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PRECONDITIONED, ADAPTIVE, MULTIPOLE-ACCELERATED ITERATIVE
METHODS FOR THREE-DIMENSIONAL FIRST-KIND INTEGRAL EQUATIONS
OF POTENTIAL THEORY"

K. NABORS!, F. T. KORSMEYER? F. T. LEIGHTONS, anp J. WHITET

Abstract. This paper presents a preconditioned, Krylov-subspace iterative algorithm, where a modified multipole
algorithm with a novel adaptation scheme is used to compute the iterates for solving dense matrix problems generated
by Galerkin or collocation schemes applied to three-dimensional, first-kind, integral equations that arise in potential
theory. A proof is given that this adaptive algorithm reduces both matrix-vector product computation time and storage
to order N, and experimental evidence is given to demonstrate that the combined preconditioned, adaptive, multipole-
accelerated (PAMA) method is nearly order & in practice. Examples from engineering applications are given to
demonstrate that the accelerated method is substantially faster than standard algorithms on practical problems.
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1. Introduction. Mixed first- and second-kind surface integral equations with % and
21

5. kemnels are generated by a variety of three-dimensional engineering problems. For such
problems, Nystrom-type algorithms cannot be used directly, but an expansion for the unknown,
rather than for the entire integrand, can be assumed and the product of the singular kernel
and the unknown integrated analytically. Combining such an approach with a Galerkin or
collocation scheme for computing the expansion coefficients is a general approach, but leads to
dense matrix problems. In this paper, we focus on accelerating such techniques for purely first-
kind integral equations of potential theory, and present an overlapping-block preconditioned
Krylov-subspace iterative algorithm for solving the associated dense matrix problem, where a
modified multipole algorithm with a novel adaptation scheme is used to compute the iterates.
This approach follows along lines originally suggested in [1].

In the section that follows, we review Galerkin and collocation algorithms applied to the
first-kind integral equation, as well as Krylov-subspace iterative algorithms for solving the
generated dense matrix problem. Our approaches to applying a fast multipole algorithm to
this problem are described in §3, and a simplified complexity analysis for our adaptive scheme
is given. In §4, we present more general proofs of the adaptive multipole algorithm linear
computational growth. The preconditioning strategy for accelerating the Krylov-subspace
method convergence is described in §5, and experimental results gained from using the method
to analyze a variety of structures derived from engineering problems are presented in §6.
Finally, conclusions are given in §7.

2. Formulation. Consider the first-kind integral equation for a single-layer surface den-
sity, hereafter referred to as a charge density, generated by solution of the exterior Dirichlet
problem in a multiply-connected domain. (For a second-kind formulation of this problem see
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[2].) The charge density o satisfies the integral equation

) Y(x) = fcr(x')——]——~da". x €S,
s

llx — x|

where S is a two-dimensional surface in R?, ¥ (x) is a given surface potential, da’ is the
incremental surface area, x, x’ € R3, and ||x|| is the usual Euclidean length of x given by

J/*t + x3 + x3. More compactly, we denote (1) by

(2) ¥ = Lo.

The charge density o can be related to electrostatic capacitances and forces or fluid velocities
for the case of potential flow. Electrostatic capacitances are useful figures of merit for de-
signers of electronic packaging [3]; microelectromechanical system designers are interested
in electrostatic forces [4]; and ocean vehicle designers are interested in potential flow [5]. For
these engineering problems, 0.1%-1% accuracy is typically sufficient, and therefore low-order
schemes are in common use.

To compute an approximation to o, one can generally consider an expansion of the form

N
3) o(x) %Y gibi(x),

i=1
where 6, (x), ..., 8y (x) : R* - Rareasetofnot necessarily orthogonal expansion functions,
and gy, . . ., gy are the unknown expansion coefficients. Typically, 6, (x), ..., Oy(x) represent

an approximate discretization of the surface S, where each 6; is nonnegative, of compact
support, and satisfies a normalization condition

@) f 6,(')da’ = 1.
S

The expansion coefficients are then determined by requiring that they satisfy a Galerkin
or collocation condition of the form

(5) Pq =D,

where P € R"*" and 7, ¢ € R¥. In the case of a Galerkin condition,

(6) P = (0;, L6;)
and
@) p; = (6, ¥),

where (f, g) = f s S(x) g(x")da’. For the collocation condition,

(8) Pij = (8(x;), L6;)
and
) pi = {8(xi), ¥),

where (§(x), #) = u(x), and xy, ..., xy are the collocation points [6].
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Remark. 1f the 6;’s are nonnegative, then for both the Galerkin and collocation methods,
P is a positive matrix, and for the Galerkin method, P is symmetric and positive definite. The
normalization condition implies that for pairs of 6;’s whose support is widely separated, the
associated off-diagonals of P approach % where r is the separation distance.

Example. The approach used in many engineering applications is to approximate the
surface S with N planar quadrilateral and/or triangular panels over which o is assumed to be
uniform. The expansion functions are then

(10) Gi(x)=4¢ @
(x) [0 otherwise,

if x is on panel 7,

where q; is the area of panel i. The Galerkin scheme for determining the expansion coefficients
yields

1 1
(11) P;}' — f f —— dadd’,
a;i 4; Jpanel, panel lx — x'||

and for the collocation method

| 1 )
(12) Pfj:__[ —,da.

ai Jpanet; lIxi — X'

There are closed-form expressions for the integral in (12) [5], but closed-form expressions for
the integral in (11) are known only in special cases [3].

The dense linear system of (5) can be solved to compute expansion coefficients from
a right-hand side derived from (7) or (9). If Gaussian elimination is used to solve (5), the
number of operations is order N*. Clearly, this approach becomes computationally intractable
if the number of expansion functions exceeds several hundred. Instead, consider solving
the linear system (5) using a Krylov-subspace method such as generalized minimal residual
(GMRES)([7]. Such methods have the general form of Algorithm 2.1.

ALGORITHM 2.1. General Krylov-subspace algorithm for solving (5).
Set g° to some initial guess at the solution.
Compute the initial residual and Krylov vector, r® = p* = p — Pg°.
Determine the value of a cost function (e.g., [|7°]|.)

Setk = 0.

repeat {
if (cost < tolerance), return g* as the solution.
pk+1 i Ppk.

Choose o’s and 8 in
gt =3 o0 + BpH!
to minimize the cost function.
Setk=k—+1.
}

The dominant costs of Algorithm 2.1 are in calculating the N 2 entries of P using (6) or (8)
before the iterations begin and in performing N2 operations to compute Pp* on each iteration.
Described below are modified and adaptive multipole algorithms that avoid forming most of
P and reduce the cost of forming Pp* to order N operations. This does not necessarily imply
that each iteration of a GMRES-style algorithm can be computed with order N operations.
If the number of GMRES iterations required to achieve convergence approaches N, then to
perform the minimization in each GMRES iteration will require order N* operations. This
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problem is avoided through the use of a preconditioner, also described below, that in practice
reduces the number of GMRES iterations required to achieve convergence to well below N
for large problems.

Remark. As the Galerkin matrix P is symmetric and positive definite, it is tempting to
replace a Krylov-subspace method suitable for nonsymmetric problems with the conjugate
gradient algorithm. Unfortunately, this is not recommended because if a multipole algorithm
is used to approximately compute Pp*, this is equivalent to using an iterative method to
solve Pg = p, where P is the multipole algorithm’s not necessarily symmetric, but sparse,
approximation to P.

3. Multipole algorithms. In the case of collocation, computing the dense matrix-vector
product Pg is equivalent to evaluating the potential at N collocation points, {xi,...,xy},
due to a charge density described by Z: —1 9:0:(x). It is possible to avoid forming P, and to
substantially reduce the cost of computing Pg, using the fast multipole algorithm [8], [9]. The
fast multipole algorithm uses a hierarchical partitioning of the problem domain and careful
application of multipole and local expansions to accurately compute potentials at N points
due to N charged particles in order N operations.

In particular, in the fast multipole algorithm, potentials due to clusters of charges are
represented by truncated multipole expansions. These expansions have the general form

{ n

(13) V(r6,¢)~ Z): — T Y70, 9),

n=0 m=-—

where / is the expansion order, r, 6, and ¢ are the spherical coordinates with respect to the
multipole expansion’s origin (usually the center of the charge cluster), Y" (6, ¢)’s are the
surface spherical harmonics, and the M"’s are the multipole coefficients [10].

Multipole expansions can be used to efficiently evaluate the potential due to a cluster of
charges at any point where the distance between the evaluation point and the cluster center is
significantly larger than the radius of the cluster. A dual optimization is possible using local
expansions. That is, for a cluster of evaluation points, the potential due to charges whose
distances from the cluster center are significantly larger than the radius of the cluster can be
combined into a local expansion at the cluster center. Then, this local expansion can be used
to efficiently compute potentials at evaluation points in the cluster. A local expansion has the
form

/

(14) Yo, )~y Y LTYT O, é)r,

n=0 m=-n

where / is the order of the expansion, 7, 8, and ¢ are the spherical coordinates of the evaluation
location with respect to the expansion center, and the L) ’s are the local expansion coefficients.

For a more complete introduction to the three-dimensional fast multipole algorithm, refer
to the references. In the remainder of this section, we focus instead on the several aspects of the
fast multipole algorithm that must be modified to create an efficient algorithm for computing
the matrix-vector products associated with using an iterative scheme to solve the discretized
integral equations of potential theory. For such problems, the charge is a surface density given
by zf‘; 1 i9i (x), rather than a set of point charges, and this mildly complicates the procedure
for computing multipole expansion coefficients. In addition, using an iterative algorithm to
solve the discretized integral equation implies that the multipole algorithm is used many times
to compute potentials, but in iteration computation, only the coefficients of the charge density
expansion functions change. This implies that efficiency can be improved if quantities with
only geometric dependencies are computed once and stored. Finally, the spatial nonuniformity
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associated with surface discretizations can be efficiently handled using an adaptive algorithm
different from that given in [11].

3.1. Computing multipole coefficients. In general, the coefficients of a multipole ex-
pansion for a charge density o in a volume ¥ are given by

(15) M7 =[ o(p,a, B)p"Y, ™ (a, B)dV,
¥

where p, @, and B represent position in spherical coordinates. In the case where the charge
density is given by ZL g:6; (x), substitution in (15) leads to

N
(16) M7= a [ 66,0 0" @ praV.
i=1

Note that the relationship between the multipole coefficients and the density expansion coef-
ficients is linear, assuming that the geometric quantities are given.

In general, the multipole coefficients can be computed easily using quadrature formulas:
the integrand in (16) contains no singularities. It is also possible to derive a closed form
expression for the integral in (16) for the case of the piecewise-constant expansion function
in (10).

THEOREM 3.1. Let Q be any triangular or quadrilateral region of a plane in R3, There
exists a closed form expression for

(17) / p"Y ™ (a, B)da,
Qo

where p, «, B are the spherical coordinates of points on the panel surface.

Proof. Formulas for shifting and rotating spherical harmonics are already well known,
having been derived for problems in quantum angular momentum [12]. It is therefore sufficient
to demonstrate a closed form expression for (17) in the case where the coordinate system origin
is coincident with the panel centroid, and the coordinate system x)-x» plane is coplanar with
the panel.

To begin, note that by definition,

m s (n = |m|)' |m| img
(18) Y (¢,0) = ’____(n-}-lml)!P" (cosB)e'™?.

Substituting into (17) and noting that the coordinate system assumption implies that cos 8 = 0
for any point on the panel surface,

ny—m e ("_lmi)! |m| / n_im¢
(19) Lp Y " (a, Bda = ’___(n+lm|)!P" (0) Q,oe da.

Fork = n — |m| odd, P,,'m'(O) = 0 and therefore (19) evaluates to zero. Fork = n — |m |
even, p"e'™® can be expanded in terms of x; and x; as

"—'—jml n—|m| |m|
Z 2 — m ik n—(2i
(20) p"e'™? = E (n—|m|2 ) E (—sgn(m)i)"”'“f'(lmll_Ik)x]z" kxz @j+h
k=0

Jj=0 7
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The terms
(21) Tix = f x]xkda
0

are the moments of the panel for which analytic formulas can be found in [5]. Using the
moments and combining (20) and (19) leads to

n—|m|

7 n—|m| |m|
22) M"=K" 2 s k(M N e
(22) n n Z (,,_;m| _ j) ;( sgn(m)i) (|m| —k) 2j—k.n—(2j+k)>

j=0 2

where

m_ (n ~— |m])! m|
(23) K" = /—_—(n+|ml)!P" ©. O

3.2. Matrix representation. As mentioned above, the iterative algorithm described here
uses the fast multipole algorithm to compute matrix-vector products. This implies that the
algorithm is used many times without a change in geometry, and this fact can be exploited to
improve algorithm efficiency. As is made clearer below, the fast multipole algorithm involves
constructing multipole expansions from charge density expansions, shifting and combining
multipole expansions, converting multipole expansions and charge density expansions into
local expansions, shifting local expansions, and evaluating the potential due to charge density
expansions, multipole expansions, or local expansions. However, each of the construction,
translation, and evaluation operations is a linear function of the expansion coefficients, and
therefore can be represented as a matrix whose elements are functions of geometry alone [13].

From the above observation we have the following theorem.

THEOREM 3.2. The fast multipole algorithm computes an approximation to the potential
due to a charge density that is a linear function of the density expansion coefficients. In
addition, it is possible to represent this linear transformation directly in terms of translation
matrices whose entries are functions only of geometry.

The fast multipole algorithm produces an approximation to Pgq, denoted Pg, which
is a linear function of g. That is, the fast multipole algorithm is directly analogous to a
sparse representation of the dense matrix P. This has several important consequences. When
the multipole algorithm is used to compute matrix-vector products in an iterative method,
the iterative method’s convergence is controlled by the properties of P, not by how well
P approximates P. Also, the translation matrices need be computed only once, then used
repeatedly until the iteration converges.

3.3. The modified multipole algorithm. Mostly to establish notation, we give a mod-
ified multipole algorithm that closely follows the development in [8]. The algorithm allows
for the charge density to be described in terms of expansion functions, and also exploits
Theorem 3.2 by exclusively using translation matrices.

To begin, we consider the hierarchical domain partitioning. Let the root cube be the
smallest cube containing the problem domain. More precisely, the root cube is the smallest
cube that contains all the collocation points and for which x outside the cube implies ; (x) = 0
for all ;. The hierarchy is then just a recursive eight-way sectioning of this root cube.

DEFINITION 3.1. Cube hierarchy. The cube containing the problem domain is referred to
as the level 0, or root, cube. Then, the volume of the cube is subdivided into eight equally
sized child cubes, referred to as level-1 cubes, and each has the level-0 cube as its parent. The
collocation points are distributed among the child cubes by associating a collocation point
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with a cube if the point is contained in the cube. Each of the level-1 cubes is then subdivided
into eight level-2 child cubes and the collocation points are again distributed. The result is a
collection of 64 level-2 cubes and a 64-way partition of the collocation points. This process is
repeated to produce D levels of cubes and D distributions of collocation points starting with
an 8-way partition and ending with an 8°-way partition. The depth D is chosen so that the
maximum number of 0; 's whose support intersects any finest level cube is less than a selected
constant (see Definition 3.11).

The terms below are used to concisely describe the modified multipole algorithm.

DEFINITION 3.2. Evaluation points of a cube. The collocation points within the cube.

DEFINITION 3.3. Nearest neighbors of a cube. Those cubes that have a corner in common
with the given cube.

DEFINITION 3.4. Second-nearest neighbors of a cube. Those cubes that are not nearest
neighbors but that have a corner in common with a nearest neighbor of the given cube.

Note that there are at most 124 nearest and second-nearest neighbors of a cube, excluding
the cube itself.

DEFINITION 3.5. Interaction set of a cube. The set of cubes that are either the second
nearest neighbors of the given cube’s parent, or are children of the given cube’s parent’s
nearest neighbors, excluding nearest or second-nearest neighbors of the given cube.

There is a maximum of 189 cubes in an interaction set. Roughly half of the cubes are
from a level one coarser than the level of the given cube; the rest are on the same level.

For the jth cube on level 4: its parent’s index on level d — 1 is denoted F(d, j); its set of
d + 1 level children is denoted C(d, j); its set of of interaction cubes is denoted 7(d, j); the
setof cube j and cube j’s nearest and second-nearest neighbors is denoted N (d, j); the vector
of multipole expansion coefficients representing the charge density in the cube is denoted
Mg j; the vector of local expansion coefficients for the cube is denoted Ly j> the vectors of
the cube’s charge density expansion coefficients and collocation point potentials are denoted
ga.jand py j,TE Spectwely The matrix that represents the conversion of a multipole expansion
from the level d cube j center to a local expansion at the level d cube j center is denoted
M2L(d, j,d,j). The L2L, M2M, and Q2P translation matrices are similarly specified.
Finally, the matrix that maps q;,; 10 Mg, ; is denoted Q2M(d, j, d, j), and the L2 P matrix is
similarly specified.

ALGORITHM 3.1. The Modified Multipole Algorithm.
/* THE CONSTRUCTION PHASE: Computes multipole expansions at the
finest level. */
For each level D cube j = 1 to 82
Mp; = Q2M(D, j, D, j)qo,
/* THE UPWARD PASS: Computes multipole expansions. */
For each leveld = D — 1 to2
For each level 4 cube j = 1 to 8¢
Md._f . Z}EC(d.j) M2M(d, js d+1, })Md+l,f
/* THE INTERACTION PHASE: Converts multipole expansions to local
expansions. */
For each leveld =210 D
For each level d cube j = 1 to 8“’_
Laj= ZJ.jef(d,j) M2L(d, j,d, j)MJ.}
/* THE DOWNWARD PASS: Transfers and accumulates local expansions. */
For each leveld = 3to D
For each level d cube j = 1 to 8¢
Lyj=1La;+L2Ld, j,d—1, F(d, ))La-1Fa. )
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/* THE EVALUATION PHASE: Evaluates the potential. */
For each level D cube j = 1 to 8P

3.4. The adaptive multipole algorithm. Almost certainly, the surfaces of a given three-
dimensional problem will not fill the volume of the root cube, and this will necessarily lead
to a nonuniform distribution of the support of the 6;’s. It is possible to derive an adaptive
multipole algorithm from Algorithm 3.1 by breaking up the problem domain nonuniformly.
In this case, when the cube hierarchy is created, cubes are not subdivided if they intersect
the support of fewer than some limiting number of 6;’s [11]. However, for the kinds of
charge density expansion functions in common use, such an approach can sometimes require
more computation than a nonadaptive algorithm [14]. A more effective approach in this
setting, one which is guaranteed to use fewer operations than a nonadaptive algorithm, is to
avoid translation from charge density expansion coefficients to multipole expansions, and to
avoid forming local expansions, whenever such representations are inefficient. For example,
consider computing Mp ; from Q2M(D, j, D, j)qp,;. If the number of entries in vector ¢p ;
is smaller than the number of multipole coefficients in Mp_;, which for an /th-order multipole
expansion is (/+1)?, then g ; is a more efficient representation of the charge distribution, and
that representation can be propagated through the algorithm instead of Mp ;. Note that using
such an approach requires some rather straight-forward bookkeeping and a few easily derived
translation operators [13]. In particular, multipole coefficient to evaluation point and charge
to local expansion coefficient translation operators, denoted M2 P and Q2L, respectively, are
required.

A second optimization for the nonuniform case, one that is guaranteed to reduce the
operation count during the upward pass and also improve accuracy slightly, is to exploit the
fact that there is no need to construct a multipole expansion for a cube with only one nonempty
child. This is made clear in the following remark.

Remark. Suppose the charge density in a given cube is entirely contained in one of the
cube’s descendants. Then the potential due to charge in the given cube is at least as accurately
represented using the descendant’s multipole expansion about the descendant’s center, as by
a shifted version of the descendant’s multipole expansion about the given cube’s center.

A similar optimization can be used to improve the efficiency of the downward pass. That
is, there is no advantage to creating a local expansion for a cube with only one nonempty child.
Instead, the multipole expansions associated with the members of a cube’s interaction set can
be translated directly to the cube’s only nonempty child.

To describe an adaptive algorithm that exploits the above optimizations, the following
additional definitions are used.

DEFINITION 3.6. Adaptive cube. Any nonempty finest level cube or a coarser level cube
that has more than one nonempty child.

DEFINITION 3.7. Adaptive child. An adaptive child of a given cube is any adaptive cube
descendent which has no ancestors that are adaptive cube descendents of the given cube. The
set of adaptive children of level d cube with index j is denoted C*(d, j).

Note that a cube need not be adaptive to have adaptive children. However, if 2 nonempty
cube is not an adaptive cube, |C4(d, j)|, which denotes the number of elements in C4(d, j),
is precisely one.

DEFINITION 3.8. Adaptive parent. The adaptive parent of a given adaptive cube is the
unique adaptive cube for which the given adaptive cube is an adaptive child. The adaptive
parent of a level d adaptive cube j is denoted by FA(d, j).

Note that an adaptive parent can be separated from an adaptive child by an arbitrary
number of levels.
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DEFINITION 3.9. Adaptive interaction set. The adaptive interaction set of a cube is the set
of all members of the cube interaction set, except any nonadaptive cube member is replaced
with its adaptive child. The adaptive interaction set is denoted 14 (d, .

ALGORITHM 3.2. Adaptive Multipole Algorithm.
/* THE CONSTRUCTION PHASE: Computes multipole expansions at the
finest level. */
For each level D nonempty cube j
if (size(gp,;) > (I + 1)*) Mp ; = Q2M (D, j, D, j)qp, ;.
/* THE UPWARD PASS: Computes multipole expansions. */
Foreachleveld =D —1t02
For each level d adaptive cube j
if (size(qa,) > (I + 1)?) (
For each level d cube j € C4(d, j)
lf(Size(qd J> 1 +1)?3 My ;=M ;+ M2M(@, _},d ;)Md
else My ;= M, ;+ Q2MW, j.d, j)q;;
}
/* THE INTERACTION PHASE: Converts multipole expansions to local expansions. */
For each leveld =2to D

For each level d cube j for which |74(d, j)| > 0
if 1C4(d, j)l > 1)d=dand j = ;.
else d, j is the only member of C*(d, .
if (size(pa,;) > (1 + 1)%) {
For eachd, j € 14(d, j)
if (s:ze(qd ) > (1 +1)% Lj;i=L, +M2L(d, j.d, )My;.
else L; ; j+Q2L(d, j.d, j)q
}
else {
For eachd, j € 14(d, j)
if (size(qz ;) > I+ 1) pa; = pa;+M2P(, j,d, )My;.
else ps; = pa;+ Q2P(d, j,d, Nag ;-
}
/* THE DOWNWARD PASS: Transfers and accumulates local expansions. */
For each leveld =3to D
For each level d adaptive cube j
d,j=F4d, j)
if (size(pdj) > (+1)3
if (d > 1) Ly;=L2Ld, j.d, j)L'-
elself(s:ze(pdj) > (+1?
if (@ >1) ps;=L2PW,j.d j)L;;
/* THE EVALUATION PHASE: Evaluates the potential. */
For each level D nonempty cube j
if (size(pp,;) > I+ 1)?) ppj=L2P(D, j)Lp,;
Pp,j = Pp.j+ Xienn y Q2P(D, j, D, ))qp,;

Since the adaptive algorithm is derived by reducing or avoiding operations in anonadaptive
algorithm, the theorem below follows directly.

THEOREM 3.3. Algorithm 3.2 always uses fewer operations than Algorithm 3.1.
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3.5. Complexity analysis. It is clear from the description of both the nonadaptive and
adaptive multipole algorithms that they can require more than order N operations if expansion
functions with arbitrary support are used to represent the charge density. Although there are
techniques that use sets of expansion functions whose support is the entire surface, we will
insist on the following two conditions.

DEFINITION 3.10. Compactness condition. The problem domain and 0,, . . ., Oy are such
that there exists a cube hierarchy of depth D for which the number of cubes intersecting the
support of each 0; is bounded by K, independent of N.

DEFINITION 3.11. Bounded overlap condition. The problem domain and 6, .. ., Oy are
such that there exists a cube hierarchy of depth D for which the number of 6;’s whose support
intersects each finest-level cube i is bounded by K,., independent of N.

Previous approaches to bounding the computation of adaptive multipole algorithms as-
sumed an a priori bound on on the maximum number of levels in a cube hierarchy, denoted
D [11]. Such an assumption is loosely justified by the notion that given a machine precision,
there is a smallest representable finest-level cube. The precision assumption has the suspicious
consequence that in any cube hierarchy, each cube has a bounded number, in fact D, ancestors.
Given this, simple examples can lead to seeming contradictions. Consider the surface Stobe a
flat square plate of unit area, and suppose the surface charge density on the plate is represented
with expansion functions corresponding to small square panels over which the charge density
is assumed constant (see (10)). If a /N x +/N array of such square panels is used to discretize
the plate, then the finest-level cube size required to satisfy the compactness and bounded over-
lap conditions must be order +/N in diameter. But this requires a partitioning depth of order
log N, violating the a priori bound on the depth implied by the precision assumption.

Nevertheless, the multipole algorithm completes in order N operations for the square plate
example. For that example, and for typical problems associated with the discretization of two-
dimensional surfaces in three-dimensional domains, a perhaps more relevant assumption is
the hierarchical contraction condition given below.

DEFINITION 3.12. Hierarchical contraction condition. The problemdomainand,, ..., 6y
are such that the number of nonempty cubes at level d — 1 is less than y times the number of
nonempty cubes at level d, where y is strictly less than one and independent of N.

The importance of the hierarchical contraction condition is made clear in the following
lemma.

LEMMA 3.4. If the hierarchical contraction condition is satisfied, then the number of
nonempty cubes, summed over all the levels, is bounded by

(24) Nx K, * B,

where B = 1 is independent of N.
Proof. If the hierarchical contraction condition is satisfied, then, by definition, the total

number of nonempty cubes summed over all the levels is

D 00
(25) ZN*KCr*yE<N*KC,*Zy" = Nx K *pB. 0

i=0 i=0

Given that a problem satisfies the hierarchical contraction condition, it is easily shown
that Algorithm 3.2 completes in order N operations. It is also possible to prove such a result
without this assumption, and we return to the general case in §4.

THEOREM 3.5. Given the hierarchical contraction condition, if the problem domain and
8, ..., 6y are such that there exists a cube hierarchy of depth D for which the compactness
and bounded overlap conditions above are satisfied, then the nonadaptive modified multipole
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algorithm (if empty cubes are ignored), and the adaptive multipole algorithm, complete in
order N operations.

Proof. To prove the theorem, operations are counted for each of the five steps of Algo-
rithm 3.1, assuming that empty cubes are ignored. Then by Theorem 3.3, the result is a also
a bound on the number of operations for Algorithm 3.2.

Construction phase. Each N 6; contributes to (/ 4+ 1)2 terms in the multipole expansion
of at most K, cubes.

Cost < Nx K. % (I +1)2.

The upward pass. By Lemma 3.4, the total number of nonempty cubes summed over all
the levels is bounded by N % K, x 8. In the upward pass, each nonempty cube at each level
is associated with one M2M translation to its nonempty parent, so there is a total of no more
than N x K., + B M2M operations, each of which costs (/ + 1)* operations.

Cost < N %K+ Bx*(I+ 1D*

The interaction phase. Again by Lemma 3.4, the total number of nonempty cubes summed
over all the levels is bounded by N * K, * B. Each nonempty member of a nonempty
cube interaction set is associated with one M2L translation, and there are no more than 189
nonempty members in a cube interaction set. Therefore, in the interaction phase, there is a
total of no more than N x K, x 8% 189 M2 L operations, each of which costs (/+1)* operations.

Cost < N x Ko % B % (I + 1)* x 189.

The downwardpass. Againby Lemma 3.4, the total number of nonempty cubes is bounded
by N x K * B, and as each nonempty cube is associated with one L2L translation from its
nonempty parent, there is a total of no more than N x K, x 8 L2L operations, each of which
costs (/ + 1)* operations, in the downward pass.

Cost < N % Ko % B* (I + 1)*.

The evaluation phase. For each collocation point in a finest-level cube j, the contribution
of the local expansion to the potential, which costs (/ + 1) operations to evaluate, must be
added to the potential due to the charge density associated with the fewer than 125 * K, 6;’s
whose support intersects cube ;.

Cost < N % (125 * K;c + (I + D).

Adding the costs leads to an order N bound on the total number of operations,

Total Cost < N  [((Ket + 1) % (7 + 1)%) + (Kot # B % 191 % (I + 1)¥)

(26)
+(125% K,)]. O

Note that for the flat square plate with a square panel discretization example mentioned
above, y = 0.25, and therefore f = 3.

One last aspect of the multipole algorithm in this context must be considered. For ef-
ficiency, it is assumed that all the translation matrices will be computed once and stored, so
they can be rapidly reapplied during an iterative matrix solution algorithm. This suggests that
the question of the required memory be addressed. Since each application of the multipole
algorithm uses every translation matrix element, the theorem below follows easily.

THEOREM 3.6. If the multipole algorithm completes in order N operations, then storing
the translation matrices requires order N storage.
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4. General theorem for Algorithm 3.2. In§3, itis claimed that the number of operations
in Algorithm 3.2 is order N. However, to simplify the proof of the bounds on the upward
pass, the downward pass and the interaction phase of Algorithm 3.2, a hierarchical contraction
condition was assumed. In this section, we give more general proofs of these bounds.

To simplify notation, results in this section will be given in terms of the number of
nonempty finest-level cubes, denoted M. Using the notation of §3, it is clear that M <
(N x K).

To bound the number of operations in the upward and downward passes of Algorithm 3.2,
we make use of a graph that can represent either pass. The graph tree structure leads naturally
to the bounds using results from elementary graph theory (see, for example, [15]).

DEFINITION 4.1. Adaptive upward-pass graph. Let each adaptive cube in each level of
the cube hierarchy correspond to a node in a graph, and insert an edge between pairs of nodes
if one of the associated adaptive cubes is an adaptive child of the other. The resulting graph
is the adaptive upward-pass graph.

Since an edge connects every adaptive child cube to its parent, there is a one-to-one
correspondence between the edges in the adaptive upward-pass graph and the M2M or O2M
translation operations in the upward pass of Algorithm 3.2. Similarly, there is also a one-
to-one correspondence between the edges in the adaptive upward-pass graph and the L2L or
L2 P translation operations in the downward pass of Algorithm 3.2.

LEMMA 4.1. The adaptive upward-pass graph is a tree with M leaves, or childless nodes,
and every nonleaf node in the tree except the root has at least three edges connected to it. That
is, each nonleaf node except the root has degree greater than two.

Proof. A graph that is connected and has e edges and » nodes with e = n — 1 is a tree.
The adaptive upward-pass graph is connected because any two nodes in the graph correspond
to two cubes that are parts of at least one larger cube. A path from any particular node to
another node can always be found passing through the node corresponding to the larger cube
or directly between the two nodes of given cubes if one of the two given cubes is contained in
the other.

Furthermore, every node represents an adaptive child cube and therefore has a single edge
connecting it to the node corresponding to its adaptive parent, except the node corresponding
to the level O cube. Since this level 0 node has no such edge, e = n — 1. Thus the adaptive
upward-pass graph is a tree, and the level 0 node may be taken as its root.

The definition of an adaptive cube implies that each nonroot and nonfinest-level adaptive
cube must have an adaptive parent and at least two adaptive children. Therefore, every associ-
ated nonroot and nonleaf node in the adaptive upward-pass graph has degree greater than two.
The leaves of the upward-pass graph obviously correspond to the M nonempty finest-level
cubes since these adaptive cubes have no children. O

The bounds are a direct consequence of the upward-pass graph tree structure as summa-
rized by Lemma 4.1.

THEOREM 4.2. The total number of M2M or Q2M operations in the upward pass, as
well as the total number of L2L or L2P operations in the downward pass, is bounded by
2 x M, where M is the number of nonempty finest-level cubes.

Proof. Since there is a one-to-one correspondence between each edge in the adaptive
upward-pass graph and either upward-pass or downward-pass translation operations, the the-
orem can be proved by demonstrating that the upward-pass graph has no more than 2 x M
edges. Since the sum of the degrees of any graph’s nodes is equal to twice the number of
edges in the graph (each edge connects exactly two nodes), Lemma 4.1 implies

(27) M+3n—M-1)+2 < 2e,
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in the case of an upward-pass graph with n nodes and e edges. The first term is the sum of the
leaf-node degrees, the second corresponds to the sum of minimum nonleaf node degrees, and
the last is the minimum degree of the root. Sincee =n — 1,

(28) e<2M-1). O

The following theorem addresses the computational complexity of the interaction phase in
Algorithm 3.2. The interaction phase uses M2L, Q2L, M2 P, and Q2 P operations to translate
information between cubes in each interaction set. We now prove that the total number of these
interaction operations is of the order of the number of nonempty finest-level cubes. To avoid
somewhat less interesting complications that arise when an interaction set contains cubes on
two different levels, the theorem is proved using the definition of an interaction set given in
the original description of the fast multipole algorithm [8]. To avoid confusion, we refer to
this set as the regular interaction set.

DEFINITION 4.2. Regular interaction set of a cube. Those cubes that are children of the
given cube’s parent’s nearest and second-nearest neighbors, excluding nearest or second-
nearest neighbors of the given cube.

Unlike the interaction set given in Definition 3.5, the regular interaction set of a cube has
many more members (875 rather than 189) but all the members are cubes from the same level
as the given cube. Clearly, using the regular interaction set in Algorithm 3.2 only increases
the required computation, so the upper bounds on computation derived below are also upper
bounds on the interaction phase of Algorithm 3.2.

A second useful definition describes one approach to merging regular interaction sets of
a cube and its descendents.

DEFINITION 4.3. Generalized interaction set of a cube. Those cubes at the same level
as the given cube that are either members of the given cube’s regular interaction set or that
contain descendents who are members of the regular interaction set of one of the given cube’s
descendents. For cubes with no descendents, that is, those cubes on the finest level of a
hierarchy, the generalized interaction set is defined by assuming that the hierarchy extends to
an additional finer level.

The generalized interaction set of a cube can also be described as the union of the cube’s
regular interaction set with the cube’s nearest and second-nearest neighbors. Or, equivalently,
the generalized interaction set of a cube contains the children of the cube’s parent, excluding the
given cube, and the children of the parent’s nearest and second-nearest neighbors. Therefore,
the generalized interaction set for a cube contains no more than 999 members, all at the level
of the given cube, and a cube is in no more than 999 generalized interaction sets (cubes near
the sides or corners of the problem domain may have fewer members in their interaction sets).

THEOREM 4.3. Regardless of the distribution or number of levels in the cube hierarchy,
the number of interaction operations in the interaction phase of Algorithm 3.2 is bounded by

(29) ' 1998 x M,

where M is the number of nonempty finest-level cubes.

Proof. Given a nonempty cube at the Dth, or finest, level in the cube hierarchy, there
is at most one interaction operation associated with each of up to 999 members of the given
cube’s generalized interaction set. And as each nonempty cube is a member of at most 999
generalized interaction sets, each cube is associated with at most 999 interaction operations.
This may seem to be an unnecessarily generous count, as on this finest level there are only
interaction operations between a nonempty cube and the nonempty members in the cube’s
regular interaction set. However, for the purposes of establishing an inductive argument, we
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consider the possibility of an interaction operation associated with any member of a cube’s
generalized interaction set.

Now consider cubes at level D — 1. Suppose that for each of the nonempty D — 1 level
cubes, all but one of the cube’s nonempty Dth level children are emptied. We denote the
number of emptied cubes as pp, where pp is also equal to the difference between the number
of nonempty cubes at level D and the number of nonempty cubes at level D — 1. And as
the pp Dth level cubes are emptied in a way that does not completely empty any originally
nonempty D — 1 level cubes, no D — 1 level or coarser interaction operations will be eliminated
or added. In addition, each of the emptied cubes has no more than 999 Dth level cubes in
its generalized interaction set, and each emptied cube is contained in at most 999 Dth level
generalized interaction sets. Therefore, by emptying the pp Dth level cubes, fewer than
1998 * pp Dth level interaction translation operations will be eliminated.

Once the pp cubes have been emptied, each nonempty D — 1 level cube contains exactly
one nonempty child. As a result, given a nonempty D — 1 level cube, there is at most one
interaction operation associated with each member of the given cube’s generalized interaction
set. This follows from the fact that each nonempty member of a given D — 1 level cube’s
generalized interaction set either is in the given cube’s regular interaction set, or contains
a single nonempty child that is in the generalized interaction set of the given cube’s only
nonempty child, but not both. If the former is true, the associated interaction operation is
between D — 1 level cubes, and if the latter is true, the associated interaction operation is
between Dth level cubes.

The above argument establishes that emptying pp Dth level cubes, and eliminating the
associated interaction operations, results in a set of D — 1 level cubes which have the property
that given a nonempty D — 1 level cube, there is at most one interaction operation associated
with each member of the given cube’s generalized interaction set. This was the only property
about the Dth level cubes used in the above argument, so the argument can be reapplied to
levels D — 1, D — 2, through to the coarsest level. In inductively applying the above argument
at level d — 1, p; nonempty d level cubes will be emptied, and, in doing so, no more than
1998 * p, interaction operations will be eliminated. In addition, since only nonempty cubes
will be emptied, each emptied cube must correspond to at least one of M nonempty finest-level
cubes, and therefore Y ;_, pa < M. Finally, as there are no interaction operations on the
coarsest level, all the interaction operations are eliminated by continuing the induction to the
coarsest level. Therefore, the total number of interaction operations in the interaction phase
of Algorithm 3.2 is bounded by

D
(30) > 1998 % ps < 1998x M. O
d=1

5. Preconditioning the iterative method. In general, the convergence of a Krylov-
subspace method can be significantly accelerated by preconditioning if there is an easﬂy
computed approximation to the problem’s inverse. We denote the approximation to P~!

(5) by C, in which case preconditioning is equivalent to solving

(31) PCx=7p

for the unknown vector x, from which the vector of expansion coefficients is determined by

= Cx. Clearly, if C is precisely P!, then (31) is trivial to solve, but C will be very
expenswe to compute.

In [16] and [17], it was suggested that a good approximation to P~! could be derived

by solving overlapping subproblems. Such an approach fits naturally with the hierarchical
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multipole algorithm because the preconditioner can be constructed and applied in a cube-
by-cube fashion. First, C is computed by inverting a sequence of reduced P matrices, one
associated with each finest-level cube, as in Algorithm 5.1 below.

ALGORITHM 5.1. Forming C.
For each finest-level nonempty cube j
/* Form P/ with the Q2P matrices of cube j’s nearest neighbors. */
For each j € N(D, j)
For each k € N(D, )
PJ;’.E = Q2P(D, j, D, k)
Compute C/ = (P/)~1.
For each 6; whose support intersects cubes in N (D, j)
if 6;’s support does not intersect cube j delete the associated row from CJ.

The matrix P is a block matrix, and each entry P’ ;isa matrix, not a scalar. In general,

since the number of collocation points contained in the cubes in N (D, j) will not necessarily
be equal to the number of expansion functions whose support intersects the cubes in N(D, j),
P/ is not square. Therefore, forming (P/)~' should be interpreted to imply a generalized
inverse.

By comparing Algorithm 5.1 with Algorithm 3.2, it is clear that P/ uses only those
elements of the full P matrix that are already required in Algorithm 3.2, and therefore the
computational cost in computing the preconditioner is only in inverting small P/ matrices.
Then computing the product P Cx*, which would be used in a Krylov-subspace method applied
to solving (31), is accomplished in two steps. First, the preconditioner is applied to form
g* = Cx* using Algorithm 5.2 below. Then, Pg* is computed using Algorithm 3.2.

ALGORITHM 5.2. Forming g = Cx.
For each finest-level nonempty cube j
For each 6; whose support intersects cube j
For each f)k whose support intersects cubes in N(D, j)
Add C-'f.kxk to g;.

The cost of the preconditioner is linked to the cost of the multipole algorithm, provided
the collocation points are distributed among the expansion functions in a reasonable manner.
The statement is made precise below.

THEOREM 5.1. Ifthe collocation points are distributed so that associated with each expan-
sion function there is a unique collocation point contained in the expansion function’s support,
and the expansion functions satisfy the bounded overlap and compact support conditions, then
computing the preconditioner requires order N operations.

Proof. If the collocation points satisfy the distribution condition in Theorem 5.1, and
the expansion functions satisfy the bounded overlap condition, then each of the dimensions
of each P/ is bounded by K. * 125. From the compact support condition, there are at most
K. * N nonempty cubes. Therefore, computing the preconditioner costs N* Ky % (K% 125)>
operations. 0

6. Experimental results. In this section, results from computational experiments in
solving (1) are presented. The experiments are conducted using FASTCAP [13], a three-
dimensional electrostatic analysis program that uses an implementation of the preconditioned
GMRES algorithm with adaptive multipole acceleration (PAMA). The program uses the
piecewise-constant panel expansion functions given in (10) and a panel centroid colloca-
tion scheme. First, idealized examples of potential flow problems are examined to allow a
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controlled investigation of aspects of the algorithm, and then results from realistic engineering
applications are shown to exhibit the practicality of the method.

6.1. Spheres in potential flow. The potential due to a unit sphere in an infinite fluid
translating at unit velocity along the x3-axis is given by

X3
2||x 3

(32) Yix)=-

The charge density o satisfying (1) for the potential in (32) can be determined analytically.
To derive the formula, Green’s theorem is written twice, once for the known ¥ on the sphere’s
outside, and once for a ¥’ (some as yet unknown potential) on the sphere’s inside. Summing
the two expressions gives

(33)
2 (Y (x) + ¢'(x))

+ff3[(1,b(x’) - Y’ (xXNVGx,x") - Glx, x) VW (x") — ¢'(x")] - nada’ =0,
X € 8§,

where 7 is the inward directed surface normal and

(34) Gx,x") = -—J——-—
llx = x’||
If we let o satisfy
1 :
(335) o(x) = 4—V('Jf(x) —¥'(x)-n
T

then (1) may be obtained from (33), if ¥ is such that ¥ — ¢’ vanishes on S; namely,

1
(36) v'(x) = 5%

By substitution of (32) and (36) in (35),

-3
3D o(x) = —xa, x €S
8

Figure 1 is a plot of a shaded sphere, where the shading corresponds to the charge density
given in (37).

Having the solution for the translating sphere problem in closed form allows us to demon-
strate the convergence of the complete algorithm. Figure 2 shows that the convergence rate
will approach i—, if the tolerance on the convergence of the iterative method is small enough,
and if the order to which terms are retained in the spherical harmonic expansions is high
enough. The definition of the integrated error is the following summation over the N panels

N
(38) £=)"lgi—ao(x)l,

i=l

where a; is the area of panel i and |— — 0;(x)]| is the error between the computed and exact
solution at panel i’s collocation pomt The results in the figure using lower-order expansions
and a larger tolerance for convergence of the iterative method show how these parameters limit
the accuracy of the computed solution given a particular spatial discretization.
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FIG. 1. The single sphere discretized by 2592 panels translating in an infinite fluid. The shading corresponds to
the density strength o (x). The dark shading at the pole of the sphere is a plotting artifact.
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FIG.2. Convergence study for the single sphere translating inan infinite fluid. Tolerance refers to the convergence
criterion for the iterative method, and order refers to the highest term retained in the spherical harmonic expansions.

To investigate the advantages of using the adaptive multipole-accelerated (AMA) algo-
rithm and the preconditioner, a more complicated case of two spheres, shown in Fig. 3, is
considered. In this case, we do not have a closed form solution, so a Dirichlet problem is
contrived by applying the known potential of the single sphere case to each of the two spheres.
The difference in the cost of computing Pgq directly and with the adaptive multipole algorithm
is shown in Fig. 4. Here the operation count is the number of multiply-add operations required
to compute Pg once, assuming that the entries in P and the multipole translation matrices
have been precomputed. As the graph in Fig. 4 clearly demonstrates, the cost of computing
Pgq with the adaptive multipole algorithm increases linearly with the number of panels, and
for the case where second-order expansions are used, is faster than direct computation with as
few as 500 panels. .

The effect of using the preconditioner to solve the two-sphere problem is shown in
Fig. 5. As is clear from the figure, the number of iterations required is proportional to VN
without preconditioning, but curiously decreases slightly with N with preconditioning. Note
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FIG. 3. The two-sphere case, each discretized by 2592 panels. Here, a fictitious potential is applied. The sphere
centers are three radii apart.
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FIG. 4. Operation counts for computing the iterates for the fictitious Dirichler problem of two spheres, where
the discretization is refined. Direct refers to the standard (order (N?)) application of the matrix to a vector, Order 1
refers to the adaptive multipole algorithm with expansions to order 1.

that the number of levels in the cube hierarchy directly affects what is used as a precondi-
tioner. As Fig. 5 shows, the smaller the number of levels used, the larger the spatial extent
of the preconditioner; the result is a reduction in the number of iterations required to achieve
convergence.

6.2. Capacitance extraction. In this section we present results using the complete al-
gorithm to solve for the capacitance matrix associated with a collection of m ideal conductors
embedded in a uniform lossless dielectric medium. The capacitance matrix is defined as the
m X m matrix that relates conductor potentials to the integral of conductor charge density.
The jth column of the capacitance matrix can be computed by solving for the surface charge
density on each of the conductors when the jth conductor is at unit potential, and all the other
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FIG. 5. lrerations required for convergence 10 a Iolerance of 0.001 in the solution of the fictitious Dirichlet
problem of two spheres, as the discretization is refined. None refers to no preconditioning, OL refers 1o use of the
overlapping-block preconditioner, and the associated number, 6 or 7, indicates the number of levels in the cube
hierarchy.

conductors are at zero potential. Note that all of the capacitance calculations are the result
of using second-order multipole expansions and a GMRES relative convergence tolerance of
0.01.

The complete algorithm is nearly as accurate as the direct factorization method on complex
problems, such as the 2 x 2 woven bus structure in Fig. 6. In Table 1, the capacitances computed
using the two methods are compared using coarse, medium, and fine discretizations of the
woven bus structure, also shown in Fig. 6. Note that even the coupling capacitance C;
between conductors one and two, which is forty times smaller than the self-capacitance C|,,
is computed nearly as accurately with the complete algorithm as with direct factorization.

TABLE |
Capacitance values (in pF') illustrating the accuracy of the PAMA algorithm for the complicated geometry of
Fig. 6.

Method Problem
Woven| Woven2 Woven3
1584 panels 2816 panels 4400 panels
Cu Ci Cii Ci2 C Ci2
Direct 2516 | —6.353 | 2532 | —6.446 | 253.7 | —6.467
PAMA 251.8 | —6.246 | 2533 | —6.334 | 2539 | —6.377

On complex capacitance extraction problems, the computational cost of using the com-
plete algorithm is roughly proportional to the product of the number of conductors, m, and the
number of panels n. This is experimentally verified by computing the capacitances of the2 x 2
woven bus structure in Fig. 6, with progressively finer discretizations. In Fig. 7, the execution
times required to compute these capacitances are plotted as a function of mn, and as the graph
demonstrates, the execution time does grow nearly linearly.

To demonstrate the effectiveness of various aspects of the PAMA iterative algorithm on a
range of problems, the execution times required to compute the capacitances of four different
examples using four different methods are given in Table 2. The 2 x 2 woven bus example
is described above, and the 5 x 5 woven bus example is the obvious extension. The via
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() (b)

FiG. 6. The 2 x 2 woven bus problem: bars have 1m x 1m cross sections. The three discretizations are obtained
by replacing each square region in (a) with the corresponding set of panels in (b).
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FiG. 7. Execution time as a function of mn for the PAMA algorithm applied to solving progressively finer
discretizations of the 2 x 2 woven bus problem.

example, shown in Fig. 8, models a pair of connections between integrated circuit pins and a
chip-carrier, and the diaphragm example, shown in Fig. 9, is a model for a microsensor [18].

From Table 2, it can be seen that using the AMA algorithm can improve execution time by
a factor of two over using the multipole-accelerated (MA) algorithm alone, and combining the
preconditioner with the AMA algorithm can reduce the execution time by as much as a factor
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FIG. 8. Two signal line vias passing through conducting planes.

FIG. 9. A schematic illustration of the diaphragm problem. The gap between the two plates is 0.02 um at the center.

TABLE 2
CPU times in minutes on an IBM RS6000/540 for the nonadaptive MA, AMA, and PAMA algorithms. Times
in parentheses are extrapolated.

Method | 2 x 2 woven bus Via Diaphragm | 5 x 5 woven bus
4400 panels 6185 panels | 7488 panels 9630 panels

Direct 185 (490) (890) (1920)

MA 6.0 11 8.7 42

AMA 3.3 47 59 23

PAMA 23 3.2 1.3 11

of seven. The improvement due to the adaptive algorithm is small because it is being compared
to an MA algorithm that is already somewhat adaptive; empty cubes being ignored. Exploiting
empty cubes is easy to implement, and makes a significant difference. For the largest problem,
the 5 x 5 woven bus, more than 252,000 out of 262,000 cubes used to partition the problem
domain are empty. A truly nonadaptive MA algorithm would therefore be twenty-five times
slower than the MA algorithm used here for comparison.

The reduction in execution time afforded by the AMA algorithm over the nonadaptive
MA stems from more efficiently computing the Pg product on each iteration of the GMRES
algorithm, and using the preconditioner reduces execution time by reducing the number of
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iterations required to achieve convergence. Because of various program overheads, comparing
total execution times can hide the sometimes dramatic effect the preconditioner can have on
GMRES convergence. To show the impact of the preconditioner more directly, the norm of the
residual, | — Pg¥||, is plotted in Fig. 10 as a function of iteration for the various algorithms
applied to solving the diaphragm problem. As is evident in the figure, the nonadaptive MA
and AMA algorithms converge nearly identically, as expected, but the residuals computed
with the PAMA algorithm decrease considerably faster. It is this rapid convergence that easily
offsets the disadvantage that preconditioned iterates are slightly more expensive to compute
than unpreconditioned iterates.
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Fic. 10. The GMRES residual norms for the linear system solution corresponding to the diaphragm problem
(Fig. 9) with the top conductor at unit potential. As is evident here, the PAMA algorithm converges significantly
more rapidly than the unpreconditioned AMA or MA algorithms.

7. Conclusions. In this paper, a PAMA approach to solving first-kind surface integral
equations with a % kernel is described, and the method is shown to be effective for several
engineering problems. A novel adaptive fast multipole algorithm is given and is proved to
require order N computation and order N storage. Also, experimental evidence is given to
demonstrate that in practice the combined algorithm is nearly order N. Note that the derivation
and results are for a collocation scheme, the extension to a Galerkin scheme is straightforward
though somewhat more cumbersome to implement.

Acknowlegments. The authors would like to thank Stephen Vavasis for his suggestions
about approaches to preconditioning, Don Baltus for his suggestions about using graphs to
represent the multipole algorithm, and Songmin Kim for his help in linking the program with
the solid modeler PATRAN. The authors would also like to thank David Ling and Albert Ruehli
of the .LB.M. T. J. Watson Research Center for their helpful suggestions about capacitance
calculations and Dick Yue for his help in understanding potential flow problems.

REFERENCES

[1] V. ROHKLIN, Rapid solution of integral equation of classical potential theory, J. Comput. Phys., 60 (1985),
pp. 187-207.

[2] A.GREENBAUM, L. GREENGARD, AND G. B. MCFADDEN, Laplace’s Equation and the Dirichlet-Neumann Map
in Multiply Connected Domains, Tech. rep., Courant Institute, New York University, NY, March 1991,




MULTIPOLE-ACCELERATED ITERATIVE METHODS 735

[3] A. E. RUEHLI AND P. A. BRENNAN, Efficient capacitance calculations for three-dimensional multiconducror
systems, IEEE Trans. Microwave Theory and Techniques, 21 (1973), pp. 76-82.
[4] S. D. SENTURIA, R. M. HaRrris, B. P JoHNSON, S. KiM, K. NABORS, M. A. SHULMAN, and J. K. White, A
computer-aided design system for microelectromechanical systems (memcad), IEEE J. Microelectrome-
chanical Systems, 1 (1992), pp- 3-13.
[5] J. N. NEWMAN, Distributions of sources and normal dipoles over a quadrilateral panel, J. Engrg. Math., 20
(1986), pp. 113-126.
(6] R.KREss, Linear Integral Equations, Springer-Verlag, Berlin, 1989,
[71 Y. SaAD aND M. H. ScHULTZ, GMRES: A generalized minimal residual algorithm for solving nonsymmetric
linear systems, SIAM . Sci. Statist. Comput., 7 (1986), pp. 856-8609.
[8] L. GREENGARD AND V. ROKHLIN, A Jast algorithm for particle simulations, 1. Comput. Phys., 73 (1987), pp. 325-
348.
[9] L. GREENGARD, The Rapid Evaluation of Potential Fields in Particle Systems, ML.I.T. Press, Cambridge, MA,
1988.
[10] E. W. HoBsoN, The Theory of Spherical and Ellipsoidal Harmonics, Chelsea, New York, 1955.
[11] J. CARRIER, L. GREENGARD, AND V. ROKHLIN, A fast adaptive multipole algorithm for particle simulations, SIAM
J. Sci. Statist. Comput., 9 (1988), pp. 669-686.
[12] J. J. SAKURAL, Modern Quantum Mechanics, Addison-Wesley, Reading, MA, 1985.
[13] K. NABORS AND J. WHITE, Fastcap: A multipole accelerated 3-D capacitance extraction program, IEEE Trans.
Computer-Aided Design of Integrated Circuits and Systems, 10 (1991), pp. 1447-1459.
[14] K. NABORS, S. KM, AND J. WHITE, Fast capacitance extraction of general three-dimensional structures, IEEE
Trans. Microwave Theory and Techniques, 40 (1992), pp. 1496-1506.
[15] N. Deo, Graph Theory with Applications to Engineering and Computer Science. Prentice-Hall, Englewood
Cliffs, NJ, 1974,
[16] S. A. Vavasis, Preconditioning for boundary integral equations, SIAM J. Matrix Anal. Appl., 13 (1992), pp.
905-925.
[17] K. NaBoORs, S. KiM, J. WHITE, aND S. D. SENTURIA, An adaptive multipole algorithm for 3-D capacitance
calculation, in Proc. Internat. Conf, Computer Design, Cambridge, MA, October 1991.
[18] B. JoHNSON, S. KiM, S. D. SENTURIA, AND J. WHITE, MEMCAD capacitance calculations for mechanically
deformed square diaphragm and beam microstructures, in Proc. Transducers 91, San Francisco, CA, June
1991.



