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Using numerical simulation, we study the effect of self-induced magnetic fields on the properties of
Josephson-junction arrays driven with combined ac and dc currents. We show that inductive effects
in strongly overdamped arrays can induce subharmonic giant Shapiro steps in zero applied magnetic
field. Inductive effects can also reduce the range of dc current biases over which the array can lock
to the ac current. Calculation of the correct current-voltage characteristics of the array requires
considering mutual inductance interactions between all cells in the array. We also discuss efficient
numerical schemes for including these induced fields in dynamic simulation of Josephson arrays.

I. INTRODUCTION

There has been much recent interest in the properties
of Josephson-junction arrays driven by dc and ac cur-
rents, particularly in the study of fractional giant! and
subharmonic?3 Shapiro step structure. While the occur-
rence of fractional steps in a magnetic field seems to be
explained by a phenomenological model of a moving vor-
tex superlattice,* 7 the origin of subharmonic structure,
particularly in zero applied field, is less clear. Several ex-
planations have been proposed,®!? including inductive
(self-field) effects.?!! There has also been long-standing
interest in the use of Josephson arrays as coherent mi-
crowave sources, and recently an observation of coherent
emission from two-dimensional (2D) Josephson-junction
arrays was reported.!?> The arrays used in the experi-
ments of Ref. 12 had high critical currents, indicating
that the strength of the magnetic fields induced in these
arrays by circulating supercurrents is fairly large. How-
ever, there have been relatively few studies of Joseph-
son arrays that consider the effect of induced magnetic
fields, and most of the previous treatments have severely
approximated the form of the induced fields.

In this paper, we discuss dynamic simulation of 2D
Josephson arrays, where inductive effects are important.
We have included the mutual inductance interactions be-
tween all cell pairs in the arrays, as they are necessary to
calculate the correct screening properties of the induced
fields.® In Sec. II we discuss our numerical technique for
dynamic simulation of Josephson junction arrays when
self-field effects are included. In Sec. III we give a qual-
itative description of some of the effects that induced
fields have on Shapiro-step structure in overdamped ar-
rays, particularly in zero applied magnetic field. We find
that induced magnetic fields can produce subharmonic
Shapiro step structure in zero applied magnetic field, and
we give a qualitative description of the movement of vor-
tices on the subharmonic Shapiro steps. Although the
symmetry-breaking effect of the self-fields can generate
subharmonic Shapiro steps, the steps do not appear to
be due to the formation of an induced commensurate vor-

0163-1829/94/50(13)/9387(10)/$06.00 50

tex state at the edges of the array, as was proposed in
Ref. 2. Another effect of the self-fields is that in arrays
with penetration depths small relative to the size of the
array, such as in Refs. 8, 12, and 14, the screening effects
due to induced fields may be strong enough to destroy
phase locking over some parameter range, significantly
reducing the width of the giant Shapiro steps.

It has been previously demonstrated see (Ref. 11) that
inductive effects can generate subharmonic Shapiro steps.
We are in agreement with Ref. 11 in that we find sub-
harmonic structure can arise as a result of induced fields.
Our work differs from Ref. 11 in that we have considered
inductive interactions between all array cell pairs (full
inductance matrix), whereas the model of Ref. 11 only
considers inductive interations between cells very close
together (truncated mutual-inductance matrix), and thus
may produce current-voltage (I-V') characteristics which
are different from ours. Such approximate models are
fairly widely used (e.g., Refs. 15 and 16), so it is thus of
interest to consider the properties of approximate induc-
tance models in the presence of applied currents. In the
Shapiro-step context, we find that the stronger screening
implied by the truncation of the inductance matrix may
anomalously destroy phase locking.

II. NUMERICAL PROCEDURE

The general aspects of including self-field effects in
simulation of Josephson arrays have previously been dis-
cussed in Ref. 13. Here we extend the approach to in-
clude junction dynamics and applied currents. To model
the dynamics of the junction we include contributions to
the junction current from resistive and capacitive shunts.
Including applied currents in mesh-based analysis of the
Josephson array is also fairly straighforward,; it is simply
necessary to include additional meshes corresponding to
current sources. We also describe improvements to the
iterative technique presented in Ref. 13 which further ac-
celerate the dynamic simulation of Josephson arrays.
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A. Formulation

The first set of variables describing the array are the
gauge-invariant phase differences ¢ across each junction
in the array. The directed sum of the phase differences
around each cell is related to the flux & passing through
the cell by!1:13:15,16

M¢ = —27rg+27rn (1)
o

where M is the mesh matrix,'” which represents the di-
rected loop-sum operator, n is a vector of integers, and
®q is the flux quantum. The flux can be split into an
induced part ¢ and an applied part *¢. In the ab-
sence of applied currents, the induced flux ‘I’"‘Jd in each
cell 4,7 is calculated by summing the flux COIltl‘lbllthIlS
from mesh (loop) currents I7";, flowing in all cells 7', j'
of the array:

ind __ T 5.
q)i,j = E Ll,l'yJ:J' a5 (2)
il‘jl

where L;; ;i is the mutual inductance coefficient be-

tween cells (7, 7) and (¢/,j') and the sum is taken over all
cells (#/,7'). In vector notation,

o = L1, , (3)
where I, is the vector of mesh currents and L the induc-
tance matrix.

To calculate the induced fields in the presence of ap-
plied currents, it is simplest to work first in terms of
the branch (junction) currents I; and branch inductance
matrix L. As discussed in Ref. 13, the induced flux is

oind = ML°I; . (4)

I; can be expressed in terms of the mesh currents I,
and the externally applied currents. We define the vector
I, to be the contribution to each junction current from
the applied sources, so that the junction currents can be
written as

IJ=MTIm+Ig, (5)

where the superscript 7' denotes matrix transpose.
Therefore, the induced flux is given by

o = LI, + ML*I,, (6)
where L = ML?M7T. Combining Egs. (1) and (6) pro-
duces

M¢ + i—”[um + MLL,) =2n(n— f), (7)

0

where we have made the usual definition of the frustra-
tion, f = ®*¢/®,.

The current I; through a junction with resistive and
capacitive shunts is

d
I;=Lsing+ — +cZ

— 8
® TCq (8)

where I, is the junction critical current, v is the voltage
across the junction, R, is the normal-state resistance,
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and C is the junction capacitance. Equations (5) and (8)
can be combined to express the junction currents Iy in
terms of the mesh currents I,,,:

MTI, +1,=1Isin¢ + — +C— (9)

R dt

The final equation necessary to describe the dynamic
Josephson array is the voltage-phase relation

'1>0 qu
10
T ordt (10)
It is convenient to normalize time to 7. = 1/v, =

®o/I.R,, current to I, and voltage to I.R,. In these
units, Egs. (7), (9), and (10) become

Be dv

T .
P T Im - - 8

or dt M sing —v+1 (11a)
d¢

E = 27v s (11b)
M¢+ {AI + MA®I ] =2n(n-f), (11¢)

where (. = 27rIcR,210/<I>0 is the McCumber parameter,
AL = ®o/2nI.pop is the dimensionless penetration depth
for a 2D system,'® and A = L/puop, A® = L®/pop with p
the array lattice spacing, are the normalized inductance
matrices.

The system of Eq. (11) can be viewed either as a non-
linear system of differential-algebraic equations (DAE’s),
or as implicitly defining a set of ordinary differential
equations (ODE’s). The system of ODE’s can be ex-
plicitly written in normal form by eliminating the mesh
currents as unknowns:

Be dv

Ee 22 — A MTA Y2n(n— f) — M¢ — MLL,)
2 dt

—sing —v+1,, (12a)
d¢
L = 2. 12b
o 27y (12b)

If the array is highly overdamped (very small 3.), the
capacitive term of the junction current may be ignored,
in which case Egs. (12a) and (12b) can be combined as

1 do

= A, MTA-
21rdt [ m(n

—f)—M¢—ML L] —sinp+1,.
(13)

B. Algorithms

The most obvious approach to solving Eq. (12) or
Eq. (13) is to use some sort of explicit integration scheme
(we use a predictor-corrector scheme based on the multi-
step Adams formulas.!®) Regardless of the particular
scheme used, the primary computational expense will be
in solving linear systems of the form

AL, =X [2r(n— f) — M¢ — ML®L,] . (14)
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As the calculation of a complete I-V characteristic re-
quires the simulation of the array over many ac cycles at
many different dc current biases, thousands or millions
of solutions of Eq. (14) may be required, so it is impor-
tant to use an efficient scheme to solve Eq. (14). For
small arrays, an efficient approach is to compute the LU
factorization?® of A and then perform a back substitu-
tion every time a right-hand-side evaluation is required.
If there are N cells in the array, the initial factorization
requires O(N3) operations and each back substitution
requires O(N?) operations. O(N?) memory is needed to
store the factored A. In larger arrays, the O(N?) time re-
quired for a back substitution may become considerable,
the need for O(N?) storage may become cumbersome,
and the O(N3) time required for the initial LU factor-
ization may become unacceptably large. When this is
the case, Eq. (14) can be solved by an FFT-accelerated
iterative method,'® which requires O(N log, N) time for
each system solution.

The FFT-accelerated approach is easily derived by not-
ing that if a conjugate-direction style iterative method
[we use GMRES (Ref. 21)] is used to solve the linear sys-
tem Ax = b, the residual r = b — Az, must be computed
at each iteration. If the number of iterations is much less
than N, the primary computational cost of each iteration
will be the computation of the matrix-vector product Az.
As A is dense, this will require O(N?) operations if done
directly, but the special form of A implies Az can be com-
puted in O(N log, N) operations by using the FFT.13

The convergence of GMRES can be accelerated by ap-
plying the method to solving the preconditioned prob-
lem APy = b and then computing ¢ = Py. If P is close
to A~! the convergence of GMRES will be rapid. One
approach!? is to define A to be the part of A correspond-
ing to self and nearest-neighbor inductances, and then
set P~! = A. A more effective preconditioner can be
constructed by exploiting the fact that A is constant in
Eq. (14) at each time step.

To derive this preconditioner, let S denote the dis-
crete sine transform operator and let X. denote an op-
erator that discards off-diagonal matrix elements less
than or equal to € times the smallest diagonal ma-
trix element. Then an effective preconditioner is P, =
ST[X(SA1ST)]S for some ¢, as the matrix SA~1ST is
nearly diagonal.!® Clearly P, = A~!, which gives excel-
lent convergence but is costly to apply at each iteration,
and P; is almost A™!. A choice of € = 103 results
in GMRES convergence in few (4-5) iterations and also
yields a very sparse P, so each iteration is computation-
ally inexpensive.

SA~1ST and therefore P., can also be computed in an
efficient manner. Column i of SA™!S7 can be obtained
by solving the system

SAST:B,' =e€;, (15)

where e; is the ith unit vector and z; is the ith column
of SA~'ST. This system can be solved by an FFT-
accelerated iterative method in roughly O(N log, N)
time, so that the time to compute P. is roughly
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O(N?log, N). Since each column z; can be calculated in
turn and small elements discarded, the storage required
for computation of X.(SA~1S7) is substantially less than
the O(N?) memory necessary to store the full A~1. For
a 95 x 95 array, with e = 1073, about 2 x 10* elements
are retained in X.(SA~1ST), a factor of 2 x 10~2 fewer
than in the full factored A.

Finally, we note that it may be the case that the under-
lying system of ordinary differential equations [Eq. (12)]
is stiff,2? particularly for when the system is large, 3. is
small, or A} is large. In this case stiffly-stable implicit
integration schemes are more efficient and robust, but
require the solution of a nonlinear system of equations
at each time step. The nonlinear systems are generally
solved using Newton’s method,?® which results in a sys-
tem of linear equations to be solved at each Newton it-
eration. Because these linear systems involve the dense
matrix A, and are different at each Newton iteration (and
therefore at each time step), solution by direct LU fac-
torization is inefficient as the computation time will be
O(N3) for every timestep. Again, an FFT-accelerated
preconditioned iterative technique can be used to solve
these system. The details of implementation are further
discussed in the Appendix.

In all cases, the order and stepsize of the integration
formulas are chosen automatically to maximize the step
size, while restricting the estimated integration error per
step to be less than a specified error tolerance. We have
generally required the integration error per step to be
less than 10™* in the normalized units of Eq. (11). The
details of implementation of our integration scheme are
similar to Refs. 24 and 25.

III. RESULTS

We have computed the time-averaged current-voltage
characteristics of Josephson-junction arrays subject to
combined dc and ac currents for a variety of ac current
amplitudes, frequencies, and screening lengths A,. A
current I = Iyc+1I,. sin 2nvyt was injected uniformly into
each node along one edge of the array. The dc current
Iy was stepped in intervals of at most 0.01 I, (per node).
We have generally taken zero initial conditions in all vari-
ables, which is the ground state for an array with no ap-
plied current, in zero field, at zero temperature. Several
simulations were performed with random initial condi-
tions and no change in the results was observed. At each
dc bias point, the array was simulated for about 100 ac
cycles to let transients settle, and then the time-average
voltage U across the array was computed over an interval
T. Generally T =~ 100/v; (100 ac cycles), except that
when a state with periodicity T = 1/vy, 2/vt, or 3/vr
was found the voltage was extracted from one period of
the array average voltage wave form. More precisely, the
instantaneous average voltage across the array V(t) is

V(t) = Ni, § v (16)

where the sum is taken over all junctions i parallel to
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the direction of applied current, and Ny is the number of
junction lines parallel to the current (Ny = N + 1 for an
N x N cell array). The time-averaged voltage across the
array is

T
=g [ via= — 4:00)] -

27rT Z [#:(T

igi || 1
(17)

A. Subharmonic Shapiro step structure

In Fig. 1 we show representative current-voltage char-
acteristics of an overdamped (3. = 0) 11 x 11 cell array in
zero applied field, with the ac frequency v; = 0.6v. and
amplitude I,. = I.. The first integer giant Shapiro step
is clearly visible at T/urN®, = 1 for all values of A} .
At high A, this is the only visible structure At lower
AL (AL less than the system size), 1 and 2 steps become
visible. At still smaller A, higher-order subharmonic
steps become visible, in Fig. 1 (a) most prominently at
R TET g, 2, and 3. The other notable effect of the
self fields is the decrease of the width of the integer step
at lower A}, a point to which we will return in the next
section. Figure 2 shows I-V curves for a higher frequency
(vr = 2v.) and driving current (I, = 2.0I.). The I-V
curves have a somewhat different shape, but the effects
on Shapiro-step structure are qualitatively similar: self-
field effects reduce the width of the integer giant Shapiro
steps, and introduce subha.rmonic structure. Note that
for these parameters, the 1 5 step persists to larger A; (at
least A; = 10) than for the parameters of Fig. 1.

Spectral analysis of the array voltage V(t) provides
some insight into the Josephson array dynamics on a
subharmonic step. In frequency analysis of the Joseph-
son array, we use an estimator V(v) of the spectral con-
tent of V'(¢) calculated by a periodogram technique.?® As

2
(c)
1.5¢
| AL =20
s J
s 1
S
0.5
% 1.5 2.5 3
Ipc/I.
FIG. 1. Zero-field I-V characteristics of ac-driven 11 x 11

cell array, 8. = 0.0, vy = 0.6v., f = 0.0, I.. = 1.0I.. The
horizontal axis is I4c, which is the dc current injected per
node at the edge of array. The vertical axis is time-averaged
voltage ¥ normalized to N®ov;. (a) AL = 0.1, (b) AL =1,
and (¢) AL = 20. Successive curves are displaced along the
horizontal axis by 0.75 units.
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Ipc/I.

FIG. 2. Zero-field I-V characteristics of ac-driven 11 x 11
array, 8. = 0.0, v; = 2.0v., f = 0.0, and I.. = 2.0I.. (a)
AL =01, (b) AL = 2, (¢) AL = 10, and (d) AL = 20.
Successive curves are displaced along the horizontal axis by
1.0 units.

shown in Fig. 3, spectral analysis of the voltage across the
Josephson array reveals strong structure at the expected
subharmonic frequencies. The solid curve of Fig. 3 shows
the spectral content V(v) of the average array voltage
V(t) when the 11 x 11 array of Fig. 1(a) is biased on
the % subharmonic step. As expected, there are peaks in
V(v) only at v7/3 and its harmonics, indicating a process
with periodicity 3/v;. We have also examined instances
where a subharmonic step with finite slope is present,
indicating that the array is not completely phase locked
[e.g., part of the § step in Figs. 1(b) and 2(c)], in which
case the spectral function V (v) still exhibits subharmonic
structure, but with a background noise level several or-
ders of magnitude higher. The dashed curve in Fig. 3
shows V(v) computed when the array was biased on the
1 step of Fig. 1(b) at a point where the array was not
precisely locked to the applied current. This behavior in-
dicates a weak tendency for the array to phase lock to the
oscillating driving current, as we would expect to occur
for the subharmonic steps as A, is increased.

10
10
5
10
- SR
= o
10 1
-5 Wﬂ\'\ ]\‘
10 ]
0 0.5 1 . 2
v/ve
FIG. 3. Spectrum analysis V () of the array average volt-

age V(t). The solid curve is computed on 1 step of Fig. 1(a).
The dashed curve is computed on % step of Fig. 1(b).
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By examining the configurations of vortices and flux
in the array, it is possible to make a rough description of
the vortex motion on the subharmonic steps. We define
the vorticity function n, in each cell to be

1. - @
n, = Mo+ — 18
v 2w o’ (18)

where the mesh matrix M represents performing a di-
rected sum over the gauge-invariant phase differences of
the junctions comprising the cell and ® is the total flux
(applied and induced) through the cell. In defining the
vorticity we use phase differences é, which are obtained
from ¢ by requiring ¢ to lie in the interval [—m, x| [if we
do not use these restricted phase differences in the sum,
then by Eq. (11c), n, = n, which provides no informa-
tion]. Our definition of the vorticity is essentially the
same as that of Ref. 27. For vortices, n, = 1, and for
antivortices, n, = —1.

In general, in an N X N array in zero field, we find that
the (subharmonic) 1 Shapiro steps result from IV vortices
and antivortices moving across the array and annihilat-
ing in the interior, with this process having a period k
times the period of the ac drive. The precise motion of
the vortices, however, depends on A, and k. On the in-
teger steps (k = 1), for all A, we find that on each ac
cycle one column of N vortices and one column of N an-
tivortices move from opposite edges of the array to the
center, where they annihilate. A typical instantaneous
vortex configuration is shown in Fig. 4(c).

The mechanism for the zero-field % steps (k = 2), on
the other hand, is dependent on A, . We can distinguish
three separate regimes: A\; > N, N > A, > 1, and
AL < 1. For approximately A; > N, no subharmonic 1
steps are observed. In the small arrays, for N > A, > 1,
on every other ac cycle columns of m (m is about N/2)
isolated vortices move across the array and annihilate
with antivortices entering from the opposite edge. On the
alternate ac cycles, N —m vortices and antivortices cross
the array, so that the net effect is to move NV vortices (an-
tivortices) across the array in a time of twice the period
of the ac drive. Figures 4(a) and 4(b) show typical in-
stantaneous vortex configurations on each part of the cy-
cle. In this particular state [corresponding to vy = 2.0v,,
AL = 2.0, I, = 2.0, as in Fig. 2(b)], seven vortices and
antivortices have entered from the edges, and annihilate
in the center. Then, four vortex—anti-vortex pairs form
in the center of the array at the interstices of the pattern
formed by the seven vortex—anti-vortex pairs that just
annihilated. These sets of four vortices (antivortices) col-
lide with a column of eleven antivortices or vortices that
enter from the array edge, to reproduce the original con-
figuration of seven vortices, the entire process having a
period twice that of the ac drive.

In contrast, when A} < 1, a column of N vortices
moves across the array to annihilate with a column of
N antivortices moving in from the opposite edge, just as
on an integer step [Fig. 4(c)], except that the motion has
period 2/vy. The mechanism for the higher-order steps is
similar; i.e., on the % step a column of N vortices and one
of N antivortices move across the array and annihilate
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(c) (d)

FIG. 4. (a) Typical instantaneous vortex configurations in
arrays. The white squares are vortices (moving left to right)
and black squares are antivortices (moving right to left). Cur-
rent flows from top to bottom of array. (a) Vortex configu-
ration on zero-field subharmonic % step for A, > 1 in small

arrays: first part of cycle. (b) Vortex configuration on zero-
field subharmonic % step for A, > 1 in small arrays: second
part of cycle. (c) Vortex configuration on zero-field subha-
monic steps for A; < 1 and integer giant Shapiro steps for
all A;. (d) Vortex configuration on % step in 63 x 63 array,
AL =4, 8. =0,v =2, I, = 2I., and I3 = 1.211.. For

this array, vortex configurations on other steps are similar.

[the instantaneous vortex configuration are again similar
to Fig. 4(c)].

In our simulations of larger arrays, this latter sort of
vortex motion, where the vortices move in columnlike for-
mations, seems to be predominant at all A, . Figure 4(d)
shows an instantaneous vortex configuration for a 63 x 63
array, with A} = 4, biased on the % subharmonic step.
Possibly the ratio A /N, which will affect the force felt
by vortices at the edge of the array (see the next sec-
tion), determines the configuration of the vortices that
enter the array.

In Ref. 2 experimental evidence was presented which
indicated that the subharmonic steps were associated
with the self-fields in the array. It was proposed that

the % step was due to the nucleation of a commensurate

f= % vortex state at the edges of the array as a result
of the self-field of the array currents. In Ref. 3, how-
ever, subharmonic steps were observed in arrays where

the induced field strength would be too weak to nucleate
an f = % or —:13— vortex state at the edges of the array.
The simulations of Ref. 11, using a truncated inductance
model, demonstrated subharmonic ; steps arising from

inductive effects, but apparently no induced commensu-
rate state was observed. Our results with the full induc-
tance model clearly indicate the presence of the subhar-
monic steps, even at fairly weak self-field strength, but we
find no evidence for the formation of any special vortex
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states near the edge (in fact, as discussed above, vortices
moving in the array do not even always nucleate at the
edge). Arrays that exhibit spatial symmetry about the
direction of the applied current do not exhibit subhar-
monic response;2® it now appears likely that the self-fields
are one possible symmetry-breaking mechanism, which
allows subharmonic array response.

B. Screening effects

Some other effects of the self-fields on the ac response
of a Josephson array can be explained in terms of “screen-
ing” effects due to self-fields. Including inductive ef-
fects in the description of the Josephson array introduces
the characteristic length scale A;. A, determines how
quickly magnetic excitations decay in the array, and thus
establishes the interaction range of vortices and junctions
when self-fields are considered. We show that the ability
of an array to phase lock to the applied current is limited
by how small XA, is relative to the size of the array.

As an example of how the I-V characteristics change
as the system size increases with A, fixed, consider
Fig. 5(a), which shows the I-V characteristics of a 63 x 63
array with parameters similar to the array of Fig. 1(b)
(AL =1, v = 0.6v,, I,. = I, zero applied field). Steplike
structure is clearly visible at 1 and 2, as in the small ar-
rays. A notable difference between Fig. 5(a) and Fig. 1(b)
is the shape of the curve around the integer step. The
I-V characteristic of Fig. 5(a) is rounded on the rising
side of the step, so that the region over which the array
is phase locked on the first integer step is considerably
reduced.

For a possible explanation of the step-width reduction,
first consider how an applied current redistributes itself

under the influence of the self-fields. The self-consistently
computed distribution of a small dc current in the ar-
ray can be obtained by setting the time derivatives of
Eq. (11) to zero and solving the resulting nonlinear sys-
tem of equations using Newton’s method.!® Inspection of
current variables in time-dependent simulations indicates
that the behavior of larger amplitude and time-varying
applied currents is similar. The bold solid curve of Fig.
5(b) shows a cross section of a computed current distri-
bution in a 63 x 63 array, with A; = 2, in the absence
of vortices and applied field. The cross section is taken
along the direction perpendicular to the applied current.
The effect of the self-fields is to cause the current (super-
current or normal current) to bunch up near the edges of
the array. Note that as the current is injected uniformly
but is nonuniform in the array center, the current distri-
bution in the array also varies in the direction parallel
to the direction of current injection. Effectively, different
junctions in the array are driven with differing applied
currents, reducing the ability of the whole array to lock
to the ac driving current. As the degree of inhomogene-
ity of the distribution of applied current increases with
decreasing A | /N, we expect the ability of the array to
phase lock to also decrease as A /N becomes small (al-
though due to the discrete nature of the array, there may
be a saturation for A; < 1). This indicates that self-
field effects are very important in determining the I-V
characteristics of large arrays, even where relatively weak
(AL > 1) induced fields are present.

A possible measure of the strength of phase-locking in
the array is the range of dc bias currents Aly., at fixed
frequency vy and ac drive I,., over which the array is on
a Shapiro step. Figure 5(c) shows the range of dc bias
current Al over which square arrays of various sizes N

FIG. 5. (a) I-V characteristic of 63 x 63
Josephson-junction array, Ay = 1, vy =
0.6v., I.. = I, B = 0. (b) The distribution
of current in a cross section of a 63 x 63 array,
AL = 2. Bold curve: all inductances. Light
solid curve: only self-inductances included
in calculating induced fields. Light dashed
curve: self- and near-neighbor-inductances

included. All curves normalized to the (uni-
form) junction current which would flow at
AL = oo. (c) The width of integer giant
Shapiro step as affected by self fields. AI/I.
is width of first integer giant Shapiro step

(=) 3 (v)
1.5 \
2.5 |}
8l
& 1 € 2t |\Truncated Matrix
2, 3 ;
N 51.5
A =l
0.5 21 All Inductances
Q
g
Bo.5
L el -2
% 0.5 1 %% 0 20
Ipc/I. Junctions from array center
d
(c) y— (d)
’%“)k
0.6 «
1.5
0.5 x o
o
0.4 x 2
= S 1
~ 0.3 x S
“ - =
0.2 x o5
x
0.1 x
% 30 40 60 80 100 % 0.5

for N x N arrays, vy = 0.6vc, Iac = I, and
Be = 0. N varied from 7 to 80, A, varied
from 1.0 to 5.0 for small arrays, A, = 1.0
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and penetration depths A can lock on the first integer
step when vy = 0.6v.,I,. = I.. We define Al4. to be
the range of dc currents over which the array voltage is
at the Shapiro step voltage and precisely periodic. This
corresponds to the precisely flat region of the I-V char-
acteristic [about 0.71. to 0.91; in Fig. 5(a)]. The range
of phase-locking AI/I. decreases with increasing N/A |,
as would be predicted by the preceding argument. Our
calculations appear to be in general agreement with the
experiments of Refs. 1 and 8.

These general observations are in accord with the ex-
perimental observations of Ref. 14, where it was indi-
cated that inductive effects should not be too large in
order to observe coherent array oscillations. The dashed
curve of Fig. 5(d) shows a computed I-V curve for an
array with parameters similar to Refs. 12 and 14. In
contrast to the calculations of Figs. 1 and 2, which were
intended to model heavily overdamped superconductor—
normal-metal-superconductor (SNS) -type arrays, the
superconductor-insulator-superconductor (SIS) arrays of
Refs. 12 and 14 generally have non-negligible junction
capacitance, which we have taken into account when cal-
culating Fig. 5(d).

An obvious way to minimize self-field effects is to place
a ground plane under the array, as may also be present
in fabricated SIS junction circuits (e.g., Refs. 12 and 14).
An ideal ground plane is easily treated in the formalism of
Sec. II by using image currents to modify the construc-
tion of the inductance matrix. When the ideal ground
plane is placed 0.1p away from the array, as shown in the
solid curve of Fig. 5(d), some of the deleterious effects
of the self-fields are eliminated. Compared to the ar-
ray without a ground plane, shown by the dashed curve,
the first integer step is wider and sharper, indicating a
greater tendency for the junctions in the array to all
phase-lock to the applied current. For these parameters
(11x11array, 8. = 0.7,A) = 0.1,v1 = v, Ioc = I..), how-
ever, the subharmonic % step remains in the presence of
the ground plane (presumably due to the finite capaci-
tance of the junctions), although it becomes smaller.

C. Approximate inductance models

An issue related to the screening effects discussed in
the preceding section is the effect on the calculated array
response when an approximate model is used for the in-
ductance matrix, as the simulated magnetic response of
the array changes when the inductance matrix is trun-
cated. In order to reduce the computational complex-
ity of including induced magnetic fields in simulations of
Josephson junction arrays, it is common!®16:1! to con-
sider a truncated?® inductance matrix. The full mutual
inductance matrix is a complete representation of an inte-
gral formulation of Maxwell’s equations for the 2D array
in free space,!® but a truncated matrix does not repre-
sent the full set of electromagnetic interactions. In this
section we shall demonstrate that, particularly under cur-
rent bias, models for the array using the truncated induc-
tance matrix can result in computed currents and fields
which are physically unrealistic.
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We discuss two truncated models for the form of the
fields induced in the array. The first model is the self-
inductance approximation, where the induced field in a
cell is due only to the mesh current circulating in the
same cell (i.e., the matrix L = ML’MT is diagonal,
with diagonal entry the self-inductance L,). The self-
inductance approximation corresponds to the case where
the fields have components only in the direction per-
pendicular to the plane containing the array.!3:'® The
second model includes near-neighbor corrections to the
self-inductance, where the induced field in a cell depends
on the mesh current flowing in it and the four nearest-
neighboring cells. In addition to specifying the form of L,
the form of the fields directly induced by the applied cur-
rents (which in the full inductance case would be M L*1,)
must be specified.

There are two approaches to modeling the fields in-
duced by the applied currents. We may truncate the
matrix M LY, retaining terms that would contribute to
the self- or near-neighbor-inductance coefficients. A more
consistent approach to modeling the fields induced in the
array is to consider the array as extended by one cell,
with the applied currents flowing in the fictitious bor-
der cell. Thus in the self-inductance case the induced
fields depend only on the mesh current flowing in the ar-
ray, ®*d = [, I,,, with no contribution from the applied
currents I, (although of course in the self-consistent cal-
culation I, is implicitly dependent on I;). When near-
neighbor mutual inductances are included, the fields in-
duced by I, are non-zero only in a cell at the edge of
the array and are given by the product of the near-
neighbor-inductance coefficient and the current in the
fictitious cell. Thus at the edges of the array, in the near-
neighbor-inductance case these fields are proportional to
+1., where I, is the externally applied current.

Figure 5(b) shows the effect of the inductance model
on the distribution of an applied current in the Joseph-
son array (63 x 63 array, with A\; = 2). The solid
bold curve shows a cross section of the computed cur-
rent distribution when all inductances are included in
the model. After a fairly rapid decrease near the edge,
the current density becomes essentially constant in the
center of the array. In contrast, when the inductance
matrix is truncated, as shown by the light curves of
Fig. 5(b), the current distribution falls off very rapidly
near the edge of the array and becomes essentially zero in-
side. When modeling the self-fields by using only a single
self-inductance term (light solid curve), the characteris-

tic length changes to Ay ~ /\1/ 2, and excitations decay
exponentially rather than algebraically. As discussed in
Ref. 13, including small numbers of off-diagonal terms in
the inductance matrix alters the penetration depth, but
does not change the functional form of the current distri-
bution, as can also be seen from the light dashed curve
of Fig. 5(b). For example, it can be shown that the pene-
tration depth changes from A% in the self-inductance case
to A'? = A% /(1—4M/L) when near-neighbor-inductances
are included, where L and M are the self- and near-
neighbor-inductance coefficients, respectively. The cur-
rent distributions are qualitatively different in that for a
fixed A), as N — oo, when the truncated matrix is con-
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sidered, the region of the array more than a few A, from
the edges will carry essentially zero net current, whereas
when the full matrix is considered there will always be
a finite net current in this region.3° For example, even
in a 511 x 511 cell array, with A, = 0.1, the calculated
current in the center of the array is 75% of its value when
A1 = o0o. Thus, the treatment of induced fields by using
the approximate, truncated inductance matrices results
in simulation of arrays with unrealistically strong screen-
ing properties.

The effect on the array’s I-V characteristics of truncat-
ing the mutual inductance matrix is shown by the curve
of Fig. 6. The I-V curve of Fig. 6 was computed using
the same parameters as the curve of Fig. 1(b) but with a
truncated inductance matrix (only a self inductance was
included in this model). The I-V characteristic has a
considerably different form: the critical current is sup-
pressed, the width of the integer giant step is reduced
and the curve is generally more “smeared out.” Because
of the exponential form of the current screening, when
AJ < N, there is very little current in the array center as
compared to the edges, so the range of dc current biases
over which the entire array can phase lock to the applied
current is reduced. In contrast, when the full inductance
matrix is considered, there is always some current in the
interior of the array, so the Shapiro step structure persists
to much higher A; /N. Note that subharmonic structure,
as indicated by the % step, is still evident in this curve,
even though only a self-inductance was used to calculated
the induced fields.3* We have observed similar differences
between the I-V characteristics of arrays where the full
inductance matrix was used in the simulation and arrays
where self- and near-neighbor inductances were included,
indicating that including near-neighbor inductances does
not substantially improve the self-inductance approxima-
tion.

The effect of the choice of inductance model can also
be seen in the configuration and motion of vortices in the
array. When only a few inductances are included in the
calculation the driving current is more severely bunched
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FIG. 6. Zero-field I-V characteristics of ac-driven 11 x 11

cell array, 8. = 0.0, v; = 0.6v., f = 0.0, I,c = I;,AL =1,
with only a self-inductance included in calculating the induced
fields. Axes have been chosen to provide the same scales as
Fig. 1(b). Note the subharmonic step at 2.
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up near the edge, and so vortices are easily pulled into
the array, but once they are a few penetration depths

Ay~ /\1/ % from the edge the vortices are nearly unaf-
fected by the driving current. When the array is wider
than a few A, the force acting on vortices is strong near
the edge but very weak in the center. Vortices may be
quickly pulled into the array, but then sluggishly move
across and bunch up in the interior before annihilating.
At this point, there is essentially no interaction between
widely separated junctions. In contrast, when the full
inductance matrix is used in the calculation, the applied
current can accelerate the vortices across the entire width
of the array, so that single columns of vortices and an-
tivortices quickly cross the array and annihilate in the
center, as in Fig. 4(d). When the full inductance matrix
is used in the calculation, occasionally two columns of
vortices and antivortices are observed to exist simultane-
ously in very large arrays, but never do we observe the
high vortex—anti-vortex densities present when using the
approximate inductance models.

IV. CONCLUSION

We have shown that self-field effects are important in
determining the behavior of Josephson-junction arrays
driven with ac currents, even when the self-fields are
fairly weak (for example, arrays with A; = 10 can still
exhibit subharmonic Shapiro steps under some bias con-
ditions). In zero magnetic field, self-field effects can pro-
duce subharmonic Shapiro steps in Josephson arrays: %
steps are the strongest, but higher-order steps, such as
at % have also been observed. Our results suggest that
any detailed understanding of the subharmonic response
of Josephson-junction arrays must consider self-field ef-
fects. A more detailed study of such characteristics as,
for example, the frequency and bias-current dependence
of the subharmonic step widths, is desirable.

Strong self-fields can reduce the strength of phase lock-
ing to an external oscillating current drive, as evidenced
by a reduction in the range of biases over which the
array is on an integer giant Shapiro step. We expect
many of the conclusions of this paper to apply to the
case of mutual phase locking in the array as well. It is
well known,3! for example, that 1D arrays with short in-
teraction lengths exhibit weak phase-locking properties.
Thus, in practical applications of 2D Josephson arrays,
it would be desirable to minimize self-field effects. How-
ever, an accurate description of the array dynamics must
include mutual inductance interactions between all cell
pairs in the array.
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APPENDIX: TREATMENT OF STIFF SYSTEMS

When the system of differential equations describing
the Josephson array is stiff, simulations can be per-
formed more efficiently and robustly if time discretiza-
tion is performed using stiffly-stable backward differ-
ence formulas.?2:32:3% Such methods can be directly ap-
plied to the differential-algebraic system of Eq. (11).
In general, time discretization of an ODE of the form
dz/dt = f(z,y,t) by the backward difference formulas
given a constraint g(z,y) = 0 leads to nonlinear systems
of the form

Z—af(@,y)—r=0, (Ala)

g(j’?}) =0, (Alb)

where z, y are the solution vectors, &, ¢ are numerical ap-
proximations to z,y at a specific timepoint, a is a con-
stant, and r is some constant vector, which may depend
on approximations to = at previous timepoints. New-
ton’s method?3 applied to solving a nonlinear system of
this form consists of the repeated iteration

7@ 5% [éf"] - [—f’“ +af(&*,§*) + ]

69" —g(&*,9*)
with (A2)
gkt = gk 4 53k
g+ = gk + 6g*
where J is the Jacobian matrix,
I-a% —a¥
Oz | .4 - 8
~k aky _ k gk Y |zk gk
J(&%,9%) = o9 =y og =y (A3)
oz &k gk Oy &k Gk

I is the identity matrix, and the superscript k& indicates
evaluation of a quantity at Newton iteration k. The iter-
ation is terminated when Eq. (Al) is satisfied to within
some specified tolerance. Applying the general forms of
Egs. (A1)-(A3) to the DAE system of Eq. (11) leads to
the iteration
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I =8I 0 dg* ft
¥C I(1+7) —yMT| | 6v* | =— | fk (Ada)
M 0 A SIX, f¥

vkt = ok ook TP = 1k 4 6IE,

(Adb)

¢k+l — ¢k +5¢k

where the matrix C in the Jacobian is diagonal with en-
tries given by

Cii = cos ¢f, (A5)
v = 2ma/B,, and
f{‘ —¢F + 2mav® + 7,
fzk = —Uk+’7(MTI,’;t—SiIl¢k —'Uk+I,)+'I'2
| | -iMg* + 2 (AT + MARL) — 2n(n - )]
(A6)

Eliminating the variables §¢* and év* from Eq. (A4) by
performing block Gaussian elimination results in the re-
duced system

[;TA + MDMT] [6I%] = [f3 - MD (fz + 1,;: h)] ;

(A7)

where the matrix D is diagonal with entries

D" —_ 72ﬁc
1 2 .
¥2Bccos; + v+ 1

The application of the iterative algorithm (GMRES) to
solve Eq. (A7) then proceeds as described in Ref. 13. To
construct a preconditioner in which accelerates GMRES
convergence, we simplify Eq. (A8) by assuming ¢ = 0.
An effective preconditioner P~! ~ [;LA + MDMT] is
then given by

(A8)

- 2
iv— T MM

Tl Bty +1

P can be computed in O(N log, N) time by use of fast
sine transforms.
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