverge unless 0 <w <2 ifw €R.
THEOREM 2.2.5 (KAHAN). If A € C™*" has nonzero diagonal elements, then

p(Hsor) 2 lw— 1 (2.20)

For a class of matrices known as consistently ordered matrices, it is possible to choose
an optimal SOR parameter wey,, that minimizes the spectral radius of Hsor over all
possible w. Such matrices naturally arise from finite difference discretizations of differen-
tial equations. In the following, we will use Young’s definition of the class of consistently

ordered matrices.

DEFINITION 2.2.6. The n x n matriz A is consistently ordered if for some t there
exist disjoint nonempty subsets Sy,...,St of {1,2,...,n}, with Ui, Si =A{1,...,n}, such
that if Ai;; # 0 with i # j and Sy is the subset containing i, then j € Sin ifj >t and
JE Sk if] <.

Note that consistent ordering is a purely structural property of a matrix. The impor-

tance of the class of consistently ordered matrices stems from three classic results [51, 48]:

LEMMA 2.2.7 (YOUNG,VARGA). Let A = D — L — U be a consistently ordered
matriz, and let Hey denote the corresponding GJ iteration matriz (2.7). If pi is an

eigenvalue H gy then —u; is also an eigenvalue of Hgy.

THEOREM 2.2.8 (YOUNG,VARGA). Let A= D —~L—-Ubea consistently ordered
matriz, let Hgy denote the corresponding GJ iteration matriz (2.7), and let Hsor denote
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the SOR iteration matriz (2.18). Given an overrelazation parameter w # 0, if A is a

nonzero eigenvalue of Hgop, then
(A +w—1)7 =%y, (2.21)

where p is an eigenvalue of Hgy. Conversely, if y is an eigenvalue of Hgy and if A
satisfies (2.21), then A is an eigenvalue of Hsog.

COROLLARY 2.2.9. If A= D — L — U is a consistently ordered matriz, then the

eigenvalues of Hgs are the squares of the eigenvalues of Hey.

THEOREM 2.2.10 (YOUNG,VARGA). If A = D — L — U is a consistently ordered
matriz, if the eigenvalues p; of the corresponding GJ iteration matriz Hgy lie on the
real-azis line segment [—p1, 1], and if the spectral radius p(Hgy) = |m] < 1, then the
spectral radius of the SOR iteration matriz H sor(w) is minimized by an overrelazation

parameter w € [1,2] given by
2

Wopt = — 7——
1++/1—4f

where /- denotes the positive root.

(2.22)

The SOR method, using the parameter w,,; computed from (2.22) is surprisingly ro-
bust and is remarkably successful in practice, even when the conditions of Theorem 2.2.10
aren’t precisely satisfied (i.e. the matrix A isn’t consistently ordered, or all of the spec-
trum of Hgy does not lie on the real line). Because of this, the SOR algorithm is a
remarkably simple and effective iterative method. In general, for an elliptic problem
such as the Poisson equation, discretized on a one-dimensional mesh of N evenly-space
nodes or on a two-dimensional N x N rectangular mesh, the asymptotic convergence rate
of SOR is approximately proportional to 1 —1/N. For large NV, this can be significantly
faster than the asymptotic convergence rate of Gauss-Jacobi or Gauss-Seidel relaxation,
approximately proportional to 1 — 1/N? [13].

As mentioned in the previous section, a red/black ordered problem leads to consis-
tently ordered matrices, so that the optimum SOR parameter wq,: may be computed
for red/black SOR . The implication of this is that on a parallel machine, the red/black
SOR method can be substantially faster than the unaccelerated GJ or GS relaxation
algorithms. :

2.2.4 Block Relaxation

An additional way to accelerate a relaxation method is to solve larger pieces of the

problem directly, with block relaxation [48]. In other words, rather than decomposing
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the system Az = b into n scalar algebraic equations, it may be possible to obtain
faster relaxation convergence by decomposing the system into m < n smaller systems of

equations, where

All A12 e Alm
A= 14‘21 14-.22 '.' " A?m
Aml Am2 e Amm

Then, for example, block GS relaxation is performed by iterating over the m blocks and

repeatedly solving the small matrix equation

i—1 L3
Aii :Ef.H' = b,‘ — Z; Aij m_I;-H - -z_]:_]_ Aij 33_?, (223)
3= 3=t -

where x; denotes the piece of the vector  corresponding to block row ¢. Provided that
the block relaxation converges quickly enough, this still provides a computational savings

over direct methods because the sub-systems are smaller.

R B R B R B
FIGURE 2-3: Illustration of two possible red/black colorings for block relaxation.
The SOR theorems of the previous section carry over for the block SOR method [48].
In particular, note that Definition 2.2.6 can be used to define block consistently ordered
matrices. Furthermore, with properly chosen blocks, such as those shown in Figure 2-3,
block GS and block SOR algorithms can use red/black ordering and maintain paralleliz-
ability. In practice, the block Gauss-Jacobi, block Gauss-Seidel and block SOR methods

can converge. substantially faster than ordinary relaxation, particularly if the difficult,

tightly-coupled parts of the problem are contained within single blocks.

2.3 Solution of Nonlinear Systems
This section is a review of standard methods for solving systems of nonlinear equations

F(z)=0 (2.24)
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where # € R® and F : R* — 2", The classic reference for this subject is [29]. Many of the
methods for the solution of linear systems can be generalized or used to solve nonlinear

systems.

2.3.1 Newton’s Method

The most commonly used method for solving (2.24) is Newton’s method, an iterative
algorithm based upon linearization about successive solutions. Given any approximate

solution #*, there exists some Az*! that can be added to &* such that
F(zF + Az") =0

Newton’s method is based on setting the linear first-order Taylor expansion equal to zero

and solving for Az ie. .
F(z* + Az™) =~ F(z*) + Jr(x*) Az =0,

where Jp(2) € R* " isthe J acobian derivative of F'. Because the function F' is nonlinear,
the first-order Taylor expansion is only an approximation, and the method must continue

after setting #*t! = * + Az". Thus the steps of a Newton iteration are:
1. solve for delta vector Az*?

Jr(z*) Az = —F(z"), (2.25)

2. and update solution vector

2™t = &F + Az (2.26)

The advantage of Newton’s method is that if the initial guess, x°, is sufficiently close
to the exact solution, then Newton’s method converges quadratically [29], i.e.

2
“a:k+1 — "

7

< cn:!:’zc —

where #* denotes the exact solution. However, Newton’s method requires a linear system
solution step at cach iteration. This can be expensive in terms of computation and in
terms of storage, especially if a direct factorization method 1s used. Furthermore, merely
generating the Jacobian matrix J 7(x*) and evaluating the function for the right hand
side vector can be costly for complicated nonlinear functions. Finally, if the initial guess 1s
not close enough to the exact solution then Newton’s method can diverge or get caught in
a limit cycle. Thus there exist many approximate Newton methods and damped Newton
schemes [29, 3].
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2.3.2 Nonlinear Relaxation

The relaxation-Newton iterative algorithms are a generalization of the idea of lin-
ear relaxation [29]. In a relaxation-Newton iteration, the n-dimensional equation sys-
tem (2.24) is decomposed into as many as n smaller nonlinear sub-problems, each of
which is solved independently with Newton’s method. For example, in each iteration of
the Gauss-Jacobi-Newton method, the i** component of equation (2.24),

Fy(zk ... 2k, 2F xfﬂ, a2y =0

is solved for z¥*!, the ¢** component of the unknown vector. Similarly, within each

iteration of the Gauss-Seidel-Newton method, the equation

k41 k41 k+1 _k By
Fi(zyt . 2 e 2y, 2,) =0

is solved for zF™". Just as in the case of linear relaxation, the essential difference between

the Gauss-Jacobi and Gauss-Seidel algorithms is that, in the & + 15% iteration, when
k41
J

jth subsystem if j < . In other words, the Gauss-Seidel algorithm uses the most recently

computing =i+, the Gauss-Seidel algorithm uses the values of z;"~ for the solution of
computed information that is available.

One simple way to reduce the computation cost of relaxation-Newton algorithms is
to limit the number of Newton iterations when solving each sub-problem to a small
fixed number m, such as m = 1 [29]. The justification for solving the sub-problems
only approximately is that each nonlinear relaxation iteration is only approximately
converged. It can be shown that this does not affect the convergence rate of a relaxation-
Newton method. In addition, the block relaxation technique and successive overrelax-
ation may be used to reduce the number of nonlinear relaxation iterations required for
convergence [29]. Provided that the relaxation converges quickly enough, an accelerated
one-step relaxation-Newton method can be a highly efficient method for the solution of

nonlinear problems.

2.4 Solution of Initial Value Problems

This section contains a brief review of two different approaches for solving the time-

dependent nonlinear initial-value problem

L4 F2(t),t)=0 with =(0)=zq, (2.27)
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where z(t) € R” is the unknown, @, is an initial condition, and F : R — R". The

operator formulation of this IVP can be written as
Fae=0 with «(0)=0, (2.28)

where z is a member of a function space and F is a nonlinear differential operator. It is

assumed that the equation is to be solved numerically on a finite time interval [0, 7.

2.4.1 Pointwise Methods

The standard approach to numerically solving (2.27) is to begin with the known solu-
tion at time tg = 0, and then march through the interval [0,77], timepoint by timepoint,

generating the solution at successive discrete timepoints, with
tm-}-l = tm + hm+1. (229)

In the mtB step of this pointwise approach, a timestep h., is selected, and the % term of
the differential equation system (2.27) is discretized with a multistep integration method.

This yields either an implicit or explicit system of nonlinear equations that is solved for

a:(tm+1).

Multistep Integration Methods

Suppose that a sequence of discretization timesteps {h1,..+, hm,...} and the corre-
sponding sequence of timepoints {t1,.. ., {mt1,---» T} have been selected. To solve (2.27),
an s-step multistep integration method, and the values of z and F at the previous s time-
points are used to compute an approximation &, to the value of #(t) at time t = ip.

The multistep equation generated at timepoint tm is

z Q;Em—j — Z hm_j ﬁj F(J:m_j,tm_j), (230)
i=0 4=0

where ap = 1 and either a, # 0 or B, # 0 [11, 9]. The other coeflicients a; and f;
are chosen to maintain accuracy and consistency within stability limits. Note that the
coefficients o; and B; depend on m if the timesteps A, are not constant.

There are many standard terms associated with multistep methods. A multistep
method has accuracy of order p if it computes the solution of the initial value prob-
lem (2.27) exactly when the solution is a polynomial in time of degree less than or equal
to p. A method is said to be consistent if it has order of accuracy p > 1. A method 1s

convergent if it is possible to arbitrarily accurately approximate the exact solution to the
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time-continuous differential equation system (2.27) uniformly over the simulation interval
[0, T] by reducing the discretization timestep.

There are several different types of stability. A multistep method with uniform
timestep h is said to be stable if the computed values x(t) remain bounded as h — 0.
This definition of stability is leads to a well-known theorem that a multistep method is
convergent if and only if it is consistent and stable. A multistep method is said to be
A-stable if, when applied to the test differential equation

Lz =Az(t) with x(0) = xo, (2.31)

where A € R™" and the eigenvalues of A all have negative real parts, the method leads to
a bounded solution for any timestep size as the number of timesteps approaches infinity.

There are two classes of multistep methods. A multistep method is said to be explicit
if in (2.30) it uses only the values = and F evaluated at previous timepoints when
generating the solution at a timepoint, i.e. Bo = 0. When o # 0, the multistep method
is said to be implicit, since in this case, an implicit equation in terms of &, and F(€p,tm)
must be solved for @,,. For nonlinear problems, the implicit equation is usually solved
with Newton’s method, requiring at least one matrix solve.

Explicit methods may seem to have a significant computational ‘advantage over im-
plicit methods because there is no need to perform a nonlinear system solution. However,
explicit methods are far less stable. It is easily shown that implicit methods can be com-
putationally superior to explicit methods in practice, especially for stiff problems, with
eigenvalues that differ by several orders of magnitude. Such problems exhibit behavior
on vastly different time scales. For a stiff problem, the stability of the implicit methods
allows the use of substantially larger timesteps, resulting in lower overall computational
work for the simulation.

A particularly useful class of implicit multistep methods are the backward difference
formulas (BDF), characterized by fo # 0 but py = --- = B, = 0. The 15_order BDF
(also known as the Backward Euler method) and the o0d_grder BDF (also known as the

90d_grder Gear method) are, respectively,

2, = ®me1+ hm F(@m,tn) (2.32)

(h'm + hm—-l)2 hfn
LTy = LTm—1 —
hm-—l(2hm + hm—l) hm—1(2hm + hm—l)

hm(hm + hm—l)
( 2hm + hm—l ) F(mm,tm)

) T2t (2.33)
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In the uniform timestep case, these two BDF methods are known to be A-stable [11]. In
the general nonuniform timestep case, it is possible to make the 2"*-order BDF unstable
by choosing rapidly varying successive timesteps. Nevertheless, it has been proven that
the variable timestep 2"¢-order BDF is always stable in some sense as long as the ratio
of successive timesteps Ay, /hm_1 is kept below 1.2 [6]. In practice, a ratio limit of 2.0 is

sufficient.

LTE and Timestep Control

Of course, multistep integration methods can provide only an approximate solution to
the continuous problem (2.27). In practice, this unavoidable error in the numerical solu-
tion will be due to the machine error caused by finite precision floating-point arithmetic
— but with a double-precision implementation this will typically make a small contribu-
tion. Primarily, the error in the numerical solution will be caused by the discrete-time
approximation of the multistep formula itself. Not surprisingly, this truncation error of
the multistep method is closely related to the order of accuracy of the method.

The local truncation error (LTE) of a multistep method is defined to be the result of
plugging the exact solution z*(¢) of (2.27) into the multistep equation (2.30) [11, 16]

LTE = ;2 (tnoj) — D b B F(@" (tmj)s tm—j)- (2.34)
=0 3=0

In other words, the LTE is the amount by which the solution of the differential equation

fails to satisfy the equation used in the numerical method. If the localization assumption

is made that the computed solution () is precisely equal to the exact solution *(t) at

all timepoints previous to t,,, then the LTE expression (2.34) may be rewritten as
LTE = " (tn) — @m. (2.35)

Note that neither of the LTE expressions (2.34) nor (2.35) may be computed, since the
exact solution @* is not available. Nevertheless, it is possible to closely approximate the
LTE of a pth—order multistep method at a timepoint by comparing the solution computed

at that timepoint to a predicted value ®? computed by fitting a pth

-order polynomial
to the values at the p + 1 previous timepoints [25, 9, 39, 23, 38]. It has been shown in

general that for a pth-order BDF method, the LTE at time ¢,, is approximately given by
Bo

tm - tm—-p—l

LTE = (T — b)) (2.36)
where 8, 1s the coefficient of the BDF multistep formula (2.30) {4, 5].
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For a multistep method with order of accuracy p and uniform timestep &, the [TEisa
term of @(A?*"). Perhaps more importantly, there are no A-stable multistep integration
methods whose local truncation error is of an order higher than A* [9].

In practice, the timestep size for a variable-timestep multistep integration formula 1s
usually determined with LTE timestep control [39, 2]. First a timestep is chosen, the
value %, is computed, and then =, is compared to the value @%, predicted by fitting a
polynomial to previously computed values. The difference between the computed value
and this predicted value is used to estimate the LTE. If the LTE is too large, the timestep
is rejected and the program tries again with a smaller timestep. Qtherwise, the timestep

and the computed value are accepted, and the program moves on to the next timestep.

2.4.2 Waveform Methods

The waveform methods for solving the nonlinear IVP (2.27) are extensions to function
space of various numerical algorithms for solving nonlinear algebraic problems, such as
those discussed in Section 2.3. Whereas Newton’s method and the nonlinear relaxation
algorithms operate on variables that are vectors in «* € R", waveform methods operate
on vectors of waveforms on a closed time interval, ¥ € (R”,[0,T]). As will be shown,
waveform methods are easily parallelized.

‘Waveform Newion Method

The waveform Newton method (WN) is obtained by applying an abstracted form of
Newton’s method to (2.27) [15, 37]. To apply WN to equation (2.27), the differential
equation itself is linearized with the Frechet derivative Jf of F given by

Tr (t) = &2+ Te(2(1),1) (2.37)

before time discretization with a multistep algorithm. First, an initial guess waveform
z? € (B,[0,T]) satisfying initial conditions is chosen for each element of the vector of

waveforms €° € (R, [0,7]). Then the steps of a WN iteration are:

1. solve for the vector of waveforms Az

Tr(x*) Ax™ = —F (), (2.38)

2. update the solution vector of waveforms at all £ € [0, 7]

2F = g 4 Az (2.39)
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After time discretization with a multistep method, the WN method reduces to the alge-
braic Newton method operating on a “large” vector consisting of the concatenation of
vectors Az*[m] at all discrete timepoints, with the Frechet derivative corresponding to
a “large” block lower-triangular matrix. For example, in the case of backward Euler, the

first step of the WN iteration becomes the algebraic problem

L1+ Jp(="1) Az [1]]  [-F(H1])
i M+ TeEH) At | | -F(@*)

—3I %I—l—JF_(:nk[S]) Az*[3] | | —F(=*[3])

where Jp(2:*[m]) denotes the Jacobian derivative of F* evaluated at time point m. Note
that each diagonal block +I+Jr(x*[m]) is the same as the matrix that is generated
by using the algebraic Newton method to solve at each timestep with the pointwise
direct method. Just like the algebraic Newton method, WN offers quadratic convergence
provided that the waveform iterate is close enough to the exact solution. A more detailed
discussion of the convergence properties of the waveform Newton method for circuit

simulation problems can be found in [37].

Waveform Relaxation

The waveform relaxation (WR) method is a dynamic iteration process obtained by
applying relaxation directly to the system of differential equations comprising the initial
value problem (2.27) [18]. Also known as Picard-Lindelof iteration [24], the WR method
decomposes the IVP equation system into subsystems before time discretization with a
multistep method. The solution of each differential subsystem is a waveform in time, and
the original system is solved iteratively by solving the subsystems independently, using
the waveform solutions from previous iterations for the variables from other subsystems.
The WR algorithm is shown pictorially in Figure 2-4

More precisely, the Gauss-Jacobi WR and Gauss-Seidel WR algorithms for solv-
ing (2.27) are given in Algorithms 2.4.1 and 2.4.2. In iteration k of Gauss-Jacobi WR,
the ith equation of the n-dimensional differential equation system (2.27} is solved for
waveform z5*!, and the waveforms :r:;c of the previous iteration are used as solutions for
the other components j # 7. The algorithm for Gauss-Seidel WR is similar, with the
exception that when computing :cf"'l, the waveform xfﬂ for the jth subsystem is used
if it has already been computed, otherwise the previous iteration waveform % is used.

The WR method has several computational advantages. Since it is an iterative

method, WR avoids factoring and storing large matrices. Since the subsystems are
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FIGURE 2-4: In each iteration of a WR algorithm, waveform z; is computed for ¢t € [0,71],
while waveforms z;, T, 1, Tm are held fixed. Then z; is computed, etc. ..

ALGORITHEM 2.4.1 ( GaUss-JacoBI WR FOR SOLVING (2.27) ).

1. Initialize: Pick vector of waveforms =°.
2. For k=0,1,... until converged
Kl

For ¢ = 1 to n, solve for &;" waveform:

4 oF (1) + Fi(ak (1), ..., 2h (), a7 (0, 2hu (8), - 2n(8),8) = 0

with a:f-“"l(O) = o,

solved independently, different sets of timepoints may be used to resolve the waveforms
of different subsystems. This can be a significant computational advantage in a system
exhibiting multirate behavior, in which the solutions of different subsystems change at
different rates and/or at different times in the simulation interval, as shown in Figure 2-5.
Finally, on a parallel machine, WR can be highly efficient since it leads to large, decoupled
chunks of computation that can be easily parallelized.

Of course, WR is efficient relative to the standard pointwise direct method of solv-
ing (2.27) only if it converges in few enough iterations. For many problems, the WR
algorithm 2.4.1 can be shown to have guaraniced convergence on a finite time interval
[0, T], starting from eny initial guess that matches initial conditions [50]. Nevertheless,
when applied to solving the device simulation equation system (1.9)-(1.11), the WR algo-
rithm converges slowly, unless acceleration techniques such as block relaxation, conjugate

directions, or successive overrelaxation are applied [21, 33].
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ALGORITHM 2.4.2 ( GAUSS-SEIDEL WR FOR SOLVING (2.27) ).

1. Initialize: Pick vector of waveforms z°.

2. For k=0,1,... until converged

For i = 1 to n, solve for =7 waveform:
£ F) + F(ah (8), . e (0,2 (1), 2l (8- (D), 1) =

with 25t (0) = zo

X1

W)

P
|

t

FIGURE 2-5: A system is said to exhibit multirate behavior if different components of
the system change at different times and/or at different rates.

Waveform Relaxation Newton

The waveform relaxation Newton (WRN) method is one way to reduce the computa-
tion per WR iteration and improve the WR efficiency [50, 37]. Analogous to the one-step
relaxation-Newton acceleration of nonlinear relaxation, in a WRN iteration, each sub-
system is solved only approximately with one step of the waveform Newton method.
The WRN method is implemented by computing only one algebraic Newton iteration
at cach timepoint, using a value from the previous waveform iterate as an initial guess.
Like the one-step relaxation-Newton acceleration, the WRN acceleration does not affect
the asymptotic convergence rate of WR. A more detailed discussion of the convergence
properties of the WRN method can be found in [37, 50].

Another way to reduce the computational cost of each iteration is to take advantage
of the waveform iterative nature of the WR algorithm and minimize the number of
timepoints used to compute the waveform of each subsystem. With a firnestep refinement
strategy [37], relatively few timesteps are used to compute the waveforms in the early
WR iterations. In subsequent WR iterations, additional timepoints are introduced only

when they are required to keep the local truncation error in the waveform less than the
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relaxation error.
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WR Applied to Device Simulation

3.1 Introduction

An effective approach to solving the device equation system (1.9)-(1.11) with a par-
allel computer is to decompose the system into subsystems before time discretization
with a waveform relaxation (WR) algorithm. The system is then solved iteratively by
solving the subsystems independently, using fixed waveforms from previous iterations for
the variables from other subsystems. The device WR algorithm is shown pictorially in
Figure 3-1, and is given in Algorithm 3.1.1, where Fy,~F3, are specified by (1.12)-(1.14).

o L
u,n, u,n,
P>, ¢ . *L@
t t
[ ]
u,n,p; % g
t

FIGURE 3-1: In node-by-node WR, solutions at a node are computed by holding the
waveforms of neighboring mesh nodes fixed and solving a small 3 x 3 system of equations.

In each WR iteration, the u(t), n(t), and p(t) waveforms of each mesh node : are
computed by solving the equation system of the node, while holding the waveforms of

the neighboring mesh nodes fixed. This reduces the problem of simultaneously solving
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ALGORITHM 3.1.1 (GAUss-JACOBI WR FOR DEVICE SIMULATION).

1. Initialize: Pick u®, n®, p° waveforms at all nodes.

2. For £ =0,1,... until converged

For each node 3, solve for u™, nM pP waveforms:

Fu (uf? (0), ¥ (1), PP (), ub(2),8) = 0

b P, (uM(E), nfP D ub(e), nk(0), 1) 0 (3.1)
< B (uf (), pEP (1), uE(2), 5 (2), ) 0

Il

with U?H (0) = Ug,;, n]ﬁ_l (0) = T, pf-l-l (0) = Po;

T

the large nonlinear differential-algebraic system of 3N equations to one of independently
solving the smaller differential-algebraic system of 3 equations at each silicon node. Each
small nonlinear system of 3 equations can be solved with Newton’s method and an implicit
numerical integration method such as the ond_order backward difference formula.

The following sections describe the convergence of ordinary WR for device simulation.
Although a global convergence result will be shown, it should be kept in mind that
when applied to solving the device simulation equation system (1.9)-(1.11), the device
WR algorithm converges slowly, unless acceleration techniques such as block relaxation,

conjugate directions, or successive overrelaxation are applied [21, 33, 31].

3.2 WR Convergence

The following device WR convergence theorem will show that, when used to solve the
device equation system on a finite time interval {0,7], the device WR Algorithm 3.1.1
has guaranteed convergence starting from eny initial guess that matches initial conditions
g, o, Po- The theorem differs from a similar theorem for circuit simulation WR [18, 50].
At iteration % 4 1 of device WR, the solutions at node ¢ of the differential variables nft?
and pf*! depend upon the solution of the algebraic variable uft!. The coupled solution
at each mesh node must be computed by solving the coupled 3 x 3 differential-algebraic
system (3.1). For the circuit simulation proof in [18], it is assumed that the variables
of the WR equation system can be indexed such that the solutions of the differential
variables 5! do not depend on the solutions of the algebraic variables z**1 at the same

iteration.
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Like the convergence theorem for circuit simulation, the device WR theorem requires

the definition of a special norm on a waveform.
DEFINITION 3.2.1. The B-norm ||z| g on a waveform  : [0,T] — R" is defined as

-EBt
= t here BER and B> 0
2]l = max ™ |[@(t)]|  where B € R an

In the following, by first considering the Poisson equation (1.9) and then the electron and
hole transport equations (1.10)~(1.11), it is shown that the effect of 3 x3 block WR on the
device simulation system may be characterized by a 3 x 3 system of inequalities, relating
norms of the changes in the waveforms over successive WR iterations. The contraction

mapping theorem is then invoked to prove convergence.

THEOREM 3.2.2 (CONVERGENCE OF NODE-BY-NODE WR).

For any finite time interval t € [0,T), and for any initial guess waveforms u®(t), n°(2)
and p°(t) that match the initial conditions, the sequence of waveforms produced by the
node-by-node Gauss-Jacobi WR Algorithm 3.1.1 will converge to the exact solution of the
device simulation DAFE system (1.9)—(1.11).

Proof. Suppose that the node-by-node WR algorithm 3.1.1 is applied to a device
spatially discretized on a mesh of N nodes. At timepoint ¢ € [0,T] in the Eth iteration,
the iteration equations of the node-by-node WR algorithm 3.1.1 may be written in terms
of vectors u(t), n(t),p(t) € RY as

Duf)+(L+ )™ () + Enf(t) - Ep*(t)—b = 0 (3.2)
4 (1) + Fy (u*(t), n*(t),w* (1), 0" (1)) = 0 (3.3)
4 k(1) + F5 (ub(t), pH(1), w2 (1), P (1) = 0 (3.4)

where A = D—L—U is the standard Gauss-Jacobi relaxation splitting of the irreducibly
diagonally dominant and symmetric matrix A given by the potential dependent portions
of the Poisson equations, E € RV*¥ is a diagonal matrix given by the node areas, becrY
is a vector given by the product of the node areas and the node dopings, and F3 and F'3
are Lipschitz continuous nonlinear algebraic functions.

Subtracting successive iterations of the Poisson equation (3.2) and rearranging terms:
suf(t) = C 8pF(t) - C 6n*(t) + M bu™ (1) (3.5)

where M = D (L + U) is the Gauss-Jacobi iteration matrix of the Poisson equation

matrix A and C = D 'E. Since A is irreducibly diagonally dominant, the spectral
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radius of M is strictly less than unity [44]. Therefore, there exists a norm ||-|| for
which the induced norm ||M|| < 1 [48, 29]. Since A is symmetric, the matrix M is
diagonalizable, i.e. M = S™'AS where S is a matrix of the eigenvectors of M and A is
a diagonal matrix of the corresponding eigenvalues [28]. Therefore, the S-norm defined
as |||l = || Se||, for © € RY is an example of a norm for which the associated induced

norm ||M|| < 1, since

IM||s =|sMs7| =|s-57'aS- 57 | = lIAll, = p(M) < 1.

=
Taking the S-norm of both sides of equation (3.5) yields
ol <ol +fsmtol, s mprl,, 69

where ¢ = ||C]|5 and m = | M ||g < 1.
Integrating the electron transport equation (3.3), subtracting successive iterations,

taking the S-norm of both sides, and invoking Lipschitz continuity yields
om0, <
/ P2 (@), mb (), w4 (1), 05 (7)) = (2 (1), m (), w2 (), m 2 ()| g
< & [{lsw @+ ot + [ O]+ fon )] o

where £y > 0 is a number related to the Lipschitz constant of F5 [29].
Applying Definition 3.2.1 of the f-norm to the inequality, multiplying and dividing

14
}22/ eBTdT,
Bs 0

where subscript Bg is used to denote the S-norm generated from the S-norm. Taking
the S-norm of both sides and noting that

by ¢~P inside the integral yields:

Jor )] < {Joul 5, + fou'

5, + 50 g, [

¢
e—Bt/ BTdr = Bt [B—1eBT t ] _ gt (1 . e—Bt) < B,
o 0

results in the expression

|en*]p, <27 Jou'],, + 657 [on*],

. +£,B7t Hﬁuk_1| e + ¢,B7t "61&’“‘1

B’

For B > £, this may be rewritten as

Bt
Wlth QO = 2

”(Snk Bg 1 —4,B1 )

,, Sl +eafsut a7

+ ag ]l&nk'l
g

B
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Note that no matter how large the number £,, there exists a finite B such that if B is
chosen to be sufficiently large (B > 243) then oz < 1, and a3 can be made as small as
desired by further increasing B. In other words, as B is increased, the S-norm focuses
on shorter and shorter intervals in [0, 7).

The hole transport equation (3.4) may be transformed into a similar inequality,

LBt
e ToLET

where £3 > 0 is a number related to the Lipschitz constant of f3, and B > £s.

(3.8)

5, S 05w, o [su ] +aa iRt with oo =

Transforming the Poisson inequality (3.6) into an inequality using B-norms, and
grouping it with the inequalities (3.7)-(3.8), where the S-norm is chosen so that
max(é,,£3) B}
1 — max(€s,43)B™!

B > max(f;,43) and o = max(ag, az) =

leads to the inequality system:

3 k 3 k-1
sut|, < c|6pIBS + clont|, + m|out],
k k w1 B
on |Bs < aléu B + a|6u ”Bs + alén ”Bs
k k k-1 k1
op B < aldu Be + aléu |Bs + alép "Bs’
which may be written in matrix form as

1 — —¢ || 62”55 m 0 0 16w ||Bg
—a 1 0| |6nfles | S| @ a 0} [I6n"|5s
—a 0 1] [I6p"|l5s a 0 o] [[6p"l5s

The inverse of the left-hand side matrix is given by

-1

l —¢ —e¢ L 1 c c
—o 1 0 = 1= %ac a 1-—ac «c
-a 0 1 1o oc 1— ac,

3
so that if & is chosen to be sufficiently small (o < 1/(2c), which can be accomplished by
using a #-norm with a large enough B), then the inverse is a positive matrix. Under this
condition, both sides may be multiplied by the inverse without disturbing the inequality
so that

”‘5"’6 B . m + 2ac¢ ac ac ”5“H ”Bs
||5nk B. < (o | emta a- a’c  dlc “5'"'H| Bg (3.9)
”(Spk i am+a o’c  a-ale "6p’°‘1 B

5
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Defining « = [u n p]? and taking the infinity norm of both sides yields:

3 k1 _
||6a: “Bs <Ay “6:c |Bs where ~ = T 0 WX (m+4ac, am + 2a).
If B is chosen large enough so that
_ max{{z, {3} B! . (1 —m 1 )
«= 1 — max(€,,£3)B~1 6c ' m+2c+2/’

then the maximum row sums of T are less than one and

”(S:nk

Be <% ||6a:k'1 ”Bs with v < 1. (3.10)

Since there exists a norm for which inequality (3.10) holds with v < 1, the node-
by-node WR Algorithm 3.1.1 is a contraction mapping in an exponentially-weighted
norm. Therefore, the contraction mapping theorem implies that the waveforms z**

must converge to the unique fixed-point of the WR device simulation system [29]. a

3.3 Sup-norm Convergence

Although Theorem 3.2.2 guarantees convergence on a finite time interval [0,7], it
does not imply fast convergence or computational efficiency. On the contrary, because of
the use of the exponentially-weighted norm || - ||, the theorem shows only that as WR
iterations proceed, convergence is guaranteed first on a small time interval {0, At]. Once
this first interval is converged, WR will converge on the next interval {At,2At], and so
on, until the entire interval [0,T] is computed. In the early iterations, the latter parts of
the waveforms may not move any closer to the exact solution.

QObviously, WR. is most efficient if there is no computation wasted on timepoints whose
values are not approaching the solution. And in practice, when WR 1is applied to the
device simulation problem, the errors at all timepoints in the interval [0, 7] are reduced
with each WR iteration. To demonstrate this, that the WR. algorithm contracts in a
sup-norm sense for typical MOSFET simulations, an example MOSFET simulation was
performed over an interval of 30 nanoseconds with a short low-high-low voltage pulse
applied to the drain with the gate held high. Figure 3-3 shows the electron concentration
waveforms for several different WR iterations at a silicon-oxide interface node halfway
between the source and drain. The initial guess was a flat waveform at the value satisfying
the t = 0 conditions. The waveforms converge uniformly to the exact solution, i.e. values
at all timepoints move towards the solution as iterations progress, so that no computation

is wasted.

39



101 v v T T T -

iter®

101 iter20 jf_

iterdQ /

iter60

TAT T TTTTT

bl b dudd

T T T TTTITIT

1037

T
o
.

exact

[ R

IGIS 1 L 1 1 L
0 5 10 15 20 25

L)
i=1

time (ps)

FIGURE 3-2: Sup-norm contractivity of electron concentration waveforms at a channel
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FIGURE 3-3: Experimental setup for demonstration of sup-norm contractivity.

The sup-norm contractivity of WR for a simplified 1D device simulation problem can
be proven given strict conditions on the shape of the electric field [34, 32]. Consider a
1D evenly-spaced mesh of N nodes with the endpoint potentials ug(t) and un41(f) as

inputs, as shown in Figure 3-4. If the potential u is known for all nodes, then the linear

I e . i

4 1

] 2 3 N-1 N

FIGURE 3-4: A one dimensional mesh consisting of N evenly-spaced nodes and boundary
conditions at either end.

time-varying differential equation in 7 that arises at node ¢ 1s

1 kT
4 it + 7 T‘u E [anB(u,; —uj) —nfB(u; — u,)] =0 (3.11)
I
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where [ is the distance from node to node and the summation occurs over the two nodes
to the left and right (j = 7 + 1). The following lemma and theorem hold.

LEMMA 3.3.1. Given a sequence of N irreducible, positive matrices

{Q(k),Q(k +1),...,Q(k+ N)},

with each matriz Q(-) € RYN*N having an induced norm ||Q(-)|l, < 1 and a row sum
> Q(-)ij <1 for some row i, the product of the matrices salisfies
]

1QUk+ N) Q(k + N = 1) QB)|l., <7 <1, (3.12)
for some 7.
Proof. To show inequality (3.12), note that the product matrix
R=Q(k+N)Q(k+N—1)-- Q(k)

is a positive matrix since it is the product of positive matrices. Furthermore, for any
positive matrix T € RV*¥ | the vector norm | T#||_, is maximized over all vectors [|=||,,

by a vector & consisting of all ones. This implies that the induced norm is
IRl = || B]|, - (3.13)

Now suppose that the row i; of Q(k) has a row sum less than one. By assumption,
Q(k) is positive and [|Q(¥)]|,, < 1, so that row 7 of the matrix-vector product Q(k)Z
must be strictly less than one. All other rows of Q(k)& must be less than or equal to
one.

The vector Q(k + 1)Q(k)& has at least two rows strictly less than one. To see this,
suppose that row iz4y of Q(k + 1) has row sum less than one. If 2411 # ix then both
Tows %541 and %x of the matrix-vector product Q(k + 1)Q(k)& will be less than one. If
ix+1 = i, then certainly row i; of @(k + 1)Q(k)& will be less than one. In addition,
because Q(k + 1) is irreducible, there must be at least one other row of @(k + 1) that
has a non-zero element in column ix. This row of Q(k + 1)Q(k)& will be less than one.
In turn, each successive multiplication by one of the Q(-) matrices reduces at least one
more row. After N multiplications, the resulting matrix-vector product R& must have

all rows less than one, proving the lemma. a

THEOREM 3.3.2 (SuP-NORM CONTRACTIVITY OF WR).

If at each time t, u(t) is such that the electric field along the line is either constant, or
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monotonically decreasing, then WR applied to (3.11) is a contraction in a uniform norm
on any finite interval [0,T]. That is,
k+N k
e |t 0] 57 Aol 510

where v < 1, superscript k denotes iteration, N is the number of grid points, and
Ank(t) = nF(t) — n*1(1).

Proof. The WR iteration equations (3.11) applied to the model problem can be

written in terms of unknown vector n(t) as
4 pFH(g) = —D(t) n*(t) + M(2) n*(t) + b(2) (3.15)

where D(t) € RV*YV is a diagonal matrix, M(%) € RV*N and b(t) € RY accounts for
the edge conditions ug and upn41. Because the Bernoulli function is always positive, both
D(t) and M (t) are positive matrices.

“The conditions on the electric field imply that at each node 2,

w; — Uimy S Uip1 — Ui
so that the monotonically decreasing Bernoulli function has values
B(u; — t;-1) = Bluips —ui) and B(ui_y — w) < B(ui — tiy1)-
Therefore, elements di;(t) of D(t) and mi;(t) of M (t) will satisfy the relation
dii(t) > e+ D mij{t) (3.16)
i#i

where ¢; > 0 and is strictly greater than zero for the mesh points ¢ = 1 and ¢ = N npext

to the boundaries.

Given relationship (3.16) between D(t) and M(¢), the WR algorithm applied to a
system of the form of (3.15) will contract in a uniform norm. This has been shown for
the case when D(t) and M (¢) are independent of ¢, using Laplace transforms [24]. In
the time dependent case, the result can be shown by examining the difference between

iteration k and k + 1 of (3.15), so that for each mesh point ¢,

2 At (t) = —duis(?) AnFt(t) + Z#: mi;(t) Ank (), (3.17)

where An#(t) = nf(1) — nf'(t). By assumption, d(t), mi;(t) > 0 and Anf(0) = 0 for

all nodes z.

42



The solution Anf(2) to equation (3.17) begins at value Anf™(0) = 0 and through-
out the entire interval [0, T], stays within the bounds given by

Rk s (¢
t = L. .
i 0] < g[S 50 ot <2 (318
In other words, for any solution which violates this inequality, £ 4 Ankt! (t) points back
into the region [49]. To see this, suppose that at some timepoint t1, the solution Anf+'(z)

has moved from within the region to reach the upper limit L, then

m; t '1"]’.‘.I t
Anftl() =L > 2 J( 1) | Ak (21) ]_ dj((t:)) Ank(ty), (3.19)
and therefore
dz',;(t]_) Anf-l-l(t]_) 2 me(tl) Anf(tl) (320)
i

This implies that the right-hand side of equation (3.17) at time ¢; and the time derivative
4 Ank+1(t1) are non-positive, prohibiting Anf*! from moving above the upper limit.

)

Sunﬂarly7 if at some timepoint ¢;, the solution An has moved from within the

region to reach the lower limit — L, then

Anf*(ty) = ~L < =37 2% mij{tz) |Ank(t)| <0, (3.21)
g u( 2)

and

— di(t2) Anf (1) > Y mij(ta) |Anf(t)| = 3 mij(ta) Anf(ts). (3.22)
i# J#
This implies that the right-hand side of equation (3.17) at time ¢, and the time derivative
&d,t Anf*1(ty) are non-negative, prohibiting An**? from moving below the lower limit.

Written as a inner-product of vectors, inequality (3.18) implies that

k+1 i {Thi) 3
sl = S v o=
&
- | Ewlanel
mq (Tk,z) miN (Tk,z) .
S —_— , PR 5 —_— . P (3.24)
dii (ki) dii(7x,i) IAn (t)|
max
teo.r]
where 7 ; is the value of t € [0, T] which maximizes
5150 [ =

J#i dii(t)
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Assembling the inequality system from (3.24) results in

285/ 5|
< Q(k) (3-26)
max. |An’°+l @) max lAnﬁr(t)l

where < denotes a row-by-row inequality. The matrix @(k) € RV*¥ is a positive matrix

with elements given by

mi;(7(k,1))
d,'i(T(k, Z)) ’

Because of inequality (3.16), all rows of the matrices @(k) have row sums less than

q,','(k) =0 and q,;j(k) =

or equal to 1, so that |Q(k)||,, < 1. Because of the boundary conditions of the one
dimensional mesh, the two rows i = 1 and ¢ = N of the matrix Q(k) have row sums
strictly less than one. In addition, @(k) is irreducible. Since these properties hold for all

iterations &, Lemma 3.3.1 implies that

1Qk+ M) Qe+ N —1)--- QR <7 < 1, (3.27)

for some « [48]. This implies that

max [An"V ()] < v pax]ant] (3.28)

which proves the theorem. a

The monotonicity conditions on the electric field are approximately satisfied in prac-
tice on the horizontal lines in the channel between the source and drain of a MOSFET. It
is encouraging that a sup-norm contractivity result can be proven at all. This is in sharp
contrast to the behavior of WR when used for the circuit simulation of typical MOSFET

circuits with feedback, in which sup-norm contractivity is rare [50].
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The WORDS Program

4.1 Introduction

Both standard and waveform methods have been implemented in the device tran-
sient simulation program WORDS [33]. This chapter gives an overview of the WORDS
program. The chapter begins with a brief description of some of the implementation
issues that arise when WR is applied to device simulation. Finally, in Section 4.3, ex-
perimental results are given, comparing standard direct solution methods to waveform
methods. In particular, the results show that block WR accelerated with WRN and

timestep refinement is competitive on a serial machine with pointwise direct methods.

4.2 Implementation: the WORDS Program

The need for both efficiency and accuracy affects all aspects of the design and im-
plementation of the WORDS program, as described in the following sections. WORDS
consists of about 15,000 lines of C.

4.2.1 Vertical-Line Block WR

~ In practice, the node-by-node Gauss-Jacobi WR Algorithm 3.1.1 may require many
hundreds or thousands of WR iterations to converge, severely limiting the efliciency
of WR-based device simulation. To reduce the number of WR iterations to achieve
convergence, WORDS uses the block relaxation techniques described in Section 2.2.4.
The block WR algorithm for devices is similar to the node-by-node WR Algorithm 3.1.1,

except that the 3 x 3 systems of equations for each node are replaced by fewer, larger

45



systems of equations representing the equations of all the nodes contained in each block.

Although using blocks of nodes accelerates device WR convergence, the computational
expense of directly solving the larger system of equations of a block of nodes is higher
than that of solving the smaller 3 x 3 system of equations for a single node. In addition,
the same timepoints must be used in.the waveforms of all nodes within a block, so that
a block algorithm cannot take advantage of any multirate behavior within a block. The
challenge is to use a blocking scheme that covers the device mesh in relatively few, easy-
to-solve blocks and groups tightly-coupled nodes together, but does not group nodes
which are expected to change at different rates.

The blocking scheme used in WORDS divides the tensor-product mesh into vertical
line blocks. This is a particularly effective blocking strategy for MOSFET simulation for

the following reasons:

1. The vertical line blocks directly capture the behavior of the oxide-silicon interface.
Computing the interface behavior is 2 numerically difficult problem because of the

Neumann reflecting boundary condition on the electron and hole current equations.

9. Since each vertical line is essentially a one-dimensional device simulation problem,
the resulting subsystems produce 3 x 3-block-tridiagonal matrices which are easily

solved in linear time.

3. The potentials at either end of a vertical line in the channel of a MOSFET are
pinned by the gate and substrate contacts, so that each line’s solution correctly
accounts for these contacts and directly captures the highly nonlinear electric field
dependence governing surface depletion and channel width from the very first WR

iteration.

4. Vertical line blocking allows the WR algorithm to take advantage of the multirate
behavior resulting from the horizontal distance between the source and drain con-
tacts. For example, if the drain potential of a MOSFET is increased while the
source potential is held fixed, more timepoints are needed to accurately resolve the
widening of the drain depletion region than are needed to resolve the source end of

the device.

5. The vertical line blocks can be processed in red/black order to maintain paralleliz-
ability when Gauss-Seidel WR is used [44].
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4.2.2 Waveform Relaxation Newton Acceleration

When block WR is applied to the nonlinear differential-algebraic system of equations
of a device, the differential-algebraic systems of equations solved for each block at each
timepoint are nonlinear, and require multiple Newton iterations. As described in Sec-
tion 2.4.2, the waveform relaxation Newton (WRN) method reduces the computation
per WR iteration and improves WR efficiency [50, 37]. When WRN is applied to the
nonlinear differential-algebraic system of equations of a device, the nonlinear differential-
algebraic systems of equations of each block are linearized about the solution of the
previous iteration, and the linearized systems are solved with a single matrix solution at

each timepoint.

4.2.3 Integration Method

To solve the differential-algebraic system of each block generated by spatially discretiz-
ing the device equations, WORDS uses the backward Euler method and the variable-
timestep second-order backward differentiation formula (BDF2) [11, 5]. For the first two
timesteps (and also for the first two timesteps after any other discontinuity in the deriva-
tive of a contact voltage), WORDS uses the backward Euler method, to avoid having to
look backward in time past a discontinuity. Thereafter, WORDS uses the second-order

backward difference formula.

4.2.4 Timestep Selection Strategy for Multirate WR |

Since WORDS can take advantage of multirate behavior within a device by using
different timepoints for different blocks of nodes, some interpolation in time is unavoid-
able. Before computing a block’s solution at a time ¢, the solution of the adjacent blocks
at time * must be obtained from the previous WR iteration’s waveforms, in order to
compute the fluxes and currents along mesh edges to the adjacent blocks. Furthermore,
if the WRN method is to be used, the block’s previous solution is required as an initial
guess at time £. In either case, if ¢ is not a timepoint used in the waveforms of the
previous WR iteration, then interpolation in time is necessary. WORDS uses polyno-
mial interpolation of the same order as the integration method used to compute the first
waveform timepoint greater than {.

To minimize both the number of interpolations and their associated errors, WORDS
synchronizes adjacent block timesteps by selecting all timesteps of all blocks before each

WR iteration. This a priori timestep control strategy also results in efficient timepoint
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ALGORITHM 4.2.1 (WRN wiTH TIMESTEP HALVING STRATEGY).

Initialize: Choose a global, minimal set of timepoints {#.} for all subsystems.
For k =0,1,... until converged

For each subsystem 2
If k= 0 then let {tF"'} = {t.}.
Otherwise,
let {1441} = {21},
For each 5(j), add 3 (tf(_y —1) —l—tf(g)) to {tFt1} if
1. the LTE in waveform « at timestep ¢5(j) is too large, or
2. neighboring subsystems use much smaller timesteps.

k+1

Use {t¥*1} to solve for waveforms #; 7" of subsystem i.

placement, algorithmic parallelism, and the possibility of refinement with iteration [37].
On the first WR iteration, each block of nodes is solved on a globally-shared, minimal
set of timepoints consisting of the times of any slope discontinuities of the input volt-
ages on the device contacts. Before each subsequent WRN iteration, the timesteps for
a block are chosen by computing a standard predictor-corrector local truncation error
(LTE) estimate [5] for each non-fixed timestep of the block’s previous iteration electron
and hole concentration waveforms. If the LTE of a timestep made in the previous itera-
tion’s waveform is larger than a tolerance computed from the sup-norm of the waveform,
then a new timepoint is introduced into the waveform to precisely halve the old timestep.
The timestep selection strategy is shown in Algorithm 4.2.1, with {¢¥(1),#5(2),...} de-
noting the set of timepoints with which the waveforms of subsystem ¢ at iteration k are
computed.

The primary advantage of this timestep-halving strategy is that adjacent blocks will
tend to select similar sets of timepoints, since all blocks begin with the same timepoints
and select new ones by halving intervals. The synchronization of adjacent blocks is
fostered by also requiring a block to split a timestep if the corresponding timestep was
twice split by the neighboring blocks. In addition, except for the newly-added timepoints,
a block uses the same set of timepoints as it did in the previous WR iteration. This
synchronization with previous iterations reduces interpolation of the initial guess for

WRN. Because the necessity of interpolation for adjacent block solutions and previous
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iteration solutions is reduced, the timestep-halving strategy improves the accuracy of
the solution and terminal current calculation, while maintaining most of the multirate

computational advantage of WR.

4.2.5 Terminal Current Calculation

In WORDS, each device contact is represented as a connected group of nodes with a
single, externally-specified potential waveform. In the following, the mesh edges between
the nodes i of a contact and the adjacent non-contact mesh nodes j will be referred to
as contact edges. The contacts and the contact edges of the MOSFET device shown 1n

Figure 1-1 are shown in Figure 4-1.
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FIGURE 4-1: The contacts and contact edges of a MOSFET device.

The total current I entering a contact from within a device is the sum of the electron,
hole and displacement currents travelling on its contact edges,
=Y dij [Juy + T + Jus] (4.1)
tJ
where for each contact edge between nodes ¢ and j, d;; is the length of the side of the
Voronoi box that encloses node i and bisects the edge. The electron current flux Jy;; and

the hole current flux Jj,, are computed from the u, n and p solutions at both ends of

each contact edge,

kT fin,,
Jn.;j = -q— L” [n.,B(u,-uJ) —nJB(uJ_Ug)] (4.2)
kT poi, '
Ty = — L2 [pB(u;—us) — pBluwi—u)]. (43)
i

To compute the displacement current on a contact edge, first the charge on the contact
edge is computed by using the Poisson equation to relate the charge to the electric field
on the edge,

ET €5

Qij = -? L—ij“[u,;—uj] .
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The displacement current flux J,,; is the time derivative of Qi;, computed with the same
multistep integration method coefficients used to compute % of n and p.

Because WORDS may use different timepoints at different nodes to take advantage
of multirate behavior, some care must be taken to avoid the introduction of interpolation
error when computing a terminal current I. In the highly-doped source and drain regions,
any interpolation error, particularly of potential, may produce non-negligible errors in
terminal current waveforms.

In WORDS, a current waveform is computed and associated with each contact edge,
representing the behavior in time of the total current travelling on that edge. Each
current waveform is constructed using whatever timepoints are used by the u;, n; and
Pj waveforms of the contact edge’s non-contact endpoint j. This choice of timepoints
allows the contact edge current waveforms to be computed without interpolation, because
the potential waveform of a contact is externally-specified, and the electron and hole
concentrations are constant. WORDS uses these contact edge current waveforms for
internal calculations such as convergence checking and timestep refinement.

To compute the terminal currents of a device, i.e. the summations of the current wave-
forms on the contact edges of each contact, WORDS uses the union of all the timepoints
used to compute the edge current waveform of the contact. Here, with multirate behav-
ior, some interpolation in time is unavoidable, but 1s minimized by the sjnchroniza,tion

of the adjacent block timepoints discussed in Section 4.2.4.

4.2.6 Convergence Testing

The primary convergence criterion used in WORDS is a requirement that the max-
imum error of the contact edge current waveforms be less than some tolerance. The
maximum error is estimated from the change and rate of change of contact edge currents
between successive iterations [13].

Let I*(t) denote the total current travelling on the jth contact edge at time t € [0, 7]
computed after WR iteration k, and let Af k¥ denote the maximum over all contact edges
of the device of the sup-norm of the change of contact edge current from iteration k—1
to k, 1.e.

AI* = max THOE Ol (4.4)

and let p = AI*/AI*"! denote the convergence rate. Assuming linear convergence, an
estimate of the distance between the exact solution I* and the kth iteration solution I*
is

IF—I* = pAI* + PPAIP 4. = (1%;) AI*
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Therefore, in WORDS, the WR iterations are terminated when

p k . k
(1 — p) A" <r max "Ij (t)"oo +a
where the maximum is taken over all contact edges of the device, r is a relative tolerance

(typically 1073) and @ is some small absolute tolerance (typically 107 A/em)

4.2.7 Convergence-Driven Timestep Refinement

WORDS uses a convergence-driven timestep refinement strategy that can reduce the
computation required in each WRN iteration, thereby improving WRN efficiency [37]. As
with the ordinary timestep-halving strategy in Section 4.2.4, the timesteps of all blocks
are chosen before every iteration. All block waveforms begin with a global, minimal set
of timepoints, and a timestep is halved if the standard LTE estimate computed for the
previous iteration waveform is larger than the acceptable LTE tolerance.

With a timestep refinement strategy, the acceptable LTE tolerance is not a constant,
but is a factor that is decreased slowly with iteration, thereby adding timepoints to
waveforms to keep their estimated local truncation errors less than some fraction of the
error criterion used to measure convergence. To implement convergence-driven refinement
in WORDS, the constant acceptable LTE tolerance used in the ordinary timestep-halving
strategy is multiplied by the factor

4 = max (l, AT* ) ,
| (r - max; h[f(t)”oo + a) :

where AT* and the denominator are the comtact edge current values used to determine

convergence, as described above in Section 4.2.6. In the early WRN iterations, the factor
7 is greater than one, and the LTE tolerance is “looser” than in the ordinary timestep-
halving strategy. As iterations proceed and AI* decreases, the acceptable LTE tolerance
approaches the value used in the non-refinement timestep strategy.

Note that the factor + is computed from the unextrapolated difference (4.4) and not
the estimated error I* — I*. This ensures that the LTE is kept tight enough to maintain
accuracy in the AJ waveforms, producing smooth edge current waveforms. Although
this does not prevent timepoints from being added early in the iterations of a slowly
converging problem, this does preveﬁt spurious spikes from occurring in the edge current

waveforms as new timepoints are added.
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4.3 Experimental Results

In this section we present results from experiments with the WORDS program. Sim-
ulation examples were constructed from the three different n-channel MOS devices de-
scribed in table 4-1. Each device was spatially discretized on an irregular tensor-product
mesh, i.e. the mesh lines were placed closer together at points where u, » and p were

expected to exhibit rapid spatial variation.

device ” description | L | Leyy | tor | mesh | unknowns
ldd || lightly-doped drain | 0.64 | 0.4 | 19 | 15 x 20 656
sol silicon-on-insulator | 0.7 | 0.5 | 7 |18 x 24 856
kar abrupt junction 3.0 | 22 |50 |19x31 1379

Table 4-1: Description of MOS devices: gate length L (um), effective channel length L.y
(pm), oxide thickness t,; (nm), mesh size (rowsxcols), and total number of u, n and p
unknowns. Silicon thickness of soi is £, = 0.1 pm.

The three MOS devices were used to construct the six simulation examples described
in table 4-2. Dirichlet boundary conditions were imposed by a gate contact and by
ohmic contacts at the drain, the source, and along the bottom of the substrate. Neumann
reflecting boundary conditions were imposed along the left and right edges of the meshes.
For all examples, the source and substrate contacts were fixed at 0 V. The drain-driven
karD test is illustrated in Figure 4-2. Note that all six of the examples involve both high

and low current conditions.

example ” device | drain bias | gate bias
1ddD idd 5 psec, 0-5 V ramp 5V
1ddG ldd 3V 5 psec, 0-5 V ramp
soiD soi 5 psec, 0-5 V ramp 5V
501G o1 3V 5 psec, 0-5V ramp
karD kar | 50 psec, 0-5 V ramp 53V
karG kar 3V 50 psec, 0-5 V ramp

Table 4-2: Applied bias conditions in the simulation examples.

The WORDS program is written in C, and all experiments were run on an IBM
RS/6000 model 540 workstation.

4.3.1 Comparisons to Direct Solution

To compare the computational efficiency of the WR methods to standard direct so-

lution, WORDS was used to compute the transient behavior of each of the six examples.
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2.2 microns

1

FIGURE 4-2: The drain-driven karD example.

Table 4-3 shows the CPU times required by direct solution, Gauss-Seidel WR and WRN
with convergence driven timestep refinement. The timing results show that WRN with

timestep refinement is competitive with direct methods.

example || direct ‘ WR (iters) | WRN/r
TadD || 147.47 | 594.74 (353) | 296.48
1ddG 439.22 | 615.04 (268) 253.19
soiD [ 208.77 | 244.12  (235) | 96.68
soi(a 130.75 | 226.66 (161) 95.61
karD || 607.08 | 1536.34 (315) | 501.66
karG 2622.29 | 1104.08 (215) h63.75

Table 4-3: CPU times for direct solution, the WR method and WRN with timestep
refinement, simulating a drain ramp and a gate ramp applied to the three devices.

As described in previous sections, the WR methods were implemented as block it-
erative methods, i.e. the device meshes were broken into blocks defined by its vertical
lines and the equations governing nodes in the same block were solved simultaneously
using the first and second-order backward differentiation formulae, Newton’s method and
sparse Gaussian elimination. The blocks were processed in red/black order to indicate
parallelizability. To compute the solution directly, each device mesh was treated as a

single block.

4.3.2 Terminal Current Accuracy

For all of the simulations of table 4-3, the terminal currents, including displacement
currents, were computed accurately to one part in 10°. Figure 4-3 compares the terminal
current accuracy of direct solution and the WORDS method for the karG example.
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o} 0.5 i 15 2 25 3 35 4 45 5

time (sec) xIg-1L

FIGURE 4-3: Terminal current accuracy comparison between a waveform method and
direct methods, showing the sum of resistive and displacement currents into the drain
and gate terminals, in response to the 50 psec gate ramp from 0 to 5 volts in the karG
test.

4.3.3 Multirate Behavior

When accelerated with WRN and convergence-driven timestep refinement, the device
WR method is sometimes faster than direct solution because WR takes advantage of
multirate behavior. Figure 4-4 illustrates the number of timepoints required per vertical
line block to solve the karD example with WR. Different blocks required different numbers
of timesteps because more timepoints were needed to resolve the widening of the drain
depletion region than were needed to resolve the source end of the device. It is interesting
to note that different nodes changed at different rates, not so much because the electron
and hole concentrations changed at different times, but because they changed by different

orders of magnitude (i.e. multimagnitude behavior).
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FIGURE 4-4. Multirate behavior in the karD WR test.
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Convolution Successive
Overrelaxation

5.1 Introduction

To achieve highest performance on a parallel computer, a numerical method must
avoid frequent parallel synchronization [1]. The waveform relaxation approach to solving
time-dependent initial-value problems is just such a method, as the iterates are vector
waveforms over ap interval, rather than vectors at single timepoints [24, 50, 18]. Like
any relaxation scheme, efficiency depends on rapid convergence, and there have been
several investigations into how to accelerate WR. [24, 42], including using multigrid [19]
and conjugate direction techniques [20].

In this chapter, we investigate using successive overrelaxation (SOR) to accelerate
WR convergence. In particular, we show that the pessimistic results about dynamic
SOR iteration derived in [24] can be substantially improved by replacing multiplication
with a fixed SOR parameter by convolution with an SOR kernel. We derive the optimal
SOR kernel using Fourier analysis and z-transform techniques and demonstrate the ef-
fectiveness of the approach for a model parabolic problem. Finally, we demonstrate the
general applicability of the approach, by using the method to solve the time-dependent
drift-diffusion equations associated with modeling semiconductor devices.

We begin in Section 5.2 by reviewing waveform SOR, and in Section 5.3 we relate the
algorithm to pointwise SOR, to demonstrate the difficulty in accelerating WR with a fixed
SOR parameter. In Section 5.4, we use Fourier analysis to informally derive the optimal
convolution SOR kernel for the continuous WR algorithm. In Section 5.5, we consider the

effect of time-discretization, we derive the optimal convolution SOR sequence, and give a
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proof of optimality. In Section 5.6, we briefly describe some aspects of implementing the
convolution SOR, algorithm. In Section 5.7 we apply the method to device simulation on

a serial machine.

5.2 Waveform SOR

In this section, we consider applying waveform relaxation methods to the model linear

initial-value problem
(2 +A)=(t)=b(t) with =(0) ==, (5.1)

where A € R™", b(t) € R* is given for all t € [0,T], and &(t) € R” is to be computed.
Consider the standard relaxation splitting A = D—-L-U, where D, L and U are the

diagonal, strictly lower triangular and strictly upper triangular pieces of A [48, 52]. Sub-

tracting successive waveform relaxation iterations, the waveform Gauss-Jacobi (WGJ)

and waveform Gauss-Seidel (WGS) iteration equations, respectively, may be written as:

(& +D) A2 () = (L+U)Azh(t) (5-2)
(& +D - L) Az™(t) = U AzH(), (5.3)

where Az (1) = 2™ () — 2" (7).

The waveform SOR method for acceleration of WGS is a simple extension of algebraic
SOR. To derive the waveform SOR iteration equation, compute a waveform # (1) on
t € [0, 7], solving an initial value problem as in WGS:

i=1

(% +aq) &) = () - Y auelt () - X aiw (1)
=1 j=i+1

(5.4)
*%?H(O) = To;

and then update z¥(t) in the iteration direction by multiplication with an overrelaxation

parameter w,
2P (1) e 2b(t) +w - [ (1) —2k(0)]- (5.5)
Combining equations (5.4} and (5.5) yields
(4 +a:) 2t (1) =

(1) (£ +a) 220)] +o B0 - Laet ()~ ¥ asel)]

7=1 j=i+1
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which, after subtracting successive waveform relaxation iterations, leads to
(£ + D —wL) Ac™ (1) = [(1 —w)(£ + D) + U] Az®(2), (5.6)

where Az*(t) = &*(t) — zF(¢).

Note that deleting the % terms in equations (5.2), (5.3) and (5.6) results in precisely
the standard algebraic relaxation and SOR iteration equations. Also note that waveform
SOR as defined by (5.6) is not precisely the same as the dynamic SOR iteration considered
in [24].

In this paper, we will consider the effect of replacing the overrelaxation multiplication
in (5.5) by an overrelazation convolution with a time-dependent SOR kernel w(t). In the

continuous time case, the overrelaxation equation becomes

T

() b+ [ w(r) @ — ) okt — )] dr, (5.7)
and the iteration equation for the resulting method is

(£ + D) Az™(t) - L /_oo w(t) Ae™(t — 1) dr =

oo (5.8)
(£ +D)Act(t) +[U ~ (& + D)) [ w(r) Aa*(t—7)dr.
5.3 Relation to Pointwise SOR
Discretizing (5.1) in time using a multistep integration method [11] yields
1+ hpoA] zlm] = :
(5.9)

bim] + 35 (A (bl — ] — Aelm — 7)) — azelm — 1}

where o; and B; are the coefficients of the multistep method, and x[m] denotes the
discrete approximation to ®(t) at £ = mh. We now compare the convergence rate of
the waveform SOR method to the convergence rate of pointwise SOR, in which algebraic
SOR is used to solve the matrix problem at each timepoint.

The pointwise SOR. iteration equations are derived by applying the relaxation splitting
A = D— L-U to equation (5.9) and taking the difference between the (k+1)st and kth
iterations. More precisely, the pointwise SOR iteration equation applied to solve (5.9)
for Az* [m) = 2" [m] — 2"[m] is

[(I + hgoD) — whpioL| A m] =

(5.10)
[(1 = w) (T + hBeD) + whBoU| Ax*[m],
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where w is the SOR, parameter. It follows that the spectral radius of the iteration matrix

generated by pointwise SOR at the mth timestep is
-1
p ([(I + hBoD) —whBoL] ' [(L = w) (I + hpoD) + whﬂoU]) . (51D

If waveform SOR is used to solve the model problem (5.1), and a multistep method

is used to solve iteration equation (5.6), then Az* {m] satisfies

Zs:aj [A:r:kﬂ[m —j] _ (1 —w) Awk[m —j]] _

= (5.12)
RY Bi{ — (D —wL) Az [m — j] + (1 — w) D + wU] AzFlm —j]}.
i=0
This can be rewritten as the discrete-time analogue of (5.6):
3" [(e;I + hp;D) — wh;L| Az [m — j] =
= (5.13)

S (- w) (eI +2B;D) + whB;U| Az¥m — j].

i=0

As the similarities of equations (5.10) and (5.13) suggest, if the time interval is finite,
i.e. the number of timesteps is some finite L, then for a given timestep b and a given
SOR parameter w, the time-discretized waveform SOR method has the same asymptotic

convergence rate as the pointwise SOR method.

THEOREM 5.3.1. On a finite simulation interval, the iterations defined by (5.10)

and (5.13) have the same asymptotic convergence rate.

Préof. Let y* denote the large vector consisting of the concatenation of vectors
Ax*[m] at all L discrete timepoints, i.e. y* = [Aa:k[l]T,...,Aa:k[L]T]T. Collecting
together the equations (5.13) generated at each timepoint into one large matrix equation
in terms of vectors y**! and y* yields MAy*! = NAy* where M,N € REmxIn
are block lower triangular banded matrices, with blocks of size n x n, and with block
bandwidth s. It is then easily seen that M "IN is block lower triangular, with diagonal
blocks equal to

(L +hBoD) = whfoL] ™ [(1—w) (I + hBoD) + whfiel |- (5.14)

Therefore, p(M ™ N) is given by (5.11), implying that the iterations defined by {5.10)

and (5.13) have identical asymptotic convergence rates. a
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Theorem 5.3.1 suggests that parameter w for waveform SOR should be chosen to be
precisely equal to the optimum parameter for the pointwise SOR method. However, this

does not necessarily lead to fastest convergence, as the following example illustrates.

EXAMPLE 5.3.1. Let ¢ € [0,2048], z(0) = 0, and let matrix A € R****? and time-
dependent input vector b(t) € ®** of the model problem (5.1) be given by

S _
—1 2
A =
-1
-1 2
- } B (5.15)
by(t)

27t
— — ift <2
1 —cos (256) if t < 256

0 otherwise.

b(t) = _ where bl(t):{

Consider the four problems generated by discretizing in time with the first-order backward
difference formula, using 64, 128, 256, and 512 uniform timesteps of size h = 32, 16, 8
and 4 respectively.

Since the tridiagonal matrix A is symmetric and is consistently ordered [52, 48],
the matrix (I + hBoA) of the pointwise time-discretized model problem (5.9), is also

consistently ordered, and the optimum pointwise SOR parameter w,y; is given by

2
Wopt = —— ==
i 14 4/1 — pf

where p; = p{H ;) is the spectral radius of the pointwise Gauss-Jacobi iteration matrix
Hegr = (I + hB3D) Y (hBoL + hBoU). For the four problems with 64, 128, 256 and 512

timesteps, the optimum pointwise parameters w,,; are approximately 1.669, 1.586, 1.482

(5.16)

and 1.364 respectively.

Curves PT64, PT128, PT256 and PT512 of Figure 5-1 show convergence versus iter-
ation of the waveform SOR method for the four problems with their optimum pointwise
SOR parameters w,y;. Note that as the total number of timesteps is increased, the ini-
tial convergence rate slows, approaching a limiting value of the convergence rate of the
unaccelerated Gauss-Seidel WR algorithm (shown as WR in Figure 5-1). In each case,
the convergence rate of waveform SOR eventually approaches the expected asymptotic

value of w,,; — 1. Note that with a reasonable error accuracy tolerance such as 1076
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as a stopping point, the asymptotic convergence rate is never reached. For comparison,
Figure 5-1 also shows the superposition of four convergence plots of the new convolution
SOR method (CSOR) to be introduced in the following sections. The four CSOR runs

have the same convergence rate, independent of the number of timesteps.
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FIGURE 5-1: Convergence of waveform SOR using the pointwise optimal parameter (PT)
compared to waveform relaxation (WR), and waveform convolution SOR (CSOR), with

64, 128, 256 and 512 timesteps. Note that the four CSOR runs have the same convergence
rate.
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FIGURE 5-2: Effect on convergence of the 256-timestep waveform SOR of varying the
SOR parameter from the pointwise optimum wepe = 1.482.

To illustrate the effect of choosing a different SOR parameter w, Figure 5-2 shows
the convergence versus iteration of the 956-timestep example for waveform SOR with
values of the SOR parameter w not equal to the pointwise optimum wop: = 1.482. When
w = 1.30 < wyp:, the convergence curve lies between the pointwise optimum curve and

the WR convergence curve, i.e. both initial and asymptotic convergence rates are slower.
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By increasing the SOR parameter o w = 1.63 > w,yt, the initial convergence rate can
be made faster at the expense of slowing down the asymptotic convergence rate. But
as the w = 1.70 curve shows, once the SOR parameter is increased beyond some point,
the waveform SOR method may appear to diverge before eventually converging. The
intermediate solutions produced by the w = 1.70 example contain spurious oscillations,

as shown in Figure 5-3. Note both the growth and translation of the oscillation with

iteration.
00 , Iteration 250 ]
0.02+
0
D02+
o0y 50 1000 1500 2000 2500
2 ITteration 500
2 -
2
4
0 500 1000 1500 2000 2500

FIGURE 5-3: Delta waveform Azff (t) = 25 () — 2¥,(t) versus time after iterations 250
and 500, for the 256-timestep waveform SOR method using w = 1.70, showing the growth
and translation of an oscillating region. Note that the vertical scales on the axes differ
by two orders of magnitude.

In general, the optimum pointwise SOR parameter w,,; does not dramatically im-
prove the convergence rate of waveform SOR because the matrix M ™' N which describes
the waveform SOR convergence is far from normal. Note that this is the case even if
D™ (L + U) is normal. This suggests that although the spectral radius of the iteration
matrix determines the asymptotic convergence rate of waveform SOR, it does not deter-
mine the effective observable convergence rate. The effective convergence rate could be
characterized, for example, by computing the pseudo-eigenvalues of the waveform SOR

iteration matrix [47]. In the following section, we take an alternate approach.

5.4 Informal Fourier Analysis and Convolution SOR
In [24], the spectral radius of dynamic iteration operators

(% + M) Az**! = NAaS, (5.17)
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where M, N € B™*" such as WGJ (5.2) or WGS (5.3), was related to their Fourier

transform. In this section, we make a more detailed, but less formal use of Fourier analysis

to derive a convolution SOR kernel for the waveform SOR operator of equation (5.6).
The Fourier transform of a function y{#) is given by

(i) = j °:o y(t) e dt = F y(2), (5.18)

where ) is frequency. Assuming that Az* is infinitely differentiable, and that the Fourier
transform Az*(iQ)) = F Ax(t) exists, standard Fourier identities can be used to derive
the iteration equation Az (i) = H(:Q) Az* (i), where for WGJ, WGS and waveform
SOR, the iteration operator H(i{2) is given by

Hg:(iQ) = Dg'(L+U) (5.19)
Hgs(i) = (Da—L)7'U (5.20)
HSOR(iQ) = (Dg — wL)“l[(l - w)Dg + LUU], (521)

respectively, where Dy = i@ + D. An informal interpretation of equations (5.19)-(5.21)
is that the spectral radius p(H(i§))) yields the asymptotic convergence rate for errors in

the frequency component 2.

spectral radius

log10(frequency)

FIGURE 5-4: The spectral radii as functions of frequency  of the Gauss-Jacobi WR,
Gauss-Seidel WR. (dashed) and waveform SOR. iteration matrices for the 32 x 32 version
of the continuous-time problem of Example 5.3.1, with w = 1.70 for waveform SOR. For
comparison, the plot also shows the spectral radius versus frequency for the convolution
SOR method using the optimal convolution SOR sequence.

Figure 5-4 is a plot of the spectral radii of Hgs(i?), Has (¢)) and H 50r(:82) for the
32 x 32 continuous-time problem given in Example 5.3.1, using w = 1.70 for H sor(i(2).
For comparison, the plot also shows the spectral radius versus frequency for the convo-
lution SOR method (dash-dot) using the optimal convolution SOR sequence. For the
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32 x 32 problem, the WGJ and WGS spectral radius is only slightly less than unity for
low frequencies, and high frequency components of the error are damped much more
quickly than low frequency components. However, the spectral radius p(H sor(i{2)) is
greater than unity over a range of frequencies, and therefore the waveform SOR iteration
magnifies errors in this frequency range. This effect is similar to the behavior predicted
in [24] and is easily seen in Figures 5-2 and 5-3.

The situation can be remedied by using a generalized SOR algorithm, convolution
SOR (CSOR), in which equation (5.5) is replaced by overrelaxation convolution (35.7).

The Fourier transform of the convolution equation (5.7) is
2P (i) — 2§(iQ) + w (i) - [#77 (1) -2 60)), (5.22)

where w(iQ) is the Fourier transform of the time-dependent w(t). Thus, in effect, the
CSOR method uses a different SOR parameter for each frequency. The Fourier transform

of the resulting CSOR operator is given by
Ho (i) = [Da — (i) L] (1 — @(i9)) Da +w(i) U], (5.23)

where Dq = 0T + D, as before.

5.5 Discrete-Time Analysis

The analysis of the convolution SOR method can be made more precise with the aid

of the 2-transform. For a sequence y[m], the unilateral z-transform, y(z) = Z y[m], is
defined by

y(z) = > ylm)z™" = Z y[m], (5.24)
=0
where z € C [27]. Using the transform representation, the WGJ, WGS and ordinary

waveform SOR methods applied to the time-discretized problem (5.9) are of the form
A2 (z) = H(z) Az*(z), where

Hegi(z) = D;Y(L+U) (5.25)
Hgs(z) = (Dz — L)_lU (526)
Hsor(z) = (D, —wL)'[(1-w)D,+wU]. (5.27)

For a general multistep method with uniform timestep h, the diagonal matrix D, is

5 . _j
ey X2
= 7
Dz J

= == - . 5.28
h3io Bz~ I+b (528)
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Like equations (5.19)—(5.21), these operators correspond to standard relaxation and SOR
matrices with D replaced by the diagonal matrix D,. Note that Hsor(z) in (5.27) can
be obtained by applying the z-transform to (5.13).

To derive the iteration equation for discrete-time convolution SOR, let overrelaxation

equation (5.5) be replaced by a convolution sum with sequence w[m],
2 [m] — 2¥[m] + S wlf] - (2 [m — 4 —zf[m — 1) . (5.29)
£=0

The z-transform of this convolution equation is
2t (2) — 2h(z) + w(2) - [#87 () =2l (2)], (5:30)

where w(z) is the z-transform of the sequence w([mn]. The z-transform of the resulting

discrete-time CSOR operator is given by
He(z) = [D, —w(2) L] [(1 - w(z)) D: + w(x) U], (5.31)

with w(z) = Z w[m] and D, is given by (5.28) above.
The CSOR operator on sequences is derived by combining the convolution equa-
tion (5.29) with the discrete-time problem (5.9) and subtracting successive iterations.

The resulting CSOR iteration equation for a general multistep method is given by

)

3" (eI + h3; DYy Az [m — j]

§=0

Zsj hB;L mif wif] Ae™m—~j -0 =

F=0 £=0
s (5.32)
> (a1 + hf3; D) Azt [m — )
+ Zs: [hﬂjU — (eI + hﬂjD)] Ew[ﬂ] AzFlm —j — 1]
=0 £=0

Though lengthy, this is precisely the same as the waveform SOR iteration equation (5.13),
with overrelaxation multiplication replaced by a convolution sum.

Let K denote the CSOR operator mapping from sequence Az*[m] to Az*![m],
defined by

Az m] = KAzF[m] = zhc[e ] Az*[m], ' (5.33)

£=0
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where ho[m] € R**” is derived from equation (5.32). Concatenating the vectors Ax[m]

at all time points, the operator K may be written in block matrix form as

M, AzF[1] N, Az*[1]
M, M Agri[2 N, N A2
2 1 [ ] - 2 1 [ ] (534)

M; M, M, Azt1[3] N3 N; N, Az*[3]

From this, it is easily seen that the CSOR operator K is a block Toeplitz operator [30], cor-
responding to the semi-infinite, block lower triangular matrix M ~1 N specified by (5.32).
This leads to the following lemma.

LEMMA 5.5.1. On the infinite interval, the spectral radius of the operator K defined
in (5.88) is determined by the spectral radius of the matriz Hc(z) given by (5.31),
p(K) = max p(H c(2))- (5.35)

|=|<1

Proof. Because operator K is a block lower triangular semi-infinite Toeplitz operator,
the spectrum of K equals the spectrum of the matrix-valued symbol f(z) of the Toeplitz
operator, where z Tanges over the closed unit disk [30]. The symbol of the Toeplitz
operator K is precisely the matrix H¢(z). O

Thus, minimizing the spectral radius of the CSOR operator on sequences is the same
as minimizing the spectral radius of the matrix H¢(z) given by (5.31). This leads to the

following theorem, the main result of this section.

THEOREM 5.5.2. If, at a particular z € C, the spectrum p(z) of Hg;(z) lies on e
line segment [—p1(2), pa(2)], with p1(2) € C and |pa(z)| < 1, then the spectral radius of

H(2) is minimized by the unigue optimum wep(2) € C given by

5
“el?) =17 V- m(z)?

where /- denotes the root with the positive real part. Furthermore, the sequence Wopt[m] =

(5.36)

Z ' wop(2) is optimal in the sense that it minimizes the spectral radius of the operator

K.

Proof. For brevity, the argument (z) will be omitted in the following, i.e. w will denote
w(z) and H¢ will denote the convolution SOR operator (evaluated at z) computed using
CSOR. parameter w(z).
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Let p; = rju;, where 7; € [—1,1], denote each eigenvalue of Hgy given by (5.25).
Classical SOR theory {52, 48] guarantees that for each p; = r;uy, there is an eigenvalue
A; of H which satisfies

A —wripn/h + (w = 1) =0, (5.37)

and therefore, from the quadratic formula,

. ., 2
VA = ’"_*;1.‘."_ : \/(T*‘;‘”) w4l (5.38)

Let w be the conjectured optimal w,,;. Combining equation (5.36) with (5.38) yields

%ﬂlwopt I:""i + Vriz - 1” = Iéﬂlwoﬁ ’
ret\iE—1| = Lfor € 1,1,

PHES

(5.39)

where the rightmost equality follows from the fact that

And as (5.39) holds for all 7, with parameter w = wyp:,

2
p(Hc) = |\ = (%#1%::1&) = |wope — 1] - (5.40)

Equation (5.40) implies that p(H ¢) cannot be decreased by picking a value of w such
that |w — 1| > |wept — 1|. This follows from the fact that,

p(HE) > o —1] (5.41)

for any w [52, 48].
To show that p(H¢) also cannot be decrea,sed by choosing a value of w such that

Jw — 1| < |weps — 1|, consider the eigenvalue A; corresponding to py:

2 .2

V= fulw) = B+ B —w (5.42)

and note that f, : € — C, given by equation (5.42), is a single-valued, continuous
function that is analytic except at

Wi, Wy = —'""'2— (5.43)
144/1— p2
Since |u1| < 1, points w; and wy lie in the interior and exterior, respectively, of the
circle Jw — 1| = 1 in the complex w-plane. Note that w; equals the conjectured wopt from
equation (5.36).
Let D denote the interior of the curve given by the perimeter of the circle jw — 1] =1

with a cut along the line defined by the circle’s center and w;. The cut follows the line
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FIGURE 5-5: The region D and branch cuts in the complex w-plane.

~ from the perimeter down to wy, and then back up the other side to the perimeter, as shown
in Figure 5-5. The function f, is nonzero everywhere within D, since equation (5.37)
implies that a zero can occur only at w = 1, and f;(1) = p1. Therefore, the minimum
modulus theorem [36] implies that |fi(w)| attains its minimum value somewhere on the
boundary of D. Finally, the lower bound in (5.41) implies that wy = wep in (5.36) is the
only point on D which can achieve as low a p{H¢) as given in (5.40), completing the
proof. ' N}

Note that when the eigenvalues y lie on a real line segment, this theorem contains
the classic SOR Theorem [52, 48] as a special case, and extends the theorem to complex
matrices [8, 52]. Whereas the classic SOR theorem requires the spectrum y of the Gauss-
Jacobi matrix Hgy to lie on the real line segment [—py, 1] with [p1] < 1, the CSOR
theorem requires the spectrum u(z) of Hgy(z) to lie on a line segment [—p1(2), p1(2)],
with u1(z) € C and [u:(z)| < 1, as shown in Figure 5-6. For the discrete-time prob-
lem (5.9), this requirement is satisfied, for example, by the class of diagonally-dominant
symmetric matrices A with constant diagonal D = dI, since the spectrum p(z) of the

Hy(2) for such matrices is

podh 3y 2™
Y20 lejz=i + dhBiz1]

u(z) = (5.44)

where po denotes the eigenvalues of D™'(L + U). For any particular z, the real line
segment o is mapped to a rotated line segment.

Theorem 5.5.2 leads immediately to the following corollary.

COROLLARY 5.5.3. If w,(2) given by (5.36) is analytic, then the corresponding

sequence wom[m] = Z71 wpu(z) is optimal for discrete-time convolution SOR, i.e. it
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FIGURE 5-6: The optimal CSOR parameter theorem requires the spectrum p(z) to lie
on a line segment [—pu1(2), g1 (2)], with pi(z) € C and |p(2)] < 1.

minimizes spectral radius of the operator on sequences, p(K). In addition, the following

ts true.
1. Sequence wopm[m] = 271 wope(2) ts real.
2. Initial value w,pf0] equals wop of pointwise SOR.

3. Asymptotic convergence on a finite interval equals that of optimal pointwise SOR.

Proof. Since w(z) minimizes the spectral radius of H¢{z) for any z, Lemma 5.5.1
proves that convolution with the inverse z-transform wyu[m] = Z7% wep(z) optimally

minimizes the spectral radius of operator K.

1. The diagonal matrix D, given by (5.28) is a conjugate-symmetric function of z, so
that Hgs(z) given by (5.25), and its largest-magnitude eigenvalue p;(z) are also
conjugate-symmetric functions of z. This implies that wyu(z) is also conjugate-

symmetric, and the inverse z-transform is real.

2. The initial value theorem for the z-transform [14] implies that

2

- (i )

In the limit z — oo, the matrix H g(z) reduces precisely to the pointwise Gauss-

wope[0] = Hm wop(2) =

Jacobi iteration matrix used to solve (5.9), since

-1
lim DL +U) = (E}ﬁz I+D) (L+U).
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3. Referring to the block matrix expression of CSOR operator K (5.34), 1t is easily
seen that on a finite simulation interval, the spectrum of the block lower triangular

operator K is equal to the spectrum of its block diagonal M !N, where

M, = [(I+hD)— wo0]kL]
Ni = [(1 = wope]OD)(T + BD) + wope[0]AT].

Since w[0] equals the optimal w,,¢ of pointwise SOR, the matrix M 1_1N 1 is precisely

equal to the iteration matrix of optimal pointwise SOR.

a

Note that the result that the asymptotic convergence of optimal convolution SOR
on a finite interval equals that of optimal pointwise SOR is nearly irrelevant, since the
operator K is far from normal. As Example 5.3.1 and Figure 5-1 showed for waveform
SOR, the asymptotic convergence rate given by the spectral radius may have little to do

with the convergence rate observed in practice.

5.6 Implementation of Convolution SOR

In practice, standard SOR algorithms use the results of several Gauss-Jacobi iterations
to estimate the optimal SOR parameter [13], but it is not yet clear how to apply this
approach to convolution SOR. One might first try to estimate the largest-magnitude
eigenvalue y;(z), by computing the transforms of successive WR iterates Ax**[m]. Then
an adaptive scheme might be used to approximate wom[m]. Unfortunately, it is the
complex value of p(z) that is required, not the magnitude |y1(z)]. Furthermore, this
approach immediately runs into difficulties, since the iterates are not known for m greater
than some finite L, so it is not possible, in general, to compute the transform of the
iterates. A more successful approach has been to consider the spectrum of the SOR
operator, and use a power method to estimate py(z) and wop[m].

For the Poisson problem in Example 5.3.1 and Figures 5-1 and 5-2, the optimum con-
volution SOR sequence w,p:[m] was computed analytically. First, the largest-inagnitude
eigenvalue g, = p(D™(L + U)) for the Poisson matrix was calculated. Theorem 3.5.2
implies that the z-transform of the optimal CSOR sequence is given by

wopil2) = 2 . (5.45)

2
p,]_dh
Hdl_ (l—z—l—l—dh)
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ALGORITHM 5.6.1 (APPROXIMATION OF Wep[m}).

1. Compute py(z) = p(H gs(z)) for several values of z (e.g. z=1,-1,00,...).
2
2. Compute the corresponding values of w,p:(z) = .
' ’ 1+4/1 = p(2)?

3. Fit a low-order rational function to the values of wop(z).

4. Compute inverse z-transform wyy[m] = 2 1 ot 2).

Finally, the inverse z-transform of w,y:(z) was computed analytically by series expansion.

For the device experiments, the CSOR sequence w,p:im] was computed before be-
ginning any WR iterations. First, power iterations were used to estimate the largest-
magnitude eigenvalue ji;(2) at several specific values of z (e.g. z = 1,—1,00,...). Note
that for real values of z, this simply amounts to adding (1 — z~')/h to the diagonal
elements of A and computing the algebraic Gauss-Jacobi spectral radius. These values
of u1(z) were used in formula (5.36) to compute values of w(2). Next, the computed

values of w,,¢(2) are fitted by a ratio of low-order polynomials in PR

M -k N
> ko B2 _ Ck

=0 7 = _ . 5.46
Ef:o apz™F o1 —rezt ( )

wop(2) R

Finally, the inverse z-transform is applied, yielding

N
woptlm] & Y ey
k=0

Note that because the resulting wep[m] is a simple sum of exponentials in time, the
computational expense of the overrelaxation convolution is reduced to that of only a few
multiplications and accumulations at each time point. A summary of the computation
of wypi[m] is given in Algorithm 5.6.1.

Of course, the CSOR theory does not directly apply to the device simulation problem,
primarily because the system is nonlinear. And even when the time-discretized problem
is linearized about some point, the linearization is time-dependent, and the resulting
matrices do not necessarily satisfy the conditions of the optimal CSOR parameter theo-
rem. Nevertheless, as Section 5.7 will show, the CSOR inherits some of the robustness
of the SOR method, and can successfully be applied to the device transient simulation

problem.
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5.7 Experimental Results

Various solution methods have been implemented in the WR-based device tran-
sient simulation program WORDS [33]. This section contains experimental results with
WORDS comparing the performance of the WRN method with and without convolution
SOR acceleration to that of standard pointwise methods.

As described in Chapter 4, the waveform methods in WORDS are based on red/black
block Gauss-Seidel WR, where the blocks correspond to vertical mesh lines. The sequence
of implicit nonlinear algebraic systems generated for each block by the backward differ-
ence formula are solved with Newton’s method, and the linear equation systems generated
by Newton’s method are solved with sparse Gaussian elimination. The particularly effi-
cient WRN algorithm is derived by taking only one Newton iteration at each timestep,
using an initial guess obtained from the previous waveform iterate at each timestep. To
provide an initial guess for WRN and for WRN with convolution SOR acceleration, 16
or 32 initial WR iterations were used. For convolution SOR acceleration, the "optimal”
CSOR sequence w[m] was determined by linearizing the device equations (1.9)-(1.11)
about the initial condition solution, and fitting w,(z) with a rational function as de-
scribed in Section 5.6. To diminish the effect of the nonlinearity, the overrelaxation
convolution was applied only to the potential variables u.

For the pointwise methods, the device equation system of the entire mesh was gen-
erated successively at each time point, with each block contributing the corresponding
“block row” of equations. The nonlinear algebraic system resulting from the backward
difference formula was solved at each time point with Newton’s method, and the linear
equation system generated by Newton’s method was solved with either sparse Gaussian
elimination or the block Gauss-Jacobi preconditioned GMRES conjugate direction algo-
rithm [35]. To simplify comparisons to the waveform methods, the same vertical-line
blocking scheme was used for the GMRES algorithm.

device || description | Leys | tos | mesh | unknowns

Idd || lightly-doped drain | 0.4 | 19 | 15% 20 656
sol silicon-on-insulator | 0.5 | 7 | 18 x 24 856
18 x 64 2292
kar abrupt junction 2.2 |50 |19 x31 1379
19 x 64 2854

Table 5-1: Description of MOS devices.

The three MOS devices of Table 5-1 were used to construct six simulation examples,

each device being subjected to either a drain voltage pulse with the gate held high (the D
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examples), or a gate voltage pulse with the drain held high (the G examples). To observe
the effect on WR convergence, two additional gate-pulsed examples were constructed by
refining the device meshes of karG and soiG to contain 64 vertical lines. All eight examples
ranged from low to high drain current, and in the G examples, the gate displacement
current was substantial because the applied voltage pulses changed at a rate of .2 ~ 2
volts per picosecond. Dirichlet boundary conditions were also imposed by ohmic contacts
at the source, and along the bottom of the substrate, both held at zero volts. Neumann
reflecting boundary conditions were imposed along the left and right edges of the meshes.

The drain-driven karD test setup is illustrated in Figure 5-7.

__, _E— 0 psec 512 psec

2.2 microns
L

FIGURE 5-7: lllustration of the drain-driven karD example.

To simplify comparisons between the different solution methods, the backward Euler
method using 256 equal timesteps was used for all experiments, on a simulation inter-
val of 51.2 or 512 picoseconds. The convergence criterion for all experiments and all
methods was the requirement that the maximum error over the simulation interval in
the value of any terminal current be less than one part in 10%. Note that using global
uniform timesteps eliminates the ability of WR to exploit multirate behavior, one of the
primary computational advantages of WR on a serial machine. Nevertheless, as the re-
sults will show, even without this multirate advantage, the accelerated WR algorithms
are competitive on a serial machine with the best pointwise methods.

Figure 5-8 shows the convergence of the eight examples as a function of iteration for
the ordinary waveform relaxation Newton method (WRN) and the same method accel-
erated with convolution SOR. Despite the nonlinearity of the semiconductor equations,
the convolution SOR algorithm converged substantially faster than the WRN method,
demonstrating the robustness of the approach.

Table 5-2 shows the CPU times in seconds required for solution of the cight examples,
for pointwise methods and waveform methods. The serial experiments were performed
on an IBM RS/6000 Model 540 workstation, with 256 Meg of memory. For the pointwise

methods, the sparse elim column shows the result of using direct factorization to solve the
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Pointwise Methods Waveform Methods
example | sparse elim | GMRES  (iters) WRN  (iters) | conv SOR (iters)

1ddD 331.65 | 620.00 (53741) || 7327.24 (1434) | 584.81  (100)
1ddG 244.46 | 505.92 (43680) || 3404.19 (657) | 360.15  (55)
soiD 401.95 | 188.53 (12363) | 1832.21 (284) | 388.62  (50)
s0iG 430.80 | 20528 (13466) || 1377.21 (209) | 369.16  (45)

karD 1401.60 | 673.81 (26022) | 5451.02 (515) | 1088.41  (92)
karG 1460.38 | 794.01 (30858) || 4672.49 (440) | T12.74  (55)
soi(64 || 2144.05 | 2249.01 (48176) || 31399.19 (1885) | 2239.39  (119)
karG64 || 3833.04 | 5205.89 (71316) || 40246.82 (1885) | 3328.85  (141)

Table 5-2: Comparison of serial times required for pointwise methods and waveform
methods. Serial experiments were conducted on an IBM RS /6000 Model 540 workstation.

matrix problem at each time point, compared to using the iterative algorithm GMRES.
The waveform method columns show the result of using ordinary Gauss-Seidel WRN,
and the same algorithm accelerated with convolution SOR. The results show that on
a serial machine, convolution SOR. is competitive with pointwise Newton-GMRES - in
fact, convolution SOR is slightly faster than pointwise Newton-GMRES for 5 of the 8
examples. This is especially encouraging since the fixed timestep simulations do not allow

the waveform method to take advantage of multirate behavior.
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Parallel WR for Device Simulation

6.1 Introduction

As shown in the previous chapter, the convolution SOR method is competitive with
the best known pointwise method on a serial machine. In this chapter, it 1s shown that
on a parallel architecture, waveform methods can be even faster.

A particularly attractive attribute of the waveform methods is that they are eas-
ily parallelized. To demonstrate this, the waveform algorithms described in the previous
chapters were implemented in the pWORDS program. Because they are based on a block
iterative method, where the iterates are waveforms over the entire simulation interval
[0, T, the waveform methods are best suited to a coarse-grained Multiple-Instruction-
Multiple-Data (MIMD) type of architecture. Accordingly, the two target architectures
used in the pWORDS program are the Intel iPSC/860 hypercube and a pair of worksta-
tions running the parallel virtual machine software (PVM).

Since the specifics of a parallel machine can {and should) influence the design of a
program, we begin, in Section 6.2 by describing the characteristics of the two machines.
Following this, in Section 6.3, the implementation details of the pWORDS program are
given. In particular, this section contains an outline of the message-passing structure of
the waveform and pointwise codes. Finally, in Section 6.4, comparative timing results

for a suite of examples are presented.

6.2 Parallel Machines

This section is a brief description of the two message-passing, coarse-grained parallel

machines used for the pWORDS experiments. From a programming standpoint the
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two architectures are very similar, since they are both based on the MIMD model of
computation, with message-passing communication and the C language. And for both
architectures, a potentially large number of processors work concurrently on piéces of a
single problem. Provided that communication between the compute nodes is kept to a

minimum, this concurrency can lead to a substantial speedup.

6.2.1 Intel iPSC/860

The Intel iPSC/860 used in the experiments consisted of 32 compute nodes (Intel i860
processors each with 8 megabytes of memory) connected in a hypercubic network and an
additional separate host computer (Intel386 processor), as an interface to the compute
nodes. The host computer is used to coordinate the computations being performed by the
compute nodes. In an iPSC, the compute nodes are independent processor/memory pairs,
with distinct memory spaces. Communication between processors and to the host is based
on message-passing. Although the hypercubic connection implies that communication is
fastest between nearest neighbors, every compute node can send messages to any other
compute node or to the host. Likewise, the host can send messages to any particular
compute node, or broadcast them to all of the compute nodes. A message-passing library

written in the C language was used in pWORDS.

6.2.2 PVWM Cluster

The parallel virtual machine (PVM) software is a powerful tool that enables a cluster
of workstations to function like a parallel architecture such as the Intel hypercube. Like
the hypercube, a PVM cluster consists of a workstation designated as the host, serving as
an interface to a group of other workstations serving as compute nodes. Communication
between workstations takes place on the Ethernet, via message passing routines. From a
programmer’s point of view, this gives a PVM cluster the look and feel of a real parallel
machine.

Once the PVM daemon is started on the host machine, a subordinate PVM process
is started on each of the compute node workstations. This PVM process runs invisibly
in the background, coordinating the communication between the host and nodes. At the

instruction of the host machine, each node loads a node program, also in the background,
and begins concurrent computation.

One advantage of PVM is that the cluster can consist of a wide variety of different
types of workstations, each with its own memory and file system. The memory is partic-

ularly important for a waveform method, since the waveform iterates can consume many
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kilobytes, or even megabytes. Another advantage of PVM is that it provides a tool for
utilizing the idle cycles of any cluster of workstations. Finally, since the compute nodes
are UNIX workstations with standard programming environments, standard tools can
be used to debug the parallel code. Of course, a disadvantage of PVM is that commu-
nication between node and host can be significantly slower than that of a machine with
specialized dedicated hardware.

For the pWORDS experiments, a pair of IBM RS/6000 Model 540 workstations were
used as compute nodes, and an IBM RS/6000 Model 320H was used as a host machine.
Each of the compute nodes had 256 megabytes of memory.

6.3 Parallel Implementation

Various paralle] solution methods have been implemented in the WR-based device
transient simulation program pWORDS, for computation on the Intel iPSC/860 and a
cluster of workstations running the Parallel Virtual Machine (PVM) software. In this
section the partitioning and communication patterns used for the parallel waveform meth-
ods are briefly described, and for comparison, an accelerated pointwise solution method
using parallel Newton-GMRES iterations is also described. In the MIMD model of par-
allel computation offered by the iPSC/860 or the PVM cluster, a program is typically
divided into two separate executables — a host program and a compute node program.
The host program is responsible for assigning tasks to the compute nodes, and gathering
their results when they are finished. The program running on each of the compute nodes

performs the concurrent numerical computation.

6.3.1 Parallel Waveform Methods

As described in Section 4.2.1, to accelerate convergence, the WR methods in the
WORDS program are based on dividing a device mesh into a linear sequence of vertical
line blocks, that is, all of the nodes in each vertical mesh line are solved simultaneously.
Furthermore, the blocks are processed in red/black order (see Sections 2.2.2-2.2.3). This
leads to a block consistently ordered problem that can be solved with the convolution
SOR method, described in Chapter 5.

The advantage of the red/black ordering scheme for relaxation on a parallel machine,
is that during each iteration, no block depends on the solution of another block of the
same color. In other words, the red blocks depend only on the solutions of the neighboring

black blocks, and the black blocks depend only on the solutions of the neighboring red

78



blocks. This implies that once the black block solutions of the previous iteration have
been communicated to the red blocks, all of the red blocks can be solved in parallel, with
no other synchronization. Similarly, once the red blocks have all been solved, and their
solutions have been communicated to the black blocks, all of the black blocks can be
solved in parallel, with no other synchronization.

To'begin a parallel WR computation, the host program reads in the device input file
that specifies the device geometry and discretization mesh as well as the voltage boundary
conditions imposed on the device. This information is broadcast to the compute nodes.
The host program then partitions the device mesh, and assigns portions of the mesh to
each compute node. A device mesh consisting of N vertical-line blocks is partitioned into
N/2 pairs of adjacent red and black lines, and each of N/2 compute nodes is assigned a
pair of lines. It is trivial to embed the linear sequence of red/black pairs of lines into the
hypercubic network of the iPSC/860 so that all communication between compute nodes
is between nearest neighbors [17]. This embedding ensures that compute node ¢ will only
communicate with its nearest neighbors, compute nodes ¢ — 1 and ¢ + 1.

At the start of the compute node program, the compute nodes receive the pair of
vertical lines assigned by the host. In addition to this pair of lines, each compute node
also contains storage for the two vertical lines on either side of the contiguous block.
These “pseudo-lines” are used only to store the solutions generated and communicated

by the compute nodes solving those adjacent vertical lines.

proc i-1 proci proc i+l

(1) receive black from left
(2) solve red

(3) send red to left

(4) receive red from right
(5) solve black

(6) send black to right

FIGURE 6-1: Illustration of the communication and computation steps performed by
compute node ¢ during one parallel waveformn method iteration.

In each iteration of the parallel algorithm, the N/2 compute nodes first solve the
N/2 red lines concurrently, and then solve the N/2 black lines concurrently. Figure 6-1
is an illustration of the communication and computation steps performed by compute
node 7 to complete one parallel waveform method iteration. Note that the red line of
compute node i has the black line of compute node ¢ — 1 as its left boundary condition.

Accordingly, the first step of the red line solution process is for each compute node ¢
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ALGORITHM 6.3.1 (OUTLINE OF PARALLEL RED/BLACK BLOCK WR).

Choose initial guess waveforms that satisfy initial conditions.
Send the black line solution to the right.
Tterate:

Receive black line solution from the left (BLOCKING).
Solve the device equations (1.9)—(1.11) for the red line.
Send the red line solution to the left.

Receive red line solution from the right (BLOCKING).
Solve the device equations (1.9)—(1.11) for the black line.
Send the black line solution to the right.

SO T o

to receive the black line waveform solution sent by compute node 7 — 1. (It 1s assumed
that at the end of the previous iteration, each compute node sent its black line waveform
solution to the right.) The black line that is the right boundary condition of the red line
of compute node i is already resident within the node, so that the compute node can
now solve its red line. Once its red line is solved, each compute node immediately sends
its red line waveform solution leftward. This completes the first half of the iteration, the
solution and communication of the red lines.

Solving the black lines in the second half of the iteration requires a similar communi-
cation pattern. Each compute node ¢ receives the red line waveform solution sent from
the right, and solves its black line. Then each compute node sends its black line waveform
solution to the right, completing the solution and communication of the black blocks.

An outline of the compute node algorithm for a red/black block waveform method
is shown in Algorithm 6.3.1. Each iteration of the parallel waveform algorithm contains
only two blocking communications — before solving a line, each compute node must
wait to receive the waveform of a neighboring line. The algorithm therefore requires
very little synchronization between the compute nodes, and the communication that 1s
required consists of large packets of information, entire waveforms.

If fewer than N/2 compute nodes are available, then each compute node is given
multiple pairs of red/black lines that are adjacent in the device mesh. This implies
that some of the lines (both red and black) residing on a compute node will depend
only on other lines residing in the compute node, as shown in Figure 6-2. In this case,

communication and computation can be overlapped — the red lines that do not depend on
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other compute node solutions are solved before waiting to receive the black line solutions.
Similarly, the black lines that do not depend on other compute node solutions are solved

before waiting to receive the red line solutions.

proc i-1 proci proc i+1
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FIGURE 6-2: When less than N/2 compute nodes are available, each may be assigned
several adjacent pairs of red/black lines.

6.3.2 Pointwise GMRES

A particularly effective serial algorithm, used to obtain the results of Section 5.7, is the
pointwise Newton-GMRES algorithm in which a preconditioned GMRES algorithm [35]
is used to solve the linear systems arising at each Newton iteration of each timestep of
an implicit integration formula applied to the device system (1.9)-(1.11). To partition
the problem for a parallel implementation, the pointwise Newton-GMRES method in
pWORDS uses the same vertical-line blocks as in the waveform methods. The blocking
is then used to partition the block tridiagonal matrix of the whole problem.

First, to simplify comparisons to the parallel waveform methods, the host assigns
pairs of vertical-line blocks to the compute nodes exactly as in the waveform method.
Given a particular block, the corresponding compute node is responsible for the storage
and computation of the corresponding pieces of the matrix and GMRES vectors in that
“block row”, as shown in Figuré 6-3. For the block tridiagonal matrix of the whole
problem, this implies that each compute node must generate and store the appropriate
block diagonal pieces of the matrix, as well as the off-diagonal blocks for the block rows.
Once assigned a particular block, each compute node is responsible for generating the
corresponding piece of the vector resulting from the matrix-vector product.

Unfortunately, partitioning the matrix and the vectors implies that the parallel point-
wise Newton-GMRES algorithm requires many communication steps, each consisting of
relatively small packets. Before every Newton iteration at every timepoint, a commpute

node must receive the two vectors of solutions of the neighboring lines from the left
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FIGURE 6-3: To partition the matrix-vector product, each processor is assigned the block
rows corresponding to a pair of vertical line blocks.

and the right, in order to generate the block diagonal and block off-diagonal matrices.
To accomplish the matrix-vector product for each GMRES iteration, a compute node
must exchange pieces of the multiplicand vector with the neighboring compute nodes.
Moreover, each GMRES iteration requires a number of inner product calculations, each of
which requires a global sum. Although it may be possible to overlap these communication
operations with local computation, a significant amount of inter-processor synchroniza-
tion is still required. An approach such as that given in [46] might prove to be helpful,

however.

6.4 Experimental Results

To compare the parallel performance of the convolution SOR accelerated waveform
method and the pointwise Newton-GMRES algorithm, numerical experiments were con-
ducted using the same eight examples used in Section 5.7. The three MOS devices of
Table 5-1 were used to construct six simulation examples, each device being subjected to
either a drain voltage pulse with the gate held high (the D examples), or a gate voltage
pulse with the drain held high (the G examples). In addition, to observe the effect on
WR convergence, two additional gate-pulsed examples were constructed by refining the
device meshes of karG and soiG to contain 64 vertical lines. The drain-driven karD test
setup 1s illustrated in Figure 5-7.

As in Section 5.7, to simplify comparisons between methods, the backward Euler
method using 256 fixed timesteps was used for all experiments, on a simulation interval
of 51.2 or 512 picoseconds. The convergence criterion for all experiments was the require-
ment that the maximum error over the simulation interval in the value of any terminal
current be less than one part in 10%. To provide an initial guess for WRN (WR with a

single waveform Newton iteration) and for WRN with convolution SOR acceleration, 16
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or 32 initial WR iterations were used.

Although using globally uniform timesteps eliminates the ability of waveform fo ex-
ploit multirate behavior, it also avoids the issue of load balancing for the parallel waveform
methods, since each vertical-line block will require nearly the same amount of work. The

{ollowing results will show that even without the multirate advantage, accelerated wave-
form methods can be significantly faster than pointwise methods on a parallel processor.

Table 6-1 contains the results of the parallel experiments conducted on the pair of
model 540 workstations using PVM. The table shows the time required for solution on a
serial machine (one of the PVM workstations) compared to the time required for solution
on the pair of workstations. To ensure a meaningful comparison, the times were measure

in elapsed wall clock seconds.

convolution SOR | Newton-GMRES | GMRES
example (size) || serial PVM (2) | serial PVM (2) | iters
IddD (656) 584.81 303.28 620.00 10909.46 53741
1ddG (656) 360.15 184.56 505.92  9017.11 43680
soiD (856) 388.62 198.96 188.53  2387.35 12363
s0iGG (856) 369.16 188.67 205.28  2609.86 13466
karD (1379) || 1088.41  553.84 673.81 5456.94 26022
karG (1379) || 712.74 365.41 794.01  6522.62 30858
soiG64  (2292) || 2239.39 1117.39 | 2249.01 NA 48176
karG64  (2854) || 3328.85 1685.44 | 520589 NA | 71316

Table 6-1: Comparison of parallel and serial times for the convolution SOR and pointwise
Newton-GMRES methods, on a PVM cluster of 2 workstations. The time required by
the pointwise Newton-GMRES method on the PVM cluster was roughly proportional to
the total number of GMRES iterations.

In Table 6-1, the waveform method shows an encouraging and remarkable scalability
- in every instance, the simulation time required by the PVM cluster was about half
of that required by a serial machine. This success can be attributed to the infrequent
communication inherent in the parallel waveform algorithm, as well as to the overlap of
communication and computation enabled by the multiple pairs of red/black lines residing
on each compute node.

On the other hand, Table 6-1 shows that the parallel pointwise Newton-GMRES
method actually became significantly slower on the PVM cluster. This can be attributed
to the many small communications and synchronizations required at each time point in
the simulation interval. Since the PVM cluster communication is based on the Ethernet,
the frequent message-passing is obviously expensive. For the parallel Newton-GMRES

method, the amount of communication is proportional to the number of GMRES itera-
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tions, and as Table 6-1 indicates, the time required for parallel Newton-GMRES on the
PVM cluster was roughly proportional to the total number of GMRES iterations. Clearly,
the parallel Newton-GMRES method is bounded by the cost of its communications, at
every iteration, at every timestep.

To further test the scalability of the waveform methods, Tables 6-2 and 6-3 show
the CPU times required for solution of the eight examples on the Intel iPSC/860. The
times shown are measured elapsed times on the compute nodes. The waveform method
displays a remarkable scalability, with a roughly linear speedup up to 32 processors
(the s0iG64 and karG64 examples). As on the PVM cluster, the pointwise Newton-
GMRES algorithm became slower on more than one processor, despite the dedicated

communication hardware in the iPSC/860. Table 6-4 summarizes the best timing results
for each method on the iPSC/860.

example (mesh) |} 8 blk/proc (procs) | 4 blk/proc (procs) | 2 blk/proc (procs)

[ddD  (15x20) NA 4721.25 (5) 2473.97  (10)
1ddG  (15x20) NA 2190.19 (5) 1182.51  (10)
soiD  (18x24) || 1871.74 (3) 1037.27 (6) 554.67 (12)

s0iG  (18x24) || 1504.04 (3) 812.72 (6) 429.44 (12)
karD  (19x31) || 4378.82 (4) 2256.21 (8) 1224.32  (16)
karG  (19x31) || 3745.48 (4) 1939.39 (8) 1041.91  (16)

Table 6-2: Waveform Relaxation Newton timing results on the iPSC/860.

example (mesh) | 8 blk/proc (procs) | 4 blk/proc (procs) | 2 blk/proc (procs)
1[ddD  (15%20) NA 382.77 ) 501.23  (10)
IddG  (15x20) NA 235.67 (5) 128.59 (10)
soiD  (18x24) || 405.93 (3) 925.41 (6) 12015 (12)
soiG  (18x24) | 417.40 (3) 225.74 (6) 117.31  (12)
karD  (19x31) 895.50 (4) 460.27 (8) 248.93 (16)
karG  (19x31) | 590.88 (4) 308.29 (8) 165.61  (16)

soiG64  (18x64) 987.17 (8) 507.20 (16) 260.13 (32)

karG64  (19x64) | 138632  (8) 713.97  (16) | 37353 (32

Table 6-3: Convolution SOR timing results on the iPSC/860.

It is clear that the parallel implementations of both the waveform and the pointwise
methods can be improved. The pointwise Newton-GMRES code can be rewritten to avoid
some communication with the 386 host, perhaps by choosing one of the i860 compute
nodes to act as coordinator. In addition, some of the Newton-GMRES communication

can be overlapped with computation. The convolution SOR code can be improved by
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example (size) || Newton-GMRES (procs) | conv SOR (procs)
[ddD _ (656) 1184.68 ) 20123 (10)
1ddG  (656) 989.74 (1) 12859 (10)
solD  (856) 366.11 (1) 12015 (12)
soiG (856) 401.42 (1) 117.31  (12)
karD  (1379) 1262.49 (1) | 24893  (16)
karG  (1379) 1492.17 (1) 165.61  (16)
soiG64  (2292) 4400 est. (1) | 26013  (32)

lkarG64  (2854) 9800 est. (1) 373.53 (32

Table 6-4: Summary of the best timing results for each method on the iPSC/860.

using pointwise Newton-GMRES to solve each block, rather than sparse Gaussian elim-
ination. But none of these improvements will change the inherent difference between
the pointwise and the waveform algorithm: the pointwise algorithm requires much more

synchronization and many more, smaller, communications.
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Conclusions

This thesis investigated accelerated waveform relaxation techniques for the parallel
transient simulation of semiconductor devices. After a review of standard numerical
techniques in Chapter 2, the convergence of WR for the device problem was guaranteed
in Chapter 3. A summary was given in Chapter 4 of some of the implementation issues
encountered in the WR-based device simulation program WORDS, along with experi-
mental results indicating that accelerated WR methods can be competitive with standard
pointwise methods. The primary theoretical contribution of this thesis was the introduc-
tion and development in Chapter 5 of the convolution SOR technique for accelerating
the convergence of waveform relaxation. Finally, in Chapter 6, a parallel implementation
of the device WR algorithm was presented, along with results clearly demonstrating the
superiority of waveform methods on parallel machines.

Although the convolution SOR theory does not directly apply to the device simulation
problem, the CSOR technique was shown to dramatically accelerate the convergence rate
of WR for devices. Because of its use of a convolution sum, the CSOR method correctly
accounts for the frequency-dependence of the spectrum of the Gauss-Jacobi WR operator
(e.g., Gauss-Jacobi WR smoothes high frequency components of the error waveform more
rapidly than low frequency components), by in effect, using a different SOR parameter
for each frequency. Apparently, the CSOR method inherits some of the robustness of the
algebraic SOR method, and the optimal parameter formula (5.36) can be successfully
applied to a wider class of problems.

The comparison of accelerated waveform relaxation algorithms to pointwise meth-
ods showed that accelerated waveform methods are competitive with standard pointwise
methods on serial machines, and that accelerated waveform methods are significantly

faster on commonly available loosely-coupled MIMD machines. In particular, parallel
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accelerated waveform methods achieved a nearly linear speed-up on the 32 processor
Intel iPSC/860 hypercube, whereas parallel versions of standard pointwise methods did
not exhibit any parallel speed-up. The importance of the results is the strong implication
that, as MIMD machines and cluster-based computing become more prevalent, acceler-
ated waveform methods will gain in importance for all areas of simulation requiring the
solution of initial value problems.

Future work is focused on refining the theory for CSOR, developing a multirate im-
plementation of pWORDS, studying the behavior of accelerated waveform methods on
other parallel machines, and applying accelerated waveform methods to new application

areas.
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