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Abstract

This thesis describes a method for the efficient calculation of the capacitances of general
three-dimensional conductor systems. The method differs from other techniques primarily in
its greatly reduced algorithmic complexity, The linear system arising from the discretization of
the associated potential problem is solved using a rapidly convergent iterative method with the
iterates calculated using a fast multipole algorithm. For a system of m conductors leading to an
n X n linear system, the method requires computer time that scales nearly as mn and storage
nearly proportionat to n. In the conventional approach computer time scales as n% and storage
as n?. The resulting savings in computer time and memory allow accurate three-dimensional
capacitance calculations to be integrated into an iterative design process,
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Introduction

The need for fast three-dimensional capacitance calculation is particularly strong in integrated-
circuit and circuit-packaging design. Capacitances of complicated conductor geometries are
used to estimate capacitive loading and coupling effects both on and off chip {108, 29]. Per-
formance analyses of dynamic random access memory (DRAM) circuits [92, 68), GaAs metal-
semiconductor field-effect transistor (MESFET) circuits [48] and integrated circuit package
connectors [143, 142, 118), for example, hinge on the extraction of parasitic capacitances from
conductor geometries that must be treated in three dimensions. In other cases, explicit ca-
pacitances that are part of an integrated-circuit design must be evaluated. These applications
include binary-weighted-capacitor-array analog-to-digital converters [SO, 124), microfabricated
motors [81, 70) and various sensors that measure pressure and humidity with on-chip capacitive
elements (64, 129, 25, 116). Also, certain models of microstrip transmission line discontinuities
are based on three-dimensional capacitances that must be calculated from conductor geometries.
Such analyses typically assume only quasi-transverse-electromagnetic {quasi-TEM) mode exci-
tation {120, 119, 121, 137] or include hybrid modes [104] and are computationally less involved
alternatives to full-wave simulations for lower frequencies. Still other areas of engineering analy-
st& that employ three-dimensional capacitance calculations are surface-acoustic-wave-transducer
{39, 101}, fluid-flow-sensor [2] and electric-machine [24, 102] design.

This thesis describes a method for the efficient calculation of the capacitances of general
three-dimensional conductor systems. The method differs from other techniques primarily in its
greatly reduced algorithmic complexity. The resulting savings in computer time and memory
allow accurate three-dimensional capacitance calculations of complex structures to be integrated
into an iterative design process.

The fast capacitance calculation algorithm described here is based on the work of Rokhlin
[107] and Greengard [52, 54]. The approach involves solving the linear system arising from the
discretization of an associated potential problem using a rapidly convergent iterative method,
with the iterates calculated using a fast multipole algorithm. For a system of m conductors
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leading to an n X n linear system, the method requires computer time nearly proportional to ﬁm

and storage nearly proportional to n. For comparison, in the most commonly used approach

computer time scales as > and storage as n?2. -
Chapter 2 begins with a discussion of the capacitance-calculation potential problem and its

common mathematical formulations. It then presents standard discretization techniques for the.

various formulations, and concludes with a description of the formulations and discretizations
used in earlier work. Chapter 3 presents the major contribution of this thesis, a method for
greatly accelerating the solution of the discretized problem. The chapter first describes the
particular potential-problem formulation and discretization used in the thesis to caiculate the
capacitances associated with ideal conductors in a homogeneous dielectric. It then develops
a preconditioned, multipole accelerated iterative method that solves the discretized problem
using substantially less computer time and memory thar the standard approaches. The chap-
ter concludes with a description of how the acceleration method can be extended to problems
with several regions, each with a different permittivity. Chapter 4 evaluates the algorithm de-
veloped in Chapter 3 by constructing an implementation of the algorithm and examiring the
implementation’s convergence and error properties, algorithmic complexity, and performance in
actual capacitance calculations. Four appendices follow the conclusion and future work chap-
ter. Appendix A presents useful facts about surface-layer potentials, the details of the multipole
algorithm transformations are given in Appendix B, Appendix C examines details of the adap-
tive multipole algorithm and Appendix D gives the two-dimensional, integral-approximatior
formulas used for problems with high permittivity regions.

Much of the work presented in this thesis exists in published form. The basic multipole accel-
eration technique (Sections 3.2.1, and 3.2.2) is described in [88, 87], the adaptive (Section 3.2.3)
and preconditioning (Section 3.2.4) enhancements are presented in {83, 84], extensions of the
basic algorithm to problems with multiple dielectrics (Section 3.3) are treated in [91, 90, 89), and
the method’s algorithmic complexity (Section 4.3) and extensions to problems with different
boundary conditions are examined in [85, 86).

1R
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Approaches to the Capacitance
| Problem

A capacitance-calculation method begins with one of the mathematical formulations of the
capacitance problem described in Section 2.1. Discretization using one of the techniques of
Section 2.2 then yields equations which are solved for the capacitances. Section 2.3 classifies
previous capacitance-calculation work in terms of their formulation and discretization methods.

2.1 Mathematical Formulation of the Capacitance Problem

Consider a system of m ideal conductors in free space!. The capacitance of such a structure
car be summarized by an m X m symmetric matrix C. The i-th row of C has a positive diagonal
entry Cj;, representing the self-capacitance of conductor i, and negative off-diagonal entries Cj;,
representing coupling between conductors i and §,§ =1, 2,..., m, j # i.

The capacitance of an ideal two-terminal capacitor can be measured by connecting it to a
one volt source and observing the charge on the positive plate. Since the capacitance is equal to
the positive-plate charge divided by the capacitor voltage, the charge is numerically equal to the
capacitance. The exteasion of this procedure to the many-conductor case amounts to raising
~one condactor to one volt, grounding the rest and calculating the charge on each conductor.
With conductor j at one volt and the rest grounded, C;; is the charge on conductor i, { = 1,
2,..., m. Repeating the procedure m times gives the m columns of C.

The capacitance matrix calculation for m conductors is therefore equivalent to solving for
the conductor charges in m potential problems. In these problems, the conductor potentials are
specified and the potential must satisfy Laplace’s equation in the region between the conductors.
Calling the conductor surfaces S, and the free space between them V, leads to the standard

*Section 3.3 extends the formulation so that it is applicable 1o conductors sarrounded by arbitrary, piecewise-
constant dislectric regions.
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exterior Dirichlet problem formulation for the potential 1,

Vi(z) = 0, zEV; (2.1)
¢(3) = f(“"“)! T € Se; (2.2)
hm, ¥E) = 0. | (2.3)

Here f fixes the conductor potentials, either one or zero, and }l - )iz is the Euclidear norm.

The full exterior Dirichlet problem solution is ¥ throughout V. For capacitance calculations
only the total induced charge on each conductor, given by normal derivatives of Y on S,
is required. The techniques of Section 2.1.1 are somewhat indirect since the charge totals
are calculated by first calculating the electric field E = —~Vy from the complete Dirichlet
problem solution and then applying Gauss’s Law to each conductor. The integral equation
formulations of Section 2.1.2 are simpler since they relate the induced charge directly to the
specified boundary potential f(z) without explicitly solving (2.1-2.3).

2.1.1 Indirect Formulations

This section describes how the exterior Dirichlet problem (2.1-2.3) can be formally solved
by Green’s function techniques, separation of variables, energy mirimization or dipole-layer-
density methods. Once ihe potential ¢ throughout V is found using one of these methods, the
total charge on conductor i, Q;, is calculated using Gauss’s Law applied to any surface, W,
enclosing conductor i,

G=cf [ (V% - n) aw.

Here n; is an outward normal to the surface W;. For the problem with conductor j at unit
potential, ; is numerically equal to the capacitance matrix entty C;;. Because the charge Q;
is calculated from the full exterior problem solution, rather than directly from the boundary
conditions (2.2-2.3), the methods of this section are called indirect methods.

Green’s Function Techniques

The classical Green’s function technique for the solution of (2.1-2.3) starts from Green’s
Theorem applied to the potential 1 and the appropriate Dirichlet Green's function, Gp(z, z")
(61, 46, 153],

#o)= [[] weente v 4o [ [Gote 9T - 9200 gy

Here p represents charges in the volume V and n’ is an outward normal to the conductor
surfaces,

By definition, Gp(z,z’) is the potential at point z produced by 2 unit charge at point z'
with all the conductors at zero potential. The Green’s function includes the effects of charge
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induced on the conductors and is therefore a function of the problem gecaietry. Since there is
nro volume charge p and Gp(z,z") = 0 for =’ € S., Green’s Theorem reduces to an expression
for the potential in V in terms of the specified potentials,

¥(z) = -—eo// Wz )669(:::::)
= o[ Je )aG"(’ =) as;, (2.4)

where f is as in (2.2). In general, ﬁndmg the geometry dependent Gp(=z, z") is difficult, ma.kmg
this approack impractical.

Separation of Variables

To solve (2.1-2.3) by separation of variables, the potential is represented as the product of
three functions, each depending on only one coordinate [61, 46}. In Cartesian coordinates, for
example, substituting the assumed form

¥(z,y,2) = X(2)Y(v)Z(z),

reduces (2.1) to three independent ordinary differential equations for X (=), Y(¥) and Z(z).
The special nature of Laplace’s equation ensures that the product representation leads to three
separate equations for eleven different coordinate systems [61]. The ordinary differential equa-
tion solutions form a parameterized family of X (z)Y (y)Z(2) products that satisfy (2.1) but not
necessarily the boundary conditions (2.2-2.3).

The success of the method hinges on the ability to adjust linear combinations of the product
solutions to match the boundary conditions. By construction, each component of the solution
corresponding to a particular coordinate can be adjusted independently of the others. In order
to exploit this property, the problem’s boundaries must align with surfaces that correspond to
one coordinate being held constant. Thus separation of variables is difficult to apply when the
problem does not align neatly with a separable coordinate system.

The class of separation-of-variables methods known as fast Poisson solvers, however, can
treat irregular boundaries [60, 17). Unfortunately, these methods adjust the solution to match
the boundary conditions using the capacitance matrix for the discretized boundary. Calcu-
lating the boundary element capacitor information is equivalent to calculating the conductor
capacitances. Thus the fast Poisson solver approach is not practical.

Energy Minimization

The 1otal electrostatic energy stored by the potential #, a solution to (2.1~2.3), is [61)
ww)=2 [[[ 1ve=igar- (25)
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Dirichlet’s principle states that the potential 1 that satisfies the boundary conditions (2.2-2. 3}
and minimizes W is the solution to (2.1-2.3). The exterior Dirichlet problem can therefore be
formulated as a minimization of W () over the set of admissible potentials f46).

Dipole Layer Method

The separation of variables technique leads to harmonic series expansions for the potential,
In the case of the multipole expansion of Section 3.2, the series amounts to a combination of
the fields due to progressively larger constellations of charges, beginning with a single charge (a
monopole) and two charges together (a dipole). Closely related to this approach is superposing
the potentials due to a single charge at the origin and dipoles whose strength and position
are allowed to vary [82, 63, 69, 51]. Like the series solution, each term in the superposition
is harmonic so the problem reduces to adjusting the strengths and positions to match the
boundary conditions (2.2-2.3).
If 2 dipole layer density p(z) replaces the conductor surfaces, then the potential in the free
space region V is given by the superposition integral (see also Appendix A)
cos(z — z', n’
¥=)= [ f Ka) 4“( ollz - z,ul oS (26)
Here ' is the outward normal to the surface S, at z’ and cos(a, B) is the acute angle between
a and §. Appendix A shows that the potential on the outside surface of the t;onductors is
!
W)= sonie) + [ [ we) = zzjﬁz)"“";' z€S..
In particular, since the potential on the conductors is giver by f(z),
fof
7@y = seum+ f [ Mo o= E i dS!, s €5 2.7)
It can be shown that this Fredholm equation of the second kind has no unique solution g
for certain specified boundary potentials f {82, 63, 69). As a consequence of the nature of the
Laplacian operator and the boundary condition at irfinity (2.3), the solution to (2.1-2.3) can
decrease as slowly as 1/||z{|2 as 2 goes to infinity, but no slower [126]. The potential due to a
dipole layer, however, always falls off as 1/}|z[j2, as (2.6) indicates. To mode! a possible 1/lzlf2
dependence, it is sufficient to use

neos(z — ', n') 1 ’
LT p— — f z')dS".
P¥(z) = /_/ #(z )47“0": |2 2eollzlz /S¢ #(z")
rather than (2.6). The added term corresponds to a charge at the origin. Proceeding as in the

previous paragraph gives
1 neos(z—zhn) o 1 /
o= 5k + [ | ) g e TSt~ e [

a Fredholm equation of the second kind for the unknown dipole layer density u in terms of the .
specified conductor potentials f. Unlike (2.7}, it can be solved for g given any f (82, 63, 69, 51].
After it is solved for # the potential in V can be calculated using (2.6).

u(z)dS, =zeb,,
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2.1.2 Capacitance Calculation witih Charge Layers

Conductor eurfaces may be modeled using surface-charge layers, an approach that is some-
times called the equivalent-charge formulation. In contrast to the techniques of the previous
section, the conductor surface-charge density is solved for directly without the use of Gauss’s
Law. The total charge on each conductor is then calculated by integration. Two approaches
are possible, a more general first-kind integral-equation formulation and a second-kind integrai
formulation, which is only useful for single conductor problems.

First-Kind Integral-Equation Formulation

If the conductor surfaces are replaced by a surface-charge layer ¢(z) then the potential is

given by the superposition integral [126)

, 1 |
¥@) = [ [ o) e (2:8)

Appendix A shows that the potential is continuous across the charge layer so that the potential

' 1 ¥l
'lb(z) = ./../Sc a(‘.': )mdsc, T € Sc-

Since the potential on the conductors is specified as f(x) in (2.2),

)= [ oS =€ *9)

on the surface is

This is a Fredholm integral equation of the first kind for the unknown surface-charge density
@ in terms of the known conductor potentials given by f. Since it relates f directly to o, the
calculation of the potential throughout V is avoided.

Second-Kind Integral-Equation Formulation

An integral equation of a different form can be derived from the same charge layer assump-
tion [126, 63]. The potential in V due to the charge layer is given by (2.8) so that the normal
derivative at a point z on the surface is

(=) _ 1
an = lim ] j a(z’ )8nm c (2.10)

where n is the surface outward normal at the point x, s is a point outside of the closed charge
layer surface? and ¥ is the potential outside of the surface. Applying Gauss's Law to the charge

layer gives

[3'!’:':1(4:) a(z)]
dn on

o(z) = €

*The procedure fails for infinitesimaily thin conductors but (2.9) stiil holds.
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Here t;,(z) is the potential inside the charge layer shell. Since the charge layer is to model a
conductor, ¥;, must be a constant so

a(z) = —¢

a—‘b-(;-l. (2.11)

With this substitution, Appendix A shows that (2.10) becomes

e = o) = —5ote) - [[ o)y

dreoflz — 2|3

so that

0'(::) / f o(z)EZ 20 yor (2.12)

4reoflz — z'Yi2

This is a homogeneous F}edholm integral equation of the second kind. Any charge layer
density shell o used to model a conductor must satisfy this equation. Since solving (2.12) is an
eigenfunction problem, ¢ is only determined up to 2 multiplicative constant, provided 1/2¢ is a
simple eigenvalue. For more than one conductor, 1 [/2¢o is a repeated eigenvalue, corresponding
to many lirearly independent o’s. The space spanned by these charge densities covers all the
solutions to the Dirichlet problem for any choice of conductor potentials. The specific charge
densities corresponding to one conductor at unit potential, the rest at zero, are difficult to

extract from this information.

2.2 Numerical Treatment of the Capacitance Problem

Exact, analytic solutions of the capacitance problem using the above formulations are only
possible for symmetric geometries. For general problems, approximate solutions must be ob-
tained using some discretization of the formulas. Solution of the algebraic equations resulting
from the discretization gives an approximate solution to the capacitance problem.

2.2.1 The Method of Weighted Residuals

For concreteness, this method is described as it applies to the first-kind integral equation

(2.9), :
= n
f(z) - /-/S‘ a(z 14,1.50']:‘. — z'!lzds';
The method of weighted residuals [31, 27, 43) approximates the unknown o(z) as a linear

combination of a set of n linearly independent expansion functions w;i(z) with weights a;,

o(z) =~ ia.—w,-(z). _ (2.13)

i=1

Substituting the approximation for the charge density into (2.9) gives the residual

B@)2 f(z)- [ f 3 (=) mcis;, (2.14)

Se =1
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which is zero when (2.13) holds exactly. For a well-conditioned problem, R is a good measure
of the error in the charge density approximation {2.13), ensuring that minimizing R leads to
similar reductions in the error. The minimization is carried out using a set of n test functions
t; whose inner products with the residual are set to zero. Using an inner product defined on

/ ./s ] a(z")b(z")dS",

/ /3 t(z)R(z")dS. =0, i=1,2,...,n, - (2.15)

which form an n X n linear system for the unknown weights a;. Solving the system gives
the approximation (2.13). The method of weighted residuals is also called solution by error
distribution principles [27), solution by projective methods [123] and the method of moments
[57, 69)].

Spéciﬁc choices for the expansion and test {unctions lead to various special cases of the
weighted-residuals approach. The methods are presented in ascending order of numerical com-

the solution space, in this case

gives n equations,

plexity.

Collocation
The residual R is forced to be zero at » points z; in the solution region,
R(z)=0, i=1,2,..., n
The corresponding test functions are
4(z) = 8(z - i),

where z; is the i-th collocation point. In the case of the capacitance problem the collocation
points are distributed over the conductor surfaces. Collocation js also called point collocation
or point matching.

Subdomain Method

The solution domain is divided into n subdomains, §;, i = 1, 2,..., n, and the integral of
the residual over each subdomain is forced to be zero,

/f_R(z)d.S‘;: 0, i=1,2....n
5,
The corresponding ¢-th test function is one inside the i-th subdomain and zero elsewhere,
1 S
t.'(J:) —~ re u.
0 otherwise.

Other names for the subdomain method include subdomain colloca.fzion and the pa.rtifion

method.



Galerkin Method
The test functions are identical to the expansion functions,
ti(x) = wi(z).
The inner product equation (2.15) becomes
//s‘ wi{z)R(x)dS. =0, i=1,2,...,n,

which forces the residual to be orthogonal to the space spanned by the exp: nsion functions.
Substituting the definition of the residual (2.14) gives

/ / wilz) [f(:c) Za, / ]s ‘ 4w£:ﬁ;(i o d.S‘;] dS. =0, i=1,2,..., n.

The integral muitlplymg the unknown a; in the i-th equation is the entry FP;; in the matrix
resulting from the Galerkin discretization,

/f wi(z) f(z)dS, = Za, Wy i=1,2,.

=1
o p; 2 ff wi(z )/f i) jergs (2.16)
LY B ] 3 47760“3 ,“2 ¢ [ .
Since also
. _— wl(z) . ']
P = ] / w;i(z') j /S' el dSds, (2.17)
= Fj, (2.18)

the matrix is symmetric. The sequence (2.16-2.18) shows that the inner product of w; with the
linear operator |, fs (- )u;:';,“;ds ¢ applied to w; is equal to the same quantity with the roles of w;
and w; reversed. This property implies that the linear operator f| fs.(: )mdﬁ' ! s self-adjoint.

In general, any self-adjoint linear operator gives rise to a symmetric Galerkin discretization for
any set of expansion functions [31].

Least-Squares Method

The integral of the residual squared over the solution region is minimized with respect to
the unknown expansion weights. In the case of (2.14),

_B%ffsc Ri(z)dS.=0, i=1, 2,”-'. n,

ffs -—Rds,,_o i=1,2,..., 2 (2.19)

Thus the i-th effective test functnon in the least-squares approach is the sensitivity of the residual
to a;. The i-th inner product equation (2.19) weights the residual more heavily where it has
higher sensitivity to the i-th expansion weight.

or
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2,2.2 Stationary-Functional and Finite-Element Methods

The variatjonal formulation of the potential problem minimizes the energy expression (2.5),

wi) =32 [[[ 1vveiev, (2:20)

over the space of potentials 3 that satisfy the boundary conditions (2.3). Substituting an
approxirnation
n
P(z) = Za,—w;(:c)
i=]
which satisfies the boundary and differentiability corditions into (2.20) and setting its n deriva-
tives with respect to the a;’s to zero gives the linear system for the expansion weights,

2aa,/// llza:Vw;(z)IlidV'_o i=1,2,...,n

This procedure is called the Ritz or Rayleigh-Ritz method [31, 27, 43].

The finite-element method [7] began as a Ritz method with expansion functions w;(z)
taking non-zero values only within finite domains in the solution region. Inside each element the
potential is approximated by polynomial functions of the element’s vertices. Weighted-residuals
methods which use these finite-element expansion functions are also often called finite-element
methods, even when the formulation is not of the variational type.

The Ritz method is closely related to the Galerkin method. In general the potential ap-
proximation obtained from the variational formulation (2.5) is identical to a Galerkin method
applied to the differential problem (2.1-2.3) [43). Because of this equivalence, the Ritz method
is sometimes called the Ritz-Galerkin or Rayleigh- Ritz-Galerkin method, especially when finite-
element expansion functions are used,

2.2.3 Finite-Difference Methods

The method of weighted residuals can also be applied to the differential equation (2.1-2.3)
as long as the approximation for the potential,

Y(z) = iai‘w;(z),

i=1

satisfies the houndary conditions and is twice differentiable. In contrast, finite difference meth-
ods start with a discrete appfoximat.ion to the linear operator based on a regular grid covering
the solution domain, here the region V between the conductors {31, 27]. Derivatives are re-
placed by divided differences relating approximations to the potential at nearby grid points.
For a regular cartesian grid, the potential at each point, ¥(=:, ¥, ), ¢an be used along with its
six neighboring points to write six approximate directional derivatives of the potential,

9 s YEit by z)-Ylzovn) 0 a v(Ei- Ry s) - Y6 v z),

dz;y h B h '
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0 o EavithE) - Wrawu) 8 a BlEayi— hz) - Yz w, %)

dyir h 'Oy h ;
O o Eavhnth) = P(zayez). 0% a w(wi i,z ~ k)~ (2 v, z)
8z, h S k :

These quantities are combined in approximate Gauss’s Law equations for small cubic volumes
enclosing the » grid points, giving the linear system

9y ¢ ay O P o .
T + Bzi_ + Oy + dyi. + Bz + Oz 0. =12,

eey R

In this way the finite difference method enforces the approximation to (2,1-2.3) lecally. Think-
ing of the approximate V21 as a residual, the local finite difference equations can be viewed
as the result of inner products with test functions #; that are non-zero only near the i-th grid
peint. A more careful analysis shows that the finite difference approximation is equivalent to a
Galerkin method [43].

2.3 Previous Work

Existing capacitance caiculation methods vary from numerically efficient techniques for spe-
cial problems to computation-ity intensive general algorithms.

2.3.1 Metheds for Special Geometries

Highly specialized approaches include those leading to separation of variables solutions to
(2.1-2.3) {73, 18, 16}, perturbation and imaging techniques where a known solution is adjusted
to solve a similar prc;blem (40, 132, 77, 22, 23} and methods for special periodic structures
[20, 136, 101]. Less restrictive but still specialized are two-dimensional approaches, motivated
largely by transmission line analysis {138, 122, 26, 103, 35, 44, 51, 21, 114, 106], techniques
for three-dimensional periodic structures {143, 142, 118] and on-chip capacitance extraction
methods that piece together precomputed solutions {79] or assume planar geometries {100, 6,
8, 95, 134].

2.3.2 Methods for General Three-Dimensional Geometries

In cases with no symmetry, the general three-dimensional problem is usually solved by
finite-difference {144, 117, 55, 145}, finite-element [5, 29] or weighted-residuals [41, 9, 109, 63,
105, 130, 115, 96, 95, 71] methods, Finite-difference and finite-element schemes applied to (2.1~
2.3) require grid point meshes that are difficult to construct for irregular conductor geomelries.
Also, both methods discretize the entire region V between the conductors and must terminate
the discretization so as to approximately match the boundary conditions at infinity. In some
cases this shortcoming can be mitigated by special techniques [145]. The differential equation
(2.1-2.3) can also be solved by collocation, with collocation points distributed throughout V



[71]. All these indirect methods require a separate step to calculate the conductor charge from
the potential with Gauss’s Law.

In general the simplest techniques are weighted residuals methods applied to first-kind
integral-equation formulations like (2.9), which solve for the charge density directly rather than
first finding the potential and then applying Gauss’s Law. The three-dimensional problem is
reduced to finding the two-dimensional surface-charge density. Expansion functions are usually
of the finite-element type [41, 9, 109, 105, 130, 115] or sometimes tailored to particular geome-
tries [95]. Collocation {41, 105) and the intermediate complexity subdomain [42] and Galerkin
[9, 109, 115, 96, 95} techniques are both used, more often than least-squares methods.

The algorithm studied in this thesis uses a weighted residuals discretization of the integral.
equation formulation (2.9), leading to a linear system whose solution gives the charge density
directly. The use of collocation, following [105) as described in Section 3.1, simplifies the dis-
cretization, allowing the treatment of arbitrarily shaped geometries. The major departure of
this work from previous approaches is in the use of an efficient approximate solution method
for the discretized problem [88, 83, 91, 85]. The solution technique, described in Section 3.2,
is based on [107, 52, 54] and is also used in the two-dimensional, dipole-layer method of [51].
While earlier approaches lead to efficient algorithms by restricting the problem geometry, the
acceleration technique used here exploits the basic physics of the capacitance problem and ap-
plies to any three-dimensional geometry, including those with multiple dielectrics, as Section 3.3

demonstrates.
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Multipole Accelerated Capacitance
Calculation

The capacitance-calculation algorithm developed in this thesis starts with a weighted-
tesiduals discretization of the first-kind integral-equation formulation (2.9). The method uses
collocation on conductor-surface parels as described in Section 3.1, giving a linear system for
the panel charges. The major contribution of this thesis is the use of 2 multipole-accelerated,
preconditioned iterative method, described in Sectior 3.2, to solve the resulting linear system.
For an m-conductor problem discretized with n panels, existing Gaussian-elimination methods
require nearly O(n®)! time and nearly O(n?) storage, while the new method uses nearly O(mn)
time and O(n) storage. Section 3.3 shows how the same savings are possible for problems with
multiple isotropic dielectric regions.

3.1 First-Kind Integral-Equation Discretization

A weighted-residuals method applied to the integral equatibn (2.9) is a simple and efficient
way to solve the capacitance problem {105]. A finite-element expansion of the conductor surface-
charge densities followed by collocation leads directly to a linear system for the charge densities. -

311 Weighted—Reaidua!s Discretization

The unknown conductor surface-charge density is approximated by a mosaic of two-dimensional
finite elements. Each expansion function is non-zero only in a small triangular or quadrilateral .
region. These regions are called panels or tiles and completely cover the conductor surfaces.
Similar techniques can be applied to the more general multiple-dielectric formulation (3.36) and
(3 39) described in Section 3.3.

The n expansion functions are taken as unknown constants ¢; on their corresponding panels

'When f(z) #0, g(x) is O(f(x)) if there is a constant c such that lims ..o g{2)/f(*) < c.
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and zero elsewhere. Thus the approximate charge density has the form
n
o(z) > Y ajuwi(a), (3.1)
i=1

where

(@) A 1 =z € panel j;
w:(z) =
! 0 otherwise.

Substitution gives the residual (2.14),

R(z) = (=)~ [ 5. 4% _ygr

5: 5= 4meoljz — 'l

where f specifies the conductor potentials. Collocation produces 7 equations by requiring the
potential at the panel centroid points z; to be the specified value, effectively setting the integral
of §(z — z;)R(x) over 5. to zero for each z;. Other collocation point choices are possible, for

example panel corners. The equation for the i-th collocatior point is of the form

0= f(:..-.—)-_E;“l j f _awis) e

- 41!'60"2,' — I"" ¢

Because a; is constant and w; is non-zero only on the j-th panel,

n . l
a; dS': x;), i=1 2,..-, n.
?_—_} ! /]pnnelj 4reg|fe; — T f(=:) ’

The constant a; has the physical interpretation of a constant charge density on panel 7,

o
%=

where g; and A; are the total charge and area of parel 7, respectively. This substitution gives

an n X n linear system for the panel charges in terms of the conductor potentials,

3 1 1 'Y £ sy
;q" (Eﬂpmwmds‘)““”')’ =k (3.2)

or, in matrix form,

P q= f . ' (3’3)
Here q is the vector of panel charges and

a

P; dSg (3.4)

el | = e
J(z:).

The P;;’s are called potential coefficients and can be caleulated in closed form for all panel ori-
entations [94]. The corresponding quantities in the Galerkin case, given by {(2.16), have closed

e

fi
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form expressions only in special cases [109], although the resulting linear system generally leads
to more accurate capacitances. Using panel-centroid collocation points makes the P;;% first-
order approximations to the Galerkin potential coefficients, adding some accuracy compared
to using other collocation peint positions. In general the accuracy of the weighted-residuals
method can be enhanced using subdomain, Galerkin, or possibly hybrid, sets of test functions
combined with variable order finite element interpolating polyromials. The acceleration tech-
nique described in the next section also applies to the discretized system obtained using any of

these approaches.

3.1.2 Discretization Build and Solve Costs

Solving (3.3) gives the piecewise-constant approximation to the charge density. Summing
the charge vector entries corresponding to panels on conductor i, for the potential problem
with conductor j at unit potential, gives the capacitance matrix entry C;;. For an m conductor
problem, (3.3) must be solved m times with m different right-hand-side vectors, each solution
yielding a column of C.

The dominant costs of this algorithm are the computation of P and the solution of the m
Pg = f systems. In the standard approach, every entry of P is formed using time and memory
proportional to n” to evaluate and store the n? inner product integrals. Factoring P by variants
of Gaussian elimination takes time proportional to n® since P is dense. With P factored, the
m Pgq = f solutions cost additional time proportional to mn2. The acceleration technique
described in the next section reduces the cost of all these calculations to roughly O(mn) time
and O(nr) memory.

3.2 Accelerating the Discretized System Solution

The main contribution of this thesis is the acceleration of the capacitance matrix calculation
for an arbitrary three-dimeasional conductor system. The accelerated method is based on the
standard weighted-residuals discretization of the int'egral—equaiion formulation (2.9) described
in Section 3.1. The problem is reduced to solving m n X n linear systems of the form

Pd=fi

by expanding the surface-charge density on the m conductors in # functionc. Although similar
techniques apply for subdomain and Galerkin methods, collocation is assumed here.

The acceleration technique reduces the combined O(n?) solution time and O(n?) time re-
quired to calculate P to time nearly O(mn). Using au iterative method reduces the solution
time to roughly O(mn?) as described in Section 3.2.1. The iterative method time is then
reduced to nearly O(mn) using the fast multipole algorithm as discussed in Section 3.2.2.
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The idea of solving potential problems using an iterative method coupled with the multipole
algorithm is due to Rokhlin {107], although the need for an approximate technique in the context
of capacitance calculations was first recognized by Ruehli, Brennan and Young [110}. The three-
dimensional fast multipole algorithm is due to Greengard {52, 54].

3.2.1 Solving the Discretized System Iteratively

Many iterative methods for the linear system Pg = f follow the same basic procedure.

Algorithm 3.1 (Generic Iterative Method) To solve the n X n linear system Pq = f with
a sequence of convergent ilerates ¢',

1. Guess atl a solution ¢°. Seti =0,
2. Calculate Pq'.

3. If the residual f — Pg’ is small enough, return ¢' as the solution. Otherwise adjust ¢ to

oblain ¢+, increment i and return to step 2.

The time requiréd for one iteration is dominated by the O(n?) operations required to perform
the matrix-vector product in step 2. If it can be shown that the number of iterations required
for a given accuracy is bounded by a constant independent of n, then the entire solution requires
O(n®) operations. The matrix problems Pg = f arising from the collocation based solution
of the capacitance-problem integral equation (see Section 3.1) appear to have this property,
as the results in Section 4.4 indicate. In contrast, solving Pg = f using Gaussian elimination
procedures requires O(r>) operations. '

The matrix-vector product Pg’ is the potential due to the panel charges ¢* at all the col-
location points. The fast multipole algorithm can be used to quickly calcelate such potentials,
making it important that the iterative method have this form.

Krylov Subspace Iterative Methods

An important class of iterative methods that have the form of Algorithm 3.1 are called
Krylov subspace or polynomial methods. The most effective of these methods are inspired by
the conjugate-gradient algorithm (CG), an iterative method for symmetric, definite P {58]. The
i-th CG iteration minimizes the error in the i-th iterate ¢* obtained from a linear combination
of the ﬁ;st i vectors of the associated Krylov space?. Because of the form of the Krylov vectors,
the linear combinations equal to ¢f and its error ¢ - ¢° may be written as polynomials in P mul-
tiplying the initiﬂ residual vector f — Pq° (see also Section 3.2.4). As the iteration progresses,
the error polynomial approaches a scaled version of P’s characteristic polynomial. Thus CG

211 the initial guess is the zero vector, the Krylov space vectors are I Pf, Pf..., P,
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convergence is related to P’s eigenvalues, with clusters of eigenvalues generally implying faster
convergence. Convergence in at most » iterations is guaranteed since the error minimization is
eventually done throughout R™ once the last Krylov vector is included. The implementation of
the algorithm requires only 2 three-term linear recurrence and the matrix-vector product.

The matrix P obtained by collocation is not symmetric, nor is it guaranteed to be definite.
The use of the multipole algorithm to approximate Pg’ products amounts to multiplying ¢° by
a generally unsymmetric, indefinite approximation to P, even when using a Galerkin method.
A variant of CG that works for unsymmetric, indefinite P is required. Unsymmetric Krylov
space methods fall into two broad classes: those that retain the efficient three-term recurrence
of CG and those that retain the minimization and finite termination properties of CG. The
lack of symmetry makes it difficult to obtain both properties simultaneously, The three-term
recurrence algorithms include the bi-conjugate gradient (Bi-CG) method and the conjugate
gradient squared {(CGS) method {125]. Bi-CG is more difficult to implement since it requires
maltiplication by PT, an operation that is not so readily interpreted as a potential calculation,
The sparse least squares {(LSQR) (98], generalized conjugate residual (GCR) and generalized
minimum residual (GMRES) {112} algorithms all minimize the Euclidean norm of the residual,
lf = Pg'l|2, over the current Krylov subspace on each iteration, but can require significant
overhead since they lack the three-term recurrence. LSQR, like Bi-CG, requires PT¢q products
but is thought to be more stable when P is poorly conditioned.

The overhead in LSQR, GCR and GMRES involves inner products that maintain the orthog-
onality of the current adjustment to ¢* to those adjustmerits made on previous iterations. Com-
puting the (i 4+ 1)-th iterate requires at least i such inner products at a cost of » multiply-adds
each. For sparse system matrices, a few inner products cost as much as 2 matrix-vector prod-
uct, making methods that maintain the three-term recurrence attractive. For the capacitance-
calculation method developed here, the cost of the matrix-vector products, although O{n) when
approximated with the multipole algorithm, is still much more than the inner-product o_verhea.d,
since convergence is typicaily rapid. Thus using a three-term-recurrence method rather than
L5QR, GCR or GMRES sacrifices residual-minimization properties for a negligible savings in
execution time. Since LSQR uses PTq products, the algorithms of this thesis use the simpler
GMRES, an improM version of GCR. The extra stability of LSQR is unnecessary for the well-
conditioned matrices encountered in capacitance problems. In order to obtain well-conditioned
matrices for many practical problems, however, it is necessary Lo use a precosditioner, as the

next section describes.

Preconditioning

Preconditioning is a common technique for accelerating iterative method convergence. In

the case of preconditioned CG, the system

(B~'PB~')(Bg)=B"'/,
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rather than Pq = f, is solved iteratively {50]. Because of the CG method’s three-term re-
currence, the calculation can be arranged so that the iterates tend toward ¢ rather than By,
and B7'PB~! and B~ f need never be formed explicitly. Similar techniques are possible for
preconditioned CGS, since its iterates are given by a three-term recurrence as well. However,
lack of symmetry in P forces the use of the preconditioned system (By'PBR')Brg = B['f.
The choice of By, and Bp is generally difficult since only crude analytical techniques exist for
predicting CGS convergence [125}.
The implementation of preconditioned GMRES used in this thesis solves

Crg=Cf,

rather than Pg = f, following the strategy of CGS preconditioning®. Since GMRES lacks
the three-term recurrence of CGS, the iterative method must explicitly compute the scaled
right-hand-side, Cf. An advantage of GMRES over CGS is that its convergence properties
for normal matrices® are linked to the eigenvalues of the matrix, much like the CG case [112}.
In the non-normal case similar evaluation techniques apply {131]. Thus the effectiveness of
the preconditioner matrix C can be gauged by how it changes the eigen-structure seen by
GMRES when it is used to solve the system CPg = Cf. In general preconditioners that lead to
clustered eigenvalues, with C = P 1the limiting case, are better. For the capacitance algorithm
presented here, the use of the multipole algorithm suggests using the part of P corresponding
to nearby panels to form a preconditioner. Section 3.2.4 discusses this strategy further.

Block Iterative Methods

The capacitance calculation algorithm for an m conductor problem amounts to solving
Pq = fry k = 1, 2..., m, where f; specifies conductor k£ at unit potential, the rest at zero
potential. Such a muitiple right-hand-side problem can usnally be solved more efficiently by
a block iterative technique [97, 111] while still preserving compatibility with the multipole
algorithm. A block iterative method uses iterates that are blocks of vectors. If g is the
solution corresponding to f; then the capacitance-problem block system is

PQ = F,
with .
b { I |
Mt q2 - Gm | F h B J[a
| ! ! P |

e
e

3Salving the preconditioned system PCz = f for z and then calculating ¢ = Cx, as advocated in [83], is not
as desirable since C can amplify small errors in z to produce Jarge errors ia g.

*A zeal matrix P is normal if PPT = PT P or, equivalently, if it has a full set of orthonormal cigenvectors
[127].
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Algorithm 3.2 (Generic Block Iterative Method) To solve the n x n block linear system
PQ = F with a sequence of convergent iterates QF,

1. Guess at a solution Q°, Seti= 0.
2. Calculate PQ".

8. If the residual F — PQ* is small enough, return @ as the solution. Otherwise adjust
to obtain Q**!, increment i and return to step 2.

In the case of block CG, the error in the block iterate Q* is minimized over the current partial
block Krylov space® in a manner exactly analogous to the single-vector CG method. Similar
analogies exist between the scalar and block versions of GMRES. A single block iteration is
more costly than m single-vector iterations, particulasly because the scalar recursion weights
become m x m matrices in the block implementation. These matrices, however, couple the
columns of the error @ — @, often leading to faster convergence overall.

The basic convergence properties of the single-vector iterations carry over, with some en-
hancement, to the block methods. Thus preconditioners are analyzed and applied as for the
single-vector cases. For example, a preconditioned block GMRES method would effectively
apply the block GMRES algerithm to

CPQ=CF

Section 5 further examines using 2 preconditioned block-GMRES iterative method for capaci-
tance calcalation.

3.2.2 Efficient Matrix-Vector Products with the Multipole Algorithm

The key to accelerating the iterative algorithms of Section 3.2.1 is interpreting the matrix-
vector product Pg = f as a potential calculation. The i-th entry of the vector f,

n _
fi =Y Pigj, (35)
i=1

is the potential at the i-th collocation point due to the panel charges ¢,Jj=1,...,n Assuming
- all the panels have comparable tharges and geometries, the largest contributions to f; come

from panels near the i-th collocation point, with distant panels contributing less. _
The fast multipole algorithm effectively replaces the part of- the inner product (3.5) corre-
sponding to distant panels with an approximation [52]. Thus P;; is no longer required if panel
7 is far enough away from collocation point i. The entry P;; need not be computed, stored nor

*If the initial guess is the zero matrix, the block Krylov apace matrices are £, PF, P*F,..., P""'F.
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explicitly multiplied by ¢;. In this way the multipole algorithm reduces both execution time
and storage requirements.

The potential approximation used by the multipole algorithm is similar to that used by
Hackbusch and Nowak [56]. The multipole algorithm, however, is more efficient since it eval-
uates the potential approximation in a manner that eliminates redundant calculations (see
Section 3.2.2). Perhaps the simplest approximation for the distant panels potentials is to as-
sume they are all zero, as advocated by Dewilde and his collaborators for planar geometries
[95, 134, 38]. In contrast, the multipole approximation is always a function of problem geometry

and charge distribution, and never completely ignores distant panel potentials.

The Multipole Expansion

The multipole algorithm approx;mat.es the potential ¢ due to a collection of charged panels
~ using a multipole expansion

P(ri, .,¢,)~——2 Z; ,,H V(0 60, (3.6)

n-O me=-n 1§

where { is the expansion order, ¢ is the permittivity of the surrounding dielectric and r;, 8;, and
$; are the spherical coordinates of the i-th panel centroid® relative to the center of the smallest
sphere enclosing all the distant panels, The Y,™(8;, ¢;) factors are called surface spherical
harmonics {59, 66] and the M™ are complex weights known as multipole coefficients given by

d -
=L E [ rr, g,
=1 Ai J J pand j

where there are d distant panels with constant charge densities g;/A; as in (3.2). The variables
of integration are the spherical coordinates (p', o, 8') of the differential panel surface area d5;
relative to the center of the smallest sphere enclosing all the distant panels.

An approximation to the contribution to the potential at the i-th collocation point z; due
to the d distant panel charges is obtained by evaluating the multipole expansion at z;. Many
other potential evaluations at collocation points at least as far away from the ¢ panels as z;, can
use the same multipole expansion to include the effect of the distant panels. Assuming there
are d collocation points and the multipole expansion costs nothing to compute, this procedure,
illustrated in Figure 3-1, costs O(d) operations. This is an improvement over the O(d?) cost of
directly evaluating the potential due to d panel charges at d collocation points. The error in

the approximation of Figure 3-1 is [52],
- MT . R\ R\
¥{ri, 6, ;) - — 4“ z S ,,.,_,Y (Gi,¢)| £ K (;:) <K (';;) . (3.7)_

=0 m=-n l

®Collocation points on panel centroids are assumed here.
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d collocation points d panels

T

T R

@ = multipole expansion

FIGURE 3-1: Evaluation of d distant pane! potentials at d collocation points with the multipole
expansion.

The quantities r and R are as in Figure 3-1 and

d
a
K =Y lgjl/14me(r — R)] (3-8)
J=1
is independent of the multipole-expansion order, I. The length r is the distance to the nearest

collocation point from the multipole expansion center and R is the radius of the sphere enclosing

the panel charges.

The Partitioning of Space

The aggregation of distant panels into multipole expansions which can be used to evaluate
potentials at many collocation points is the source of the fast multipole algorithm’s efficiency.
Maintaining this efficiency for general panel and collocation point distributions is made possible
by the remaining parts of the algorithm. The organizational framework for the constriction
and evaluation of the multipole expansions is provided by a hjerarchical partitioning of the
problem domain, defined to be the smallest cube containing all the conductors. The cube is
recursively divided into eight smaller cubes, giving 8D cubes after D partitioning levels. A
given partitioning of space has cubes on levels 0, 1, ..., D, with the cubes decreasing in size 25
the level pumber increases. Every cube i except'the level 0 cube has a parent cube, the cube
that is partitioned to give cube i. Any cube other than the level O cube is called a child cube
of its parent cube.

The Upward Pass
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In the first part of the muitipole algorithm, a multipole expansion for every cube at every
level is calculated. After this step, the multipole expansions for every possible distant panel
evaluation are in place. The calculation procedure is cailed the upward pass since it staris
with the level D (smallest) cubes and works up the hierarchy from child to parent. Figure 3-2
illustrates how one upward-pass step combines sets of four (eight in three dimensions) child-
cube expansions on the finer level to form single parent-cube expansions, giving a coarser
scale representation of all the panel charge. A parent multipole expansion contains no new
information; it merely sumnmarizes the effects of all the panels in its children.

e
o5

\

-
e/

C

Direct Evaluation of Multipole Expansions

T

=]

T

@ = multipole expansion
FIGURE 3-3: Evaluation of the potential at z;.

The evaluation process uses the partitioning hierarchy as a means of minimizing both the
number of multiplole evaluations and the error. Figure 3-3 illustrates the procedure in two
dimensions for ease of presentation. The figure shows how distant-panel multipole expansions
from different sized cubes in the hierarchy contribute to the potential at the collocation point z;.
In order to minimize the number of multipole evaluations, it is advantageous to use expansions
corresponding to larger cebes, such as the larger circled cube A. However, in order to keep the
multipole-expansion truncation error roughly the same for all the evaluations, the distant panels
closer to z; must be included using expansions corresponding to smaller cubes. For example,
{3.7) predicts roughly equal error when the cube A and B multipole expansions are evaluated
since Ry/rs ~ Rp/rp. In the three-dimensional fast multipole algorithm, the partitioning
geometry is used as a guide to selecting multipole expansions such that the ratio R/r in (3.7}
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satisfies

R/r < 1/V3, (3.9)

- implying significantly tighter error bounds for each increase in expansion order {52].

The panels in the region with the shaded border camnot be considered distant, Their
contribution to the potential at z; must be calculated directly from the panel charges using a
sum of F;;q; products.

Evaluation of Multipole Expansions with Local Expansions

In the scenario of Figure 3-3, cube C contains the single collocation point z;, but usually
a given cube like C contains several collocation points. The distant panel contributions to
the potentials at each of the collocation points in the given cube are nearly identical, as the
points are close together. This suggests the use of a local approximation to the distant multipole
potentials, an approximation that is accurate within the small given cube region. The potentials
of the many distant panel multipole expansions are condensed into a single local expansion,
reducing the number of expansions to evaluate at each collocation point from many to one.

The three-dimensional fast multipole algorithm converts the many multipole expansions

into a single local expansion

! =
Wrabodd= 3 3 LIV (b, (3.10)
n=0m=—n

where ! is the order of the expansion, r;, #; and ¢; are the spherical coordinates of the i-th
collocation point with respect to the cube’s (analogous to cube C) center and the LT factors
are the complex local expansion coefficients. Tke procedure is illustrated schematically in
Figure 3-4. Several distant panel multipole expansions, corresponding to cubes of different
sizes, are used to produce a single local expansion which is evaluated at all the evaluation-cube

collocation points.
As for the multipole expansion, the error introduced by the local expa.nsioh 'is related to a

ratio of distances,

1 ! n r; i+1 RN\t
LR D M) M AT B k(B k(. e

Here K = E}’=l 1951/ [4x€(r — R)], as for the constant in the multipole-expansion error expression
(3.8), and ¢ is the permittivity of the surrounding medium. The distances r and R are as in
Figure 3-4. Thelength r is the distance to the nearest panel included in the multipole expansions
and R is the radius of the sphere of collocation peints. The partitioning and evaluation rules
used by the fast multipole algorithm ensure that (3.9) holds {52].
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F1GURE 3-4: The conversion of several distant multipole expansions into one local expansjon
for evaluation at the local collocation points,

The Pownward Pass

The key to the fast multipole algorithms efficiency lies in the calculation of Jowest-level local
expansions (as for cube C in the Figure 3-3 example) using 2 hierarchy of higher level local
expansions. As illustrated in Figure 3-5a, each expansion-hierarchy construction step converts
coarser, parent-cube expansions into expansions for their children. The resultant downward
pass through the cube hierarchy moves from parent to child, following the path of the upward
pass in reverse. |

The analogy to the upward pass, however, is less than perfect because a child cube’s local
expansion is not completely determined by its parent cube’s expansion. Figure 3-5b illustrates
the conversion of the local expansion for cube G to the expansion for one of its children, cube
C. A local expansion summarizes the effects of distant panel charges.” In the context of the
fast multipole algorithm, the local expansion for any cube at any level summarizes the effects
of all panel charge outside the cube’s neighbor region”. In the example of Figure 3-5b, cube
G’s local expansion summarizes the illustrated higher level multipole expansions representing
chatge panels outside its shaded neighbor region. The local expansion for G's child cube C must,
like cube G’s local expansion, represent the effect of all distant charge. Since C is on 2 finer
level, its neighbor region, shaded in Figure 3-5b, is smaller, so C's local expansion must include
the effects of not only all the multipole expansions summarized by G’s local expansion, but also
the lower-level expansions corresponding to the part of G's neighbor region that is not also part
of C’s neighbor region, those multipole expansions illustrated in the lower part of Figure 3-5b.

TSection 4.1.2 givea a precise definition of neighbor cubes for the three-dimensional algorithm.
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Rather than explicitly converting all these multipole expansions to a local expansion for C, the
fast multipole algorithm starts with G’s local expansion shifted to C’s center to include the
larger cube multipole expansions, and adds explicit conversions of only the smaller, medium-
distance cubes’ multipole expansions. The non-empty cubes in the medium-distance region,
those cubes labeled as containing multipole expansions in the lower part of Figure 3-5b, make
up C’s interaction list or set®, The downward pass begins with cubes on level 2, since cubes on
levels 1 and 0 have null interaction sets, and stops on the lowest level.

The Evaluation Pass

The complete three-dimensional multipole algorithm constructs multipole expansions for
all the cubes level 2 or lower using the upward pass procedure. The downward pass then
converts the multipole expaasions to local expansions for the lowest level cubes. The final step,
the evaluation pass, consists of evaluating the local expansions at the collocation points and
calculating the neighbor-cube contributions directly. The entire procedure requires O(n) time
and storage (see also Section 4.3) and brings the cost of an iterative procedure like Algorithm 3.1
down to O(n), provided the number of iterations is problem independeat. Here  is the number
of expansion functions, or panels, used in the weighted residuals discretization of the problem.

3.2.3 Maintaining Efficiency with the Adaptive Multipole Algorithm

A closer examination of the basic operations of the fast multipole algorithm described in
the previous section reveals that the algorithm is a linear operator, effectively approximating
P with some nearby matrix. The details of the approximatior lead directly to an new adaptive
algorithm appropriate for the sparse charge distributions arising in capacitance calculations.

The Fast Multipole Algorithm in Matrix Form

The basic operations of the fast multipole algorithm are suminarized in Figure 3-6, using
two dimensions for clarity. The figure illustrates the calculations required to include the distant
panels inside cube 2 in the potential evaluations for the collocation points inside cube 1. The
smaller cubes are assumed to be on the lowest level, D.

During the upward pass, multipole expansions are calculated for the panels in cube 2.
First the panels are converted to child cube multipole expansions (Q2M) and then the child
expansions are shifted and combined to give cube 2’s multipole expansion {M2M). There would
be additional M2M conversions if cube 2' children were not on the lowest level,

During the downward pass, cube 2 appears in cube 1’s interaction list so cube 2's multipole
expansion contributes to cube 1’s local expansion (M2L). Other members of cube 1’ interaction
list, not pictured here, also contribute to cube 1’s local expansi'on via M2L conversions. The

*Section 4.1.2 gives a precise definition of neighbor cubes for the three-dimensional algorithm.
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FIGURE 3-6: The basic operations of the fast multipole algorithm.

cube I Jacal expansion is shifted down to each of its eight child cubes (L2L) where it becomes the
basis of their local expansions. In general, each child cube’s local expansion is also influenced
by its interaction list cubes via M2L conversions. If cube 1’s children were not on the lowest
level, then at least one more series of L2L, and M2L transformations would be required.

The evaluation pass evaluates the local expansions of cube 1% children at their collocation
points {L2P). Also the effects of nearest neighbor and second nearest neighbor cubes are included
directly in the child cube potentials (Q2P, not pictured in Figure 3-6). The extension of the
neighbor region to include second nearest neighbors is required in three dimensions to maintain
accuracy [52].

The formulas for these conversions, assuming the distant panels are approximated by point
charges, are given in Appendix B. Only the Q2M formula changes if the point charge approxi-
mation is not made, In either case all the formulas are linea- transformations. For example, the
multipole coefficients given by the Q2M formula are each linear functions of the panel charges.
When the multipole and local expansion order is one, that is = 1 in (3.6) and (3.10), the
multipole and local expansions have four real® expansion coefficients, and the coefficients of
a lowest-level multipole expansion are related to the corresponding lowest-level cube's panel

- "Asexplained in Appendix B, the complex coefficients ir {3.6) can be combined to give an equivalent expansion
in terms of real coefficients.
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charges, say ¢,,i =1, 2, ..., 6, by the linear transformation

4 X6
" @ Mp
g2 M?
Qz2M 3 _ M}
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Matrices can be constructed for 2ll the multipole algorithm transformations in a similar fashion.

The matrix representation provides a convenient way of describing how parts of the Pq
product are approximated with the multipole algorithm. The basic multipole algorithm opera-
tions illustrated in Figure 3-6 can be written as a chain of matrix-vector products, For example,
the transformation from six panel charges, ¢;, i = 1, 2,..., 6, in a lowest-level cube inside cube
2 to say seven collocation-point potentials, f;, i = 10, 11,..., 186, in a lowest-level cube inside

cube 1 using order { = 1 expansions has the form
Tx4 4x4 4x4 4x4

4 x4 4x4 4x6
0 fro
i ] o] e[ ame ] 2]l
L2P = 2l

96
he (3.12)

When calculating Py products using the multipole algorithm, part of the inner products in
rows 10-18 of Pgq,

Tx6
. ! fio
i % M
weicie o | i
== g6
15758 fie (3.13)

is replace‘&' by the sequence of multipole matrix-vector products (3.12).

Since (3.12) requires more work than (3.13), it is tempting to conclude that the overall
multipole computation is less efficient than the complete, explicit Pg product. The multipole
eva.lua.tidnk(."i.l?) requires at least the Q2M, M2L and L2P operations, leading to 7 x 4 +
4x4+4x6 = 68 multiply-adds in this example, more than the 7 x 6 = 42 required for
the corresponding part of the Pq product (3.13). However, most of the intermediate resulis
calculated in a particular multipole evaluation like (3.12) are reused to approximate other parts
of the Pg product (see Section 3.2.2), usually making the overall multipole calculation more
efficient than the complete Pg product.

Since all the transformation matrices are functions only of geometry, a large amount of
the overhead associated with the multipole algorithm can be eliminated by calculating the
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transformation matrices once for a particular problem, as in the implementation described in
Section 4.1. The result is effectively the multipole algorithm’s approximation to P represented
as a collection of transformation matrices. Recalculating the transformation matrices for every
approximate Pq product requires roughly an order of magnitude more computation than reusing
a stored approximation to P.

Multipole Algorithm Efficiency

The multipole approximation is inefficient for problems that result in cubes with small
numbers of charge panels, n,, or collocation points, np. In particular, if n, < (£ 4 1)® or
np < (I4+1)? then order { expansions, with (I+1)*-entry coefficient vectors (see also Appendix B),
make the algorithm unnecessarily expensive and inaccurate. The matrix notation is usefuf for
illustrating this.

Figure 3-7a illustrates the calculation of the multipole expansion M, using two dimensions
for clarity. In this example the expansions are order ! = I, making the lowest-level cube
multipole expansion M; a vector with (I + 1)2 = 4 entries calculated by multiplying a Q2M
matrix by the corresponding three-element panei-charge vector, :

41x3 I xl ix1]

)
Q2M, = [ Mg |

so that the panel-charge vector is represented by a longer multipole vector. The multipole
vector M, then contributes to the parent multipole expansion M. (M2M} and, during the
downward pass, to local expansions for cubes that contain My’s cube in their interaction lists.
(M2L). Alternatively, the multipole expansion can be replaced by the shorter charge vector
as in Figure 3-7b. The panel-charge vector contributes directly to M, using a 4 x 3 Q2M
matrix, eliminating the M2M operation used in Figure 3-7a. Further savings result from direct
panel-charge conversions to local expansions using 3 x 4 Q2L matrices (see Appendix B), rather
than 4 x 4 M2L transformations, during the downward pass. Since the approximation M; is
not used, the Figure 3-7b strategy is not only more eﬂicnent, but also more accurate, than the
non-adaptive method of Figure 3-7a.

In general, the ng-entry panel-charge vector for any cube on any level is a more accurate
and at least as efficient representation of the panel-charge potential if there are no more panel
charges than expansion coefficients, |

ne < (T4 1)% (3.14) -

The cube associated with M in Figure 3-7a is an example of a cube that is not on the lowest
level but is still best represented by its panel-charge vector, as in Figure 3-7b.
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FIGURE 3-7: The multipole-expansion hierarchies constructed by the non-adaptive (a) and
adaptive (b) multipole algorithms for an example panel-charge distribution.
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Figure 3-7 also illustrates another instance where it is inefficient to compute multipole
expansions. The expansion M}, in Figure 3-7a corresponds to a cube with a single non-empty
lowest-level child with expansion M,. Since the M cube has only one non-empty child cube,
My represents the same panel charge as M, but is less accurate due to the M2M operation
used to shift M, to My’s center. If rather than calculating My, 2 copy of M, is used for My,
as in Figure 3-7b, then the resulting calculation is more accurate and efficient. In general, any
number of cubes with single, non-empty child cubes, each one the child of the previous one,
require only one multipole-expansion calculation.

Analogous optimizations are possible for the local expansion calculations. In general a
cube’s n, evaluation-point potentials are represented at least as efficiently, and more accurately,
by directly evalvating the multipole-expansion and panel-charge potential contributions using
M2P and Q2P transformations rather than building a local expansion using LI27 -nd Q2L
transformations if there are no more evaluation points than local expansion coefficients,

ap, < (14 1) (3.15)

For a cube that satisfies (3.15), building a local expansion requires at least as much computation
as directly evaluating the potential at all the cube’s evaluation points. In particular, the local
expansion build followed by its evaluation with an n, x ({ + 1)* L2P transformation has the

form

(+1)2x(141)

np, X (I + 1)2
| repr L2L L,
(I+ 1P xmn ({+1)2 xng
M2L M, M2L M, mp X 1
+ o J o ol = [p]. (3.16)
Q2L @ Q2L a1

Here the cube’s evaluation-point potential vector is p and its interaction list has / entries, the
i-th entry corresponding to an ({ + 1)? x n; M2L or Q2L transformation matrix. The terms in
parenthesis add to give the cube’s Jocal expansion. As mentioned in the discussion of Figure 3-7,
Q2L matrices with (I 4 1) or less columns are used Lo include the eflects of charge in distant
cubes that lack sufficient panels to warrant a multipole expansion. The L2L transformation
term is present only if the cube’s parent has a local expansion, L,. The corresponding direct
evaluation involves analogous, but no bigger, M2P, Q2P and, if there is a parent local expansion,
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Fic u’_ﬁ_a 3-8: The local expansion hierarchies constructed by the non-adaptive (2) and adaptive
(b} multipole algorithms for an example panel-charge distribution.
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L2P transformation matrices,

np X (I +1)?
[ L2P ] Ly
np X M np X 0y
M, M np X 1
+ M2§Por o |+t M2§Por ol = [ o ] @)
Q | @ Q qr

making the direct evaluation require the same or less computation as the local expansion cal-
culation. Since the direct evaluation eliminates at least one local-expansion approximation, it
is also more accurate.

Figure 3-8 illustrates the evaluation point distribution resulting from the geometry of Fig-
ure 3-7, assuming panel-centroid evaluation points. In 2 manner analogous to the Figure 3-7
optimization, unnecessary local expansions are removed from Figure 3-8a when (3.15) holds,
giving Figure 3-8b.

Since local expansions are approximations for the potential due to distant panel charge, the
efficient treatment of cubes with single children is slightly different than in the upward pass
case. A multipole expansion depends on nearby charge {Q2M), or nearby charge represented by
the corresponding child cubes’ multipole expansions {M2M), while a local expansion depends
only on distant charge represented by its interaction list (M2L or Q2L) and the corresponding
parent cube’s local expansion {L2L). Thus the charge represented by the local expansion for an
only-child cube can differ from that represented by the parent cube’s local-expansion due to the
only child’s interaction-list contributions. In contrast, the only-child cube’s multipole expansion
can always be used in the place of its parent cube's expansion, since the only-child cube’s charge
is the only charge in its parent cube. This reasoning appears to indicate that a local expansion
like Ly, in Figure 3-8a always needs to be calculated since it generally cannot be replaced by
its parent local, in this case L. However, L exists solely to summarize the effects of L and
the Ly cube’s interaction list entries, and that information is used only to form the only-child
expansion Lg. It is therefore possible to append the Ly cube’s interaction list to the L, cube’s
interaction list, and eliminate the intermediate L, calculation. The resulting computation is
28 in Figure 3-8b, where L, is calculated directly from L (L2L) and the merged L, and Ly
interaction lists (M2L or Q2L). In contrast to the the upward pass case, no local expansion or
- local expansion copy is maintained in place of Ly. The same interaction-list merging is done
for the lowest-level cube direct evaluations in Figure 3-8b that replace the local expansions Ly,
L. and L; in Figure 3-8a. The interaction-list entries for the L ¢ cube are appended to the Ly
and L. cabe lists for use in the direct evaluations of Figure 3-8b.
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In general, all the operations in Figure 3-8 require interaction-list evaluations, except for the
lowest-level local expansion evaluations. Depending on the interaction iists, it may be possible
to replace some of the local expansions in Figure 3-8b by more efficient direct evaluations,
Such a replacement is possible because although a direct evaluation is more efficient when
(3.15) holds, violating (3.15) does not necessarily make using a local expansion less costly than
direct evaluation. The final cost of the local expausion calculation may be greater since the
local expansion requires evaluation, possibly through a hierarchy of lower-level local expansions,
while the direct evaluation gives the evaluation-point potentials without further computation.
The potential savings, however, are not enough to warrant checking for this possibility, as
Appendix D demonstrates.

The Adaptive Fast Multipole Algorithm

The simple fast multipole algorithm illustrated in Figures 3-7a and 3-8a builds multipole and
local expansions for every lowest-level cube, regardiess of their efficiency. Following the more
efficient strategies of Figures 3-7b and 3-8b leads to the adaptive fast multipole algorithm. Any
cube that satisfies (3.14) has at least as many muitipole-expansion coefficients as panel charges
and is called exact for the multipole expansion. Cubes that satisfy (3.15) have at least as many
local-expansion coefficients as evaluation points and are called exact for the local expansion.
The adaptive fast multipole algorithm constructs no expansions of the corresponding type for
exact cubes. It also eliminates the extra expansion calculations associated with cubes that are
only children and have only one child themselves, as illustrated in Figures 3-7b and 3-8b.

Collecting these ideas leads to the adaptive fast multipole algorithm, stated briefly below.
Section 4.1 describes the details of the particular implementation used here.

Algorithm 3.3 (Adaptive Fast Multipole Algorithm) To calculate an approzimate Pgq
product,

1. If this is the first Pq for a new problem, choose an expansion order I and compule appro-
priate transformation matrices for all cubes, taking ezact cubes into account, and store
Jor subsequent calls. Included here are Q2P matrices representing inleractions between
panels in the neighbor cube regions for all the lowest-level cubes. If matrices are already
calculated, go to the next step.

2. Perform the upward pass. Apply Q2M and M2M matrices to oblain multipole expansions
in all non-ezact cubes. '

3. Perform the dowﬁward pass. Apply M2L, L2L and Q2L matrices to obtain local ezpansions

in all non-ezact cubes.

4. Perform the evaluation pass. Apply L2P, M2P and Q2P matrices to obtain all collocation
point potentials. Included here are products with the Q2P matrices representing evalua-
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tions of potentials due to panels in the neighbor cube regions for all the lowest-level cubes.

The original adaptive fast multipole algorithm [52] relies on an irregular partitioning that
ensures that ali lowest level cubes, which need not be the same size, contain roughly the same
number of panels and evaluation points (see Figure 3-9a). The exact cubes of the adaptive
method presented here (Figure 3-9b), considered as coarsely as possible, correspond roughly to
the irregular, lowest-level cubes of the original algorithm. The principle advantage of the original
method appears to be that it constructs multipole and local expansions for every cube, thus
preserving the hierarchical expansion siructure of the simple multipole method and eliminating
the need for Q2L and M2P transformations. The variable size of the lowest level cubes, however,
makes it difficult to determine a given cube’s neighboring cubes. This complicates the nearby
panel-potential evaluations. The technique presented here uses the same regular partitioning of
the simple method, leading to an easier implementation and a consistent treatment of nearby
panel potentials.

The example in Figure 3-9a illustrates the inefficiency of the nonuniform problem-domain
partitioning. The problem-domain partitioning is halted when each child-square has no more
than one panel. Computing the potential at the centroid of panel A using a multipole algotithm
based on this nonuniform partitioning requires nine direct potential evaluations, for the nine
panels in nearest-neighbor squares bordering the square containing A, and eleven multipole
evaluations for the eleven nonempty squares not bordering A. The result is more work than
in the supposedly less efficient non-adaptive algorithm, which allows the evaluation of five
multipole expansions, each including the effects of four panels, to compute the potential at A. By
preserving the uniform partitioning used by the non-adaptive algorithm, the adaptive algorithm
used here, illustrated in Figure 3-9b, allows the use of the same five multipole evaluations. In
fact, using the uniform partitioning for the adaptive algorithm ensures that cubes’ neighbors
never fragment nea.ri)y charge cubes (as in Figure 3-9a), making the adaptive algorithm of
Figure 3-9b always at least as efficient as the corresponding non-adaptive algorithm.

3.2.4 Preconditioning the Multipole Accelerated Iterative Method

Combining the ideas of Secions 3.2.1 and 3.2.2, the capacitance solution method of this
- thesis uses a preconditioned GMRES iterative loop, with iterates calculated with the adaptive
multipole algorithm. Using a preconditioner applies the iterative method to E'Pq = Cf rather
than Pg = f and minimizes variations in iteration counts across different problems. The actual
structure of the preconditioning matrix, C, is dictated by the convergence properties of GMRES
and the stracture of the multipole algorithm.
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FiGURE 3-9: Partitionings used in Algorithm 3.3, (b), and by the adaptive algorithm of [19},
(a)-
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GMRES Convergence Properties

The choice of preconditioner matrix depends on GMRES’s convergence properties, which
are determined by how GMRES calculates the next iterate (step 3 in Algorithm 3.1) [112]. For
the n X n system Pq = f, the new iterate ¢'*!

T g4 2, i=0,1,...,n-2, (3.18)

where ¢° is the initial guess giving initial residual r° = f— P¢, and 2't1 j5 a vector in the span
of the Krylov vectors
2, Pr°, Pl ., P

such that the new residual
P2 f_pgtl =0 P, i=0,1,...,n-2, (3.19)

has minimal Euclidean norm. In particular, on the first iteration z! is a vector in the space
0

spanned by the single vector 7, so
2t = elr’,
with a] chosen so that
Iz = {ir°~ P2'{la = | - i P)r°ll2 (3.20)
= [llg"(P)ll2 (3:21)

e e a . . . .
is minimized. Here g'(z) = 1 - &}z, with the understanding that the leading 1 changes to an
identity matrix when the scalar argument z is replaced with a matrix. In general, the (i+ 1)-th
iteration chooses z+! from all the vectors in the space spanned by the vectors 7%, Pr%, P*r¥,
veey PP 50
i
2t = Z a}ﬂ pPio,
=0

with the aj-‘” coefficients chosen to minimize the norm of the residual,

IF i, = I = P2y
= (=Yoo PPy (3-22)
F=0 .
lig* (PY Iz (3.23)

where gt'(z) 2 1 - Yi—oajt'z’, and [ is the identity matrix.

The polynomial structure of the term in parenthesis in (3.22) is the key to linking GMRES's
residual-minimization properties to the eigen-structure of P. The minimization problem that
determines z'+! can be restated as the problem of finding a degree ¢ + 1 polynomial gt(z)
with g*t}(0) = 1 such that

| I 1lz = g™ (P)°ll2 (3.24)



is minimal. The use of the polynomial automatically constrains z*t! to be in the correct Krylov
subspace.

Using the polynomial interpretation, it is possible to say how the structure of P affects the
efficiency of the resideal minimization performed on each iteration {131, 74).- If P is diagonal-
izable then

P=VvDV™}, (3.25)

where D is a diagonal matrix with P’s eigenvalues on the diagonal, and V is a matrix whose

columns are P’s eigenvectors. Substitution in (3.24) gives

Itz = g VDOVl

s0 than
e < WVI2 UVl 16 (D)2 lrles
r:-l-l .
IS < s o (3:26)
where
() 2 VI IV (8.27)

is the condition number of P’ eigenvector matrix V [50]. For the matrices arising from
capacitance-problem discretizations, x(V) is reasonably close to one and |lg'*!(D)f; closely
tracks the residual norm. Because of D’ structure, {|g"t( D))z is equivalent to the maximum
magnitude atiained by g**!(A) when X is one of P’s eigenvalues. Thus GMRES iterations
for Pg = f produce polynomials g*+!(z) that minimize the maximum magnitude attained by
g*t1(A), making ¢*+!(z) an (i + 1)-th degree interpolant to P’s eigenvalues with the normaliza-
tion constraint ¢*t1(0) = 1.

In fact, GMRES chooses g*+! to minimize ||g*+'(D)r%z, not ig"t*(D)|i2 {|*°||2, s0 g*+? really
depends on the initial guess and right-hand-side vector through % In practice differences in
the initial residuals only effect the first few iterations, 50 viewing the polynomial construction -
as an eigenvalue interpolation is a good approximation that is useful for analyzing convergence.

To illustrate this, consider the seven-panel example pictured in Figure 3-10 with correspond-
ing potential coefficient matrix

[ 3.5255 0.9286 0.4900 0.3303 0.2487 0.1993 0.1663 )
(0.9286 3.52556 0.9286 0.4500 0.3303 0.2487 0.1993
0.4900 0.9286 3.5255 0.9286 0.4900 0.3303 0.2487
P =} 0.3303 0.4900 0.9286 3.5255 0.9286 0.4900 0.3303 |, (3.28)
0.2487 0.3303 0.4900 0.9286 3.5255 0.9286 0.4900
0.1993 0.2487 0.3303 0.4900 0.9286 3.5255 0.9286
| 0.1663 0.1993 0.2487 0.3303 0.4900 0.9286 3.5255 |
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FIGURE 3-10: Seven 1mx1m parallel panels spaced 1m apart.
_ Pq:f,__tE(V)zl.O . CPg=Cf,x(V)=1.1
U a2 P P €20 P W ki 7Y T P Chi €91
1 0.31204 0.69797 1 0.08301 0.21784
2 0.08721 0.15714 2 0.00916 0.05283
3 0.01667 0.03994 3 £.00059 0.00122
4 0.00237 0.00708 4 0.00003 0.00006
(2) (b)

Table 3-1: GMRES polynomials for Pg = f (a) and C'Pq = Cf (b), with P and C given by
(3.28) and (3.31) respectively, and where f is the first column of the identily matrix.
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FIGURE 3-11: GMRES polynomials for Pg = f (a) and CPg = CFf (b), with P and C given
by {3.28) and (3.31) respectively, and where f is the first column of the identity matrix.
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calculated using (3.4). Figure 3-11a and Table 3-1a give the polynomials, the bounds they
generate, and the normalized residuals for the first four iterations of GMRES applied 1o Pg = f,
with f taken as the first column of the identity matrix. Figure 3-11a shows how the GMRES
polynomial is a progressively better interpolant of P’s eigenvalues, represented by circles on
the z axis in the figure’®, This fact leads to smaller values of the bound ||g*+!(D)il2 on each
iteration, which track the normalized residual (see Table 3-1a). Thus a decrease in the residual
goes hand in hand with a decrease in J|g***(D)|[s, which in turn is caused by a good fit of
the current GMRES polynomial to P’s eigenvalues. The convergence of GMRES is therefore
strongly affected by the placement of P’s eigenvalues. In the Figure 3-11a example, the GMRES
polynomials interpolate the lone eigenvalue near 6.5 almost exactly by the third iteration, while
the cluster of eigenvalues closer to the origin, because of the normalization constraint ¢*+1(0) =
1, are not as well approximated initially. In general the interpolation matches the eigenvalues in
a particular eigenvalue cluster with comparable error, usually with better matching for clusters
farther from the origin. Thus eigenvalues of P that are spread out complicate Lhe interpolation
and lead to slow convergence, while clustered eigenvalues lead to rapid convergence.

GMRES Preconditioning for the Capacitance Problem

Applying GMRES to & Pg = Cf rather than Pg = f speeds convergence if CP’s eigenvalues
are easier to interpolate than P’%. I the preconditioner matrix € = P-1, then CP = [ has all
its eigenvalues clustered at one, making the GMRES interpolation exact for all eigenvalues on
the first iteration. Although calculating P~! for the preconditioner is prohibitively expensive,
a good general strategy is to choose C to be a low-cost approximation to P71, s0 as to cluster
CPs eigenvalues around one. For the capacitance problem, P’s structure ensures that easily
computed C’s, derived using the inverse-approximation stralegy, give preconditioned matrices
PC with well-clustered eigenvalues.

Although preconditioning generally speeds convergence, it also ensures convergence to an
accurate solution. When solving Pg = f, the object is to minimize the error in the current
iterate, g—g¢*t!, where g is the exact solution. GMRES minimizes the residual on each iteration,
which is related to the solution error through P!,

Pif— gt

P-l (f - P-qt'-t-l) .
i+1 = P"lr"“.

Taking the norm of this equation 2nd combining it with the norm of Pg = f gives a relative

1°H P's eigenvalues are complex, the polynomials can still be interpreted as interpolants, but the effect is more
difficnlt to illnstrate in a two-dimensional plot. :
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FiGuRE 3-12: The steps leading to the third row of the preconditioner C for the example P
(“X” denotes a non-zero element).

error bound in terms of the residual,

g — ¢z 1 ll llz
< (P2 ™l (3.29)
- il ’

where x(P) is the condition number of P. The analogous bound for the preconditioned system
CPq=Cfis

li= 6l ol
- < ezt (3-30)

where r*! is now the residual of the preconditioned system. The bound (3.29) suggests that
if P is poorly conditioned then a small normalized residual does not necessarily imply that the
solution error is commensurately small. Thus preconditioning P so that the effective system
matrix bas its eigenvalues clustered near one, leading to a condition number x(CP) = 1 in
(3.30), not only leads to faster GMRES convergence, but also ensures that the residual is a
good measure of the solution error. ,

The potential-coefficient matrix entry F;; is the potential at panel i due to a unit charge on
pazel j (see also Section 3.1). Since P;; falls off like the inverse of the distance between panels
and j, the potential coefficients corresponding to distant panel pairs are relatively small. A good
preconditioner depends on the larger P;;'s, thereby including the stronger nearby interactions,
and ignores the distant interactions to save computation.

The one-dimensional nature of the seven-panel problem of Figure 3-10, with P given by
(3.28), makes such a strategy easy to implement. Suppose that any panel within 1m of a given
panel is considered nearby. Panel 3, for example, is near panels 2 and 4. The potential coeffi-
clents corresponding to the interactions between a given panel and its three nearby panels form
a2 3 x 3 (panels 2-6) or 2 x 2 (panels 1 and 7) principle submatrix in P. Figure 3-12 shows the
position of the submatrix corresponding to panel 3, (3. Combining the small submatrix inverses
gives a good preconditioner since the explicit inverses of the strongly coupled nearby problems
capture the essence of the full inverse P~1, Since only small submatrices of P are inverted, the
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cost is low. Figure 3-12 illustrates how the panel-i row of the inverted submatrix corresponding
to panel { becomes the non-zero part of the i-th row in C‘, leading to a preconditioner that
combines parts of all the nearby interaction submatrices.

The complete preconditioner for the (3.28) P obtained using this strategy,

[ 0.3048 —0.0803
~0.0747  0.3230 —0.0747
—0.0747 0.3230 -0.0747
= -0.0747  0.3230 -0.0747 . (3.31)
-0.0747 0.3230 -0.0747
—0.0747  1.3230 --0.0747
i —0.0803  0.3048 |
has non-zero terms that nearly match the entries of the inverse,
0.3076 --0.0732 -0.0188 -0.0105 -0.0072 ~0.0056 -0.0056 ]
-0.0732 0.3250 -0.0689 -0.0164 -0.0090 -0.0062 -0.0056
-0.0188 -0.0689 0.3260 -0.0684 -~0.0162 -0.0090 -0.0072
Pl = | _0.0105 -0.0164 —0.0684 0.3262 -0.0684 —0.0164 —0.0105
—0.0072 -0.0090 -0.0162 -0.0684 0.3260 -0.0689 -0.0188
—0.0056 —0.0062 -0.0090 -0.0164 -0.0689 0.3250 -0.0732
-0.0056 -0.0056 -0.0072 -0.0105 -0.0188 -0.0732 0.3076 |

The results of applying GMRES to the preconditioned system CPg = Cf given in Figure 3-11b
and Table 3-1b are further evidence of C’s similarity to the inverse. The preconditioned matrix’s
eigenvalues, plotted as o’s in Figure 3-11b, are strongly clustered around one, making the
GMRES polynomial interpolation more effective. The more efficient interpolation leads to the
faster convergence of the residual norms in Table 3-1b. Although CP has £(V) > 1, the bounds
on the residuals given in Table 3-1b are still tight enough to show the link between the eigenvalue
clustering and the residual norm convergence. B _

A similar strategy leads to preconditioners for somewhat more general problems than the
Figure 3-10 geometry. If each panel in Figure 3-10 is replaced by a cube containing any number
of panels, the geometry of Figure 3-13 results. Constructing a preconditioner for the correspond-
ing potential coefficient matrix P follows the same strategy as for the Figure 3-10 case, except
that the cubic regions determine which panels are nearby. In particular, the preconditioner
build follows the same steps illustrated in Figure 3-12, with the X’s symbols now representing
block matrices in P rather than individual entries. The rows extracted from C; are now the
rows corresponding to all the panels inside cube 7, and, in this one-dimeasional-cube-array case,
C is block-tridiagonal.
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FiGURE 3-13: A one-dimensional cubic partitioning of a region containing panels.

Constructing a GMRES Preconditioner when Using the Multipole Algorithm

The multipole algorithm recurssively divides the largest cube containing all the panels in
the problem to obtain a hierarchy of cubic regions (see Section 3.2.2). The nearby interactions
between a lowest-level cube and its neighbor cubes are calculated directly from the panel charges
and stored potential coefficients. These potential coefficients are the only entries of P explicitly
computed by the multipole algorithm, yet they represent all of the nearby interaction, and are
therefore useful for constructing a preconditioner. _

A very effective preconditioner that takes advantage of all the potential coefficients already
required by the multipole algorithm results when the strategy applied to the one-dimensional
cube array in Figure 3-13 is blindly extended to three dimensions by considering all neighbor
cubes of a given cube in the multipole algorithm hierarchy to be nearby the given cube. Such

an approach is used in a different context in [135].

Algorithm 3.4 (Multipole-Accelerated GMRES Preconditioner Build) Te¢ construct
a GMRES preconditioner ¢ jor a n-panel problem using all the entries of P calculated by
the multipole algorithm, '

1. Set cube i equal to the first non-emply lowest-level cube and C = 0.

2. Look up the previously computed potential coeffictents for all the interactions between the
~ panels in cube i and ils neighbor cubes and pack them into a matriz,

3. Invert the constructed polential coefficient malriz.

4. Extract the rows corresponding to the panels in cube i only, and pul their enlries into the

corresponding entries in C.

5. If cube i is the last non-emply lowest-level cube, stop; otherwise set cube i to the next

non-empty lowest-level cube and return lo step 2.
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The preconditioner conrstructed using Algorithm 3.4 takes into account all interactions between
panels that are within a neighbor-cube distance of each other. A preconditicner that includes
only those interactions within cube ¢ when constructing the submatrices ir step 2 misses inter-
actions between nearby panels in adjoining cubes. Because it overlooks certain nearby-panel
interactions, such a block-diagonal preconditioner does not cluster P’s eigenvalues as effectively
as the preconditioner constructed by Algorithm 3.4.

The three dimensionality of the general problem makes it impossible to number the panels
0 that all the submatrices extracted form contiguous bands in P as was possible in the one-
dimensional case. Figure 3-14 shows the sparsity pattern formed by the parts of P used to

FIGURE 3-14: Dark areas indicate the position of those entries of P used to form the precon-
ditioner for the wovenl discretization of Figure 4-9.

form C for a typical three-dimensional problem. These pasts of P are exactly those potential
coefficients calculated for the nearby interactions of the multipole algorithm. The resulting
preconditioner has the same sparsity as the extracted parts of P, precluding the use of the
generalized Schur algorithm [95, 134, 38]. The generalized Schur algorithm exploits P’s band
structure for two-dimensional problems to find a positive-definite approximation of P’s inverse.
In contrast, the preconditioner used here is not guaranteed to be definite or normal, but is
applicable to three-dimensional problems with random nearby-interaction sparsity like that
pictured in Figure 3-14.
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3.3 Extending the Algorithm to Problems with Multiple Di-
electrics

The multipole-accelerated capacitance calculation algorithm described in Sections 3.1 and 3.2
applies only to problems with conductors in regions filled with 2 homogeneous dielectric. This
section describes how problems with arbitrary dielectrics can be formulated as equivalent free-
space problems, thereby allowing the application of the multipole algorithm. The development
of a multipole-accelerated capacitance calculation method for problems with multiple isotropic
dielectric regions, each with a different permittivity follows the same path as the homogeneous-
dielectric algorithm developed in previous sections.

3.3.1 Changing the Mathematical Formulation

Two methods are useful for including piecewise constant dielectric regions in integral-
equatijon formulations of the capacitance problem.

Green’s Function Techniques

A capacitance problem involving any system of dielectrics can in principle be solved using
the Green’s function technique of Section 2.1.1. Besides the difficulty of finding the Green’s
function for the conductor and dielectric geometry, the method is hampered by the extra Gauss’s
Law step. Alternatively the conductors can be converted to charge shells as in the free-space
case {Section 2.1.2) and related to the conductor potentials by the superposition integral

f(z) = / ,[5. o(x)Gulz,¥)iS,  z€ S

Here S is the conductor surfaces and f is asin (2.2). The Green’s function G4(z, z') corresponds
to the original problem with the conductors removed, making it simpler than its counterpart in
the formulation of Section 2.1.1. The dielectric Green's function approach is particularly useful
when the dielectrics have a special geometry, for example stratified media [99, 35, I). Techniques
of this sort can also be used for anisotropic media [67, 12]. Except for simple cases, however,
the complexity of the Green’s function makes multipole algorithm acceleration difficult.

Charge Layer Approach

The approach taken here allows more general geometries but applies only to linear isotropic
dielectrics [63, 105]. With isotropic dielectrics, the exterior Dirichlet problem is identical to
(2.1-2.3) with additional boundary conditions at the dielectric interfaces,

Vig(z) = 0, zeV; . (3.32)
¥(z) f(=), z€85 (3.33)
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lim ¥(z) = @ : (3.34)

I =00

3'qbg.(:.':) = eaa—%—l, z € 5%, for all a, b, (3.35)
6n5 n
with a and b corresponding to bordering dielectrics. Here 5
dielectrics @ and b and n; is the normal to $® at z that points into dielectric b. -

The new boundary conditions (3.35) are added to the Section 2.1.2 formulation using a
generalized version of the Section 2.1.2 approach. The dielectric bourndaries as well as the
conductor-dielectric interfaces are replaced by a surface-charge density o and the dielectrics and
conductors are replaced by free space. The conductor potentials are fixed using the integral

equation (2.9) .
f(z) = / fs G P OIS (3.36)

Here § is the union of all the dielectric interfaces 52° and the conductor surfaces S.. Any solution
to (3.36) satisfies (3.32-3.34). The remaining equations come from the dielectric boundary
conditions (3.35). The normal derivatives of the surface potentials on 5* are (see Appendix A)

ay

ab ic the interface surface between

Iz} _ ncos(z -z m) b,

on, - (z) ]/ ofz )4."-‘0":: z:"2 vy L2 T € 5%; (3.37)
OPa(z ' T—7T ,

o = 5go@ = [f o )i:sfouz-;ﬁz“’s’ ve s, (3.38)

using the notation of (3.35). Here ¢, and ; are the limiting free-space potenticls in the former
dielectric regions. In order for the free-space potentials to be a solution to (3.32-3.35), the
normal derivative boundary conditions with (3.37) and (3.38) substituted,

0= (_e-%ﬁla(x) - (fn - fn)/_[g 0(3’) COS(z — %, nb)dsf: zZ € sab, (3‘39)

4w eol|z ~ x’"g

must hold for all dielectric interface surfaces $°. The simultaneous solution of (3.36) and (3.39)
for o gives capacitance matrix entries by integration over the conductor surfaces.

3.3.2 Weighted-Residuals Discretization

Applying the method of weighted residuals exactly as in Section 2.2.1 converts the equations
to a linear system relating the surface-charge density expansion weights to the conductor poten-
tials. The discretization starts with a finite-element expansion of the unknown surface-charge
density o,

n
o(z) = Eajwj(z), z€S, (3.40)
j=t
where the n expansion functions, w;, are non-zero only on triangular or quadrilateral regions
that panel the conductor and dielectric interface surfaces,

w-(z}—A- 1 =z € panel j;
! 0 otherwise.
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Substituting the expansion (3.40) into (3.36) and (3.39) gives two residuals,

Rl(x) Hz) - /] Za_,w,(:c md.s,, T € 5:;(3.41)

J"l

(ea + fg.) cos(z ~ z',mg) ., b

R -_— f— d a
()2 502 Ve ~ (e - a) f ] Jga,w,( Vel LS £ € S(3a2)
which are simultaneously zero when the a;’s are such that {3.40) solves (3.36) and (3.39) exactly.
Assuming the problem is well conditioned, finding expansion weights a; that make both residuals
approximately zero gives a good solution to (3.36) and (3.39). The nature of the approximation

depends on the testing method used.

Collocation Testing

Collocation produces a linear system for the unknown e;'s by forcing (3.41) and (3.42) to
hold at the centroid of the conductor and dielectric-interface panels respectively. If the i-th
panel is a conductor panel with centroid z;, then the collocation method applied to (3.41) at
x; gives

- — 45, ; . 43
0= f(z:) /] Ea, e )41reo|]:r‘ oS, mes (3.43)

When the i-th panel is a dielectric interface panel on 5§ then (3.42) leads to

(e.. + 65) / neos(zi — z',m) | ab
0= ) — (€a - ds’, . (3.44
Za,w_,(x —{e q,)/ JZla.,wj( )4“0”36"-"-""% S z; € 5%, (3.44)
H there are n, conductor panels and ng dielectric-interface panels then » = n. + ng and n,
equations of the form (3.43) combined with ng equations of the form (3.44) form an n X =
linear system for the unknown weights a;. The weight a; has the physical interpretation of the
constant charge density on pane] 7,

a (3.45)

. 91
t Aj ?
where g; and A; are panel j’s total charge and area respectively. Substituting (3.45) transforms
(3.43) and (3.44) into prototypical rows ir a linear system for the g;’s. Since w; is non-zero

only on the j-th panel, (3.43) and (3.44) become

2 1 1
. = § — ! . b 046
(=) z % A; / ./p.m; i 4relles — = ||2d8" %i € Sei (3.46)

i=1

(€a + &) " / / cos(z; — ', np) |, b
0 = gtatel )4s, ;€ 59, (3.47)
H G Aol — &) 1 % A; J ] panat ; 4xeollzi — =13

j=
where the dielectric rows have been divided by (& — €5) so that dielectric information is only

required for the ¢; term.
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The linear system represented by (3.46) and (3.47) can be written in matrix form

B!

where P is an n_ X n potential coefficient matrix with entries given by (3.4)and E is an ng x n
matrix of normal-voltage-derivative, or normal-electric-field coefficients,

cos(z; — 2’ ,ng) , ., .,
T izdS, i# 5
Ey; E:: 2 /fmd: dxeollz; — 2|3 (3.49)
2A,eo(q. — ea) 1=
which may be calculated using closed form expressions [105]. The special case { = j results
becanse cos(z; — 2/,my) = 0 when z’ € panel j. The unknown vector g is the vector of the n
panel charges, and the right-hand-side vector is formed by combining f, formed from the n,
f(z;) values, with 2 vector of »g zeros. The definitions

Aé[P]; bé[f] (3.50)
E 0

allow the more compact equation
Ag=b. (3.51)

Collocation-Galerkin Testing

The collocation discretization, while adequate for problems without dielectric interfaces, is
prone to errors for certain geometries with large permittivity changes (see Section 4.4.1). For
those problems it is sufficient to use higher accuracy Galerkin testing for {(3.42), while still using
computationally cheaper collocation for (3.41), as in the previous section.

Applying the Galerkin method to (3.42) forms inner products between Ry(x) and the nqy
expansion functions w; corresponding to panels on the dielectric interfaces,

(€° + Q) ]/ wi(z) Z a;w;(z)dS

j=1
2 neos(z —2',n) , _ ab
~(€a — &) / fs wilz) j fs Jga,-m,-( Vereroes'4s,  zes®.

Since w; is non-zero only on panel i, and the expansion weights can be written in terms of the
total panel charges using (3.45), the dielectric-panel row becomes

0= (c.2+ &) 1 / /
(1] H
~t-@)Xa ff j [ emmiss, zesh

i=t pane j 47éol|z — 2'[[3
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(€a + €)
0= —_—
%24, co(e.v, — &)

COS(.."',' z’ nb) 1] ab
+ // /f T bis'dS,  z e 5, 3.52
Z VA4 AiA; paneli J J panel j 47éolfz — 3’"2 ( )

where the final equation has been divided by (¢ — €. )A,.
Combining (3.46) with (3.52) gives the hybrid collocation-Galerkin discretization,

RIS

where P is the n. x n potential coefficient matrix in (3.48) and E€ is an ny X n matrix of
average normal-voltage-derivative coefficients,

cos(z — z',mp) | c 4 g
e d5'dS, 1%,
gea | A A / / p.ml i / / panel j 4x¢€oljz — z'[f3 ' (3.54)

i) ca + fb i=
2A:¢0(€s — ¢2)’ 3.

Since closed form expressions for ES, i # j, are known only for special cases [109], numerical

13!
approximations like those described in Appendix C are necessary. The definition

H& P
A-"[EG],

together with (3.50) allow the more compact equation

Aflg =, (3.55)

3.3.3 Multipole Accelerated Iterative Solution

In order to avoid the O(n®) time of Gaussian elimination, the linear system (3.51) or (3.55)
can be solved usirg an iterative method. The reasoning of Section 3.2.1 leads to GMRES as
the best choice, giving O(n?) time and storage. Application of the multipole algorithm further
reduces the time to nearly O(mn), where m is the number of conductors, and the storage to
nearly O(n). The multipole algorithm applies directly to the Pq products in (3.50) and (3.53)
in exactly the same way as described in Section 3.2.2, while the Eq and ES¢ products require
different use of the multipole algorithm. Extending the preconditioner used in the homogeneous
dielectric case (see Section 3.2.4) keeps the number of GMRES iterations reasonable for arbitrary
geometries., '

A.ccelerated Potential Evaluations

The GMRES iterative method has the form of Algorithm 3.1, with the matrix-vector prbd-
uct dominating the cost of one iteration. When applied to (3.51) or (3.55), the part of the
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matrix-vector product corresponding to the conductor panel equations, Pg, is equivalent to
calculating the potential at the centroids of all n, conductor panels due to charge on all n
panels. This calculation can be done more efficiently than the explicit matrix-vector product
using the adaptive multipole algorithm, Algorithm 3.3. As described in Section 3.2.2, the mul-
tipole method approximates the part of the potential due to the panels distant from each panel

centroid, leading to time and memory savings.

Accelerated Potential Normal Derivative Evaluations

When GMRES is applied to (3.51) or (3.55), the part of the matrix-vector product cor-
responding to the dielectric-panel equations is £¢ or E%q respectively. If i # j, E;; is the
contribution of the charge on panel j to the normal derivative of the potential at pane! i’s cen-
troid, while Eg is the contribution of the charge on panel j to the average normal derivative of
the potential on panel i. The standard multipole algorithm calculates only potentials, but it can
be either generalized to approximate these normal derivative quantities directly, or combined
with a post-processing step to do the approximation. The generalized approach incorporates
the differentiation, and the subsequent integration in the case of E@q, into the evaluation trans.
formations. The result is a extension of the adaptive multipole algorithm (Algorithm 3.5 below)
that is capable of the normal-derivative and average-normal-derivative evaluations in addition
to the usual potential evaluations. The other alternative is to use a divided-difference con-
structed using adaptive-multipole-algorithm potential evaluations to approximate the normal
derivatives (Algorithm 3.6 below). This method requires more evaluations than the generalized
multipole algorithm techrique, but avoids modification of the multipole algorithm.

In general any potential evaluation done with the adaptive multipole algorithm (Algo-
tithm 3.3) uses multipole-expansion evalvations (M2P), local-expansion evaluations (L2P), and
direct Coulombic evaluations (Q2P). Evaluation of the normal derivative of the potential is pos-
sible by analytically differentiating all the expansions and potential coefficicats involved in the
potential evaluation. Since differentiation is linear, it is possible to combine the differentiation
with the evaluation step, giving a multipole-to-potential-normal-derivative, or M2E, transforma-
tion, and a local-to-potential-normal-derivative, or L2E, transformation. Appendix B describes
the L2E and M2E operators in more detail. The direct evaluations use normal derivatives of
the P;'s, namely the E;;'s, to compute normal derivatives of the potential. That operation is
summarized by submatrices of E called Q2E transformation matrices. Since both the potential
(M2P, L2P, Q2P) and normal-derivative (M2E, L2E, Q2E) evaluations use the same maultipole
and local expansions, and pa.nel charges as in Algorithm 3.3, this collocation-based generalized
adaptive multipole algorithm differs from Algorithm 3.3 primarily in the type of transformation-
matrices used in the the evaluation step.

lterations involving (3.55) must evaluate E€q products which are averages of the normal
derivative of the potential over the dielectric panels. Since the averaging process is linear, it can
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be combined with the differentiation and evaluation steps to form new linear transformations
M2EG, L2EC and Q2EG, analogous to the corresponding transformations of the collocation-
based generalized adaptive multipole algorithm. The resulting coliocation-Galerkin generalized
adaptive multipole algorithm is generally more accurate than the collocation-based method,
but requires more work in the transformation initialization phase.

Both the collocation and collocation-Galerkin approaches lead to a generalized adaptive fast
multipole algorithm that efficiently computes the matrix-vector products in a GMRES iterative
loop.

Algorithm. 3.5 (Generalized Adaptive Fast Multipole Algorithm) 7o caleulate an ap-
prozimate Aq product or A¥q product,

1. If this is the ﬁi‘st malriz-vector product for a new problem, choose an ezpansion order !
and compule appropriate transformation matrices for all cubes, taking ezact cubes into
account, and store for subsequent calls. Included here are Q2P and Q2F or Q.?EG matrices
representing self and neighbor evaluations. If matrices are already calculated, go to the

next siep.

2. Perform the upward pass. Apply Q2M and M2M matrices to obtai.. multipole eLpansions

in all non-exact cubes.

3. Perform the downward pass. Apply M2L, L2L and Q2L matrices to obtain local ezpansions

in all non-exuct cubes.

4. Perform the evaluation pass. Apply L2P, M2P and Q2P matrices to oblain all collocation
point potentials. Apply L2E, M2E and Q2F matrices, or L2EG, M2EC and QzEG ma-
trices, to calculate all normal electric fields or normal field averages respectively. Included
here are products with the Q2P and Q2E or QQE'G matrices representing self and neighbor

evaluations.

A simpler, but slightly more expensive, approach to evaluating the Fq products using the
adaptive multipole algorithm is to approximate the normal derivatives of the potential using
divided differences. Rather than modifying the adaptive multipole algorithm (Algorithm 3.3)
to give normal electric fields directly as in Algorithm 3.5, the alternative method approximates
the normal fields using divided differences constructed from multipole-algorithm potential eval-
uations. The i-th row in £ has a diagonal entry representing the contribution of the charge on
panel i to the normal electric-field difference at panel i, and several off-diagonal entries which
incorporate the effects of all other panel charges. Thus the total normal field difference at panel

i's centroid may be written
En. = Eo.- + Eyq;, (3'56)

where E,, is the normal field due to 2ll panels other than panel i. The field E,, can be
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-—— approximate E,,

ZTa

FI1GURE 3-15: The part of the normal electric field on the dielectric panel due to distant charge
parels can be approximated with a divided difference.

approximated by a divided difference constructed from two potential evaluations as illustrated
in Figure 3-15. The potentials at two points z, and z3, both the same perpendicular distance,
h/2, away from the panel center z;, combine to give

E, =~ PY(z,) ;‘ ¢(36). (3.57)
Since the potentials ¥(z,) and ¥(zs) can be computed using the efficient adaptive multipole
algorithm, each row of the Eq product requires two potential evaluations using the multipoje
algorithm and one multiply-add.

The divided-difference method also applies to £ products, but is tied to the approxima-
tions of the averaging integral discussed in Appendix C. Those approximations are generaliza-
tions of the panel centroid-collocation method used for the Eq product, which may be viewed as
a first-order approximation to the averaging integral over the dielectric-interface panel. Higher-
order approximations to the averaging integral combine many normal-field evalvations on each
panel in weighted sums. Using 2 separate divided difference constructed as in Figure 3-15 for .
each normal-field evaluation on a particular dielectric pane! allows the application of the adap-
tive multipole algorithm to the £ calculation without modification. A weighted sum of such
divided differences, rather than a single divided difference as in the collocation case, replaces
the off-diagonal part of the average normal field calculation. Each dielectric-panel average nor-
mal field calculation requires several potential evaluations for the divided differences, and one
multiply-add for the diagonal term. The extra evaluations generally lead to a more accurate
solution than in the centroid-collocation case. The disadvantage of the resulting hybrid divided-
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difference method is the need for multiple potential evaluations to compute the many divided
differences required for each dielectric-interface panel.

The divided-difference methods for computing Aq and A*g all have the same form, the only
difference being the order of the averaging integral approximation.

Algorithm 3.6 (Divided-Difference Matrix-Vector Product Calculation) 7o calculate
an approrimate Agq or Afq,

1. If this is the first matriz-vector product, choose the order of the normal electric field aver-
aging inlegral, and the look up the corresponding integration-rule weights and evaluation

point positions from Appendiz C.

2. Use the adaptive mullipole algorithm, Algorithm 3.3, to calculate all the conductor-panel
collocation point potentials as well as two divided-difference potentials for each dielectric-
inferface panel evaluation point prescribed by the integration rule.

3. Calculate a divided difference and add the diagonal contribution (E;iq; in (3.56}) to form
a normal electric flield difference at each dielectric-panel evaluation point,

{. Using the integration rule weights, combine the divided-difference approzimations for each
dielectric interface panel to obtain approrimate average normal-field integrals for all the

dielectric panels.

3.3.4 Preconditioning

As in the uniform dielectric case {Section 3.2.4), an effective preconditioner for the multiple
dielectric case that captures the stronger, nearby panel interactions can be constructed using
only the direct interaction information required by the multipole algorithm. Using essentjally
the same strategy as for the uniform dielectric problem, the preconditioner rows are extracted
from inverted submatrices of A or A¥ corresponding to interactions between panels in neigh-
boring cubes. The only difference is that the interactions now include normal electric field
contributions of ail panels to the dielectric panels in addition to the influences of all panels on
the potential at conductor panels.

When the iterative loop uses the generalized multipole algorithm (Algorithm 3.5) to compute
matrix-vector products, the submatrices of A or AH corresponding to panels in neighboring
cubes exist explicitly as P;; and E;; coefficients that are entries in Q2P and Q2E or Q2EC
transformation matrices'!. In that case the preconditioner calculation proceeds as in the single-
dielectric case, except that normal electric-field interactions (E:;'s) may be present.

*Since a particular cube can contain both dielectric-interface and conductor panels, these matrices usually
have hoth Q2P and Q2E or Q2EG rows, rather than being purely of one type.
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Algorithm 3.7 (Muitipole-Accelerated Generalized Preconditioner Build) To construct
a preconditioner C for a n-panel problem using all the entries of A or A® calculated by the gen-

eralized mullipole algorithm (Algorithm 3.5),
1. Set cube; equal to the firsi non-emply lowest-level cube and C = 0.

2. Look up the previously computed potential and normal electric field coefficients for all the
inleractions between the panels in cube ¢ and its neighbor cubes and pack them into a

malriz.
3. Invert the construcled matriz,

4. Extract the rows corresponding to the panels in cube i only, and pul their entries into the

corresponding entries in C.

5. If cube i is the last non-empty lowest-level cube, stop; otherwise set.cube i to the nezrt
non-empty lowest-level cube and return to step 2.

If the iterative loop uses the divided-difference algorithm (Algorithm 3.6) instead, then
only the potential coefficients FP;; are explicitly calculated for use by the unmodified multipole
algorithm. The rows of the A or A# submatrices corresponding to dielectric panels must
be approximated using the potential coefficients. Consider constructing the submatrix of A
corresponding to the seven-panel example of Figure 3-10, assuming that panel 4 is a dielectric
interface panel, and the others are conductor panels. Using the terminology of Figure 3-15,
two multipole-algorithm potential evaluations near panel 4 give ¥(z,) and ¥(zs), which are
influenced by the charge on all the panels,

Y(za) = Pargs + Pazge + Pasgs + Paas + Fasqs + Fasge + Pazgr;
¥(zs) = Pua + Poge + Pisgs + Pougs + Pisgs + Peags + Perar.

Using these equations and (3.56) with (3.57) substituted gives the normal electric field difference,

7
En, =Y Esiti + Euagu, (3.58)
by
where '
Eyx S fi‘%-f‘l (3.59)

Here k is as in Figure 3-15 and Ey4 is given by (3.49). Panel 4's row approximation to the
dielectric panel row,

Eg Ey By Eu Eis Ew Ea (3.60)

-
.
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is implicit in (3.58) and forms one row of the submatrix. The remaining rows are for conductor
panels 1-3 and 5-7 and consist entirely of potential coeficients.

The submatrices of A7 also require approximation for rows corresponding to dielectric
panels. Az in the A, or collocation, case, the normal-field evaluations are calculated by di-
vided differences, giving an expression for each evaluation in terms of two poteritial coefficients,
Each dielectric panel has many normal-field evaluation point expressions that are combined in
weighted sums as prescribed by the integration rules of Appendix C, giving an approximate
dielectric-panel row with the form of {3.60),

EG§ EG Ef Bu EG Ef EG
for the Figure 3-10 geometry. In this case the normal electric-field approximations for the
Figure 3-10 problem have the general form

) _
5 Poi~PFy;
EGE Y g, (3.61)

where the integration rule has weights d; and the j-th normal electric field evaluation point
on the panel corresponds to two off-panel potential evaluation points, a; and b:. Centroid
collocation is the special case resulting when a; and &, are points near the panel centroid and
di=k=1.

Combining these ideas gives a preconditioner construction algorithm appropriate for use
with iterative loops using Algorithm 3.6 to compute matrix-vector products. The algorithm is
the same as Algorithm 3.7 except that it approximates the dielectric-panel rows used to form
the preconditioner. Using divided differences, the electric field coefficients are approximated
with potential coefficients corresponding to off-panel potential evaluations.

Algorithm 3.8 (Multipole-Accelerated Divided-Difference Preconditioner Build) Te
construct a preconditioner C for a n-panel problem using all the entries of A or A¥ calculated.
by the adaptive mullipole algorithm (Algorithm 3.8) as a part of the matriz-vector multiplication
algorithm, Algorithm 3.6,

1. Set cube i equal to the first non-emply lowest-level cube and C = 0.

2. For each conductor panel in cube i, look up the previously computed polential coefficients
representing the effect of the panel charge in cube i and ils neighbors on the selected
panel’s centroid potential and store them in a matriz. For each dielectric-interface panel
in cube 1, look up the previously computed potential coefficients representing the effect of
the panel charge in cube i and its neighbors on the off-panel potential evaluations specified
by the same integration rule chosen for Algorithm 3.6. Combine the off-panel potential
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coefficients using (3.59) or (3.61) to approzimate the off-diagonal entries of the selected
dieleciric-interface panel’s row. Store these entries, together with the known E;; in the

same matriz with the conductor panel rows.
3. Invert the constructed matriz.

4. Ertract the rows corresponding to the panels in cube i only, and put their entries into the

corresponding entries in C.

5. If cube i is the last non-empty lowest-level cube, stop; otherwise set cube i to the next
non-empty lowest-level cube and return to step 2.

3.3.5 Capacitance Matrix Calculation from the Charge Layer Density

Solving for the vector of panel charges ¢ gives the approximation (3.1) to the charge density
o which is integrated over the conductor surfaces to calculate capacitance matrix entries. If
z is a point on the boundary between a conductor and dielectric region b in the equivalent
free-space problem, then

Oy(x)
=, (3.62)

o(z) =€ on

The dzasity o is chosen so that ¢(z) is the same in the corresponding problem with ¢, dielectric
in region b. Thus the analogous relation for the dielectric problem uses the same potential, but
a different charge density,

oi(z) = ¢ —%&El. (3.63)

The surface-charge density oy(z) is called the free-charge density. It is the actual surface-
charge density induced on the conductor, the density that is integrated to give capacitance
matrix entries. Combining (3.62) and (3.63) gives

oz} = Lola), (3.64)

§0 that ay(z) is proportional to the o(x) obtained by solving (3.36) and (3.39) simultaneousty.
In the case of an infinitesimally thin conductor lying on the interface between ¢ and ¢,
dielectrics, the equation analogous to (3.63) is

a ?bu(z) 815'6(3 )
ny % oy

os(z) =€

Substituting (3.37) and (3.38) gives an integral expression for 0'!(3) in terms of o(z),

€ + € cos(z - z', np) .
or(z) = —260—0‘(3:) - (€& — &) f ‘/s a(x )mdf z on thin conductor.

This expression is substituted for (3.64) when the conductor region is infinitesimally thin.
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Multipole Accelerated Capacitance
Calculation Algorithm Evaluation

Combining the techniques of Chapter 3 to implement a capacitarce calculation algorithm
provides a concrete foundation for evaluating the new method. Section 4.1 describes the par-
ticular implementation used here, and later sections discuss the properties of the complete
algorithm, using the implementation as a guide. Sections 4.2 and 4.3 discuss the algorithm’s
convergence and error properties and computational complexity, while Section 4.4 demonstrates
its performance in actual capacitance calenlations.

4.1 Implémentation

This section gives a detailed description of an implementation of a capacitance-calculation
algorithm based on a preconditioned, adaptive multipole accelerated GMRES iterative method.
The iterative loop has the form of Algorithm 3.1 with iterates calculated using Algorithm 3.6,
and uses a preconditioner calculated with Algorithm 3.8. Section 4.1.1 describes the main
capacitance calculation routine, while Sections 4.1.2 and 4.1.3 discuss the multipole algorithm
initialization and field-calculation functions respectively!.

4.1.1 Capacitance Calculation Algorithm

The capacitance calculation algorithm implemented here uses the weighted-residuals dis-
cretization of the integral-equation formulation described in Section 3.3.2. The method uses
panel-centroid collocation on the conductor panels and Galerkin testing on dielectric-interface
panels, following Section 3.3.2. Several divided-difference approximations to the normal electric
field on each dielectric-interface panel approximate the Galerkin integrals using the integration

'The actnal C program implementation of the algorithm, fastcap, is avallable by anoaymous £tp from
Tle-vlai.mit.adu,
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rules of Appendix C, with panel-centroid collocation a first-order special case. The resulting

linear system is solved with preconditioned GMRES, using the divided-difference approach to

calculate the matrix-vector products (Algorithm 3.6), and the preconditioner (Algorithm 3.8).
The implementation uses standard GMRES [112] to solve (3.55),

Afg =,

for the unknown vector of panel charges g, with m different b’s given by the potential prob-
lems associated with the m conductors. The function Input_Problem(input_files) reads
the problem description from the files listed in input_files, producing a list of conductors,
conductor_list, a list of all the conductor and dielectric-interface panels, panel_list, the
spatial-partitioning depth, depth, the dielectric-panel Galerkin-integral approximation order,
o, the expansion order, /, and the GMRES iterative-loop tolerance, GMRES!ol. The default
value of depth is auto, which causes the partitioning depth to be chosen automatically based
on the problem geometry, while o6 = 1 (centroid collocation), ! = 2 and GMREStol = 0.01
by default. Aftes reading the problem description, the adaptive multipole algorithm's data
structures are initialized using Initialize_Multipols(), which returns the panel-charge and
evaluation-point potential vectors, ¢ and p respectively. Each pass through the main loop cal-
culates the column of the capacitance matrix corresponding to a different conductor, i, by
first solving for ¢ with GMRES, and then using Sum_Charge(q, i) to figure each ¢;; by adding
the conductor-i panel charges, scaled by the relative permittivities of the bordering dielectrics
times 4x¢p. The factor of 4x¢o is absorbed into the definition of charge for the purposes of the
calculation, leading to greater efficiency and a more convenient scaling?. The final step averages
ofi-diagonal entries of the capacitance matrix to obtain a symmetric matrix.

Since Load_Initial_Residual(g,j) loads g with the right-hand-side vector b correspond-
ing to conductor 7 at unit potential, the others at zero, the GMRES loop begins with the zero
vector as the initial guess. The initial call to Apply_Preconditioner(q) returns Cg, applying
the preconditioner to b. Most of the work is in the inner, iterative loop in the repeated calls
to Calculate_Multipole Fields(p,q), which implements Algorithm 3.6 followed by multipli-
cation by the Algorithm 3.8 preconditioner. Subsequent sections give further descriptions of
these functions, and the multipole initialization routine, Initialize Multipole(panel_list,
depth, I). :

Algorithm 4.1 is a realization of the complete preconditioned adaptive multipole accel-
erated GMRES iterative method, referred to as PAMA. The same algorithm without the
Apply Preconditioner() calls in Algorithms 4.1 and 4.3, and the preconditioner construc-
tion step, Phase 5, in Algorithm 4.2 is the adaptive multipole accelerated GMRES iterative
algorithm, referred to as AMA. If in addition all the if statements involving comparisons of |

*In other words the calculation nses Gaussian units, but the results are giver in MKSA. For a comparison of
these units see [61].
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vector lengths to (I + 1)? in Algorithm 4.2 are made unconditional, then the multipole algo-
rithm buiids expansions at all non-empty cubes, resuiting in the multipole accelerated GMRES
iterative algorithm, or MA for brevity. The term “multipole accelerated algorithm™ also refers
to all these implementations collectively, as does the shorthand FASTCAP.,

Algorithm 4.1 (Capacitance Calculation Algorithm)
/* Problem Input and Multipole Initialization */
fconductor_list, panel_list, depth, o, I, GM RES1tol] = Input_Problem(input_files).
[r, 4] = Initialize_Multipole(panel_list, depth, o, {}.
/* Compute Capacitances Associated with Each Conductor */
for each conductor j in conductor_list {
/* Perform GMRES Iterative Loop Solve for ¢ */
Load_Initial_Residual(g, 7). /* Temporarily store Cb in g */
Apply_Preconditioner{g).
ICH2 = liglla-
70
E=1.
/* Construct the Krylov Subspace Vectors */
while ([lr*=}i,/]ICbl» > GMREStol) {
/* Approximate the Preconditioned Matrix-Vector Product */

:Uozq_

g=vc1,

Calculate_Multipole_Fields(p, q).

/* Find Projections of New Krylov Vector on Ol Krylov Vectors */
for each previously computed v*, 0 < i < & {

hy = pTo'.
}
p=p—- T huw. /* Orthogonalize */
hie = [plls. /* Normalize */
U = pfhy.

/* Compute the Residual */
compute ||r*||; using the h;;’s.
k=k+1.
}
/* Construct the Solution */
choose a;'s in ¢ = 5] a;v to minimize fjr*~! .
/* Sum Charges to Get Capacitances */
for each conductor i in conductor_list {
¢;; = Sum_Charge(g, i).

}
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}

/* Symmetrize the Capacitance Matrix */
for each conductor i in conductor_list {
for each conductor j > 7 in conductor_list {
eij = €5 = (cij + ;i) /2.
}
}

4.1.2 Multipole Algorithm Initialization

The capacitance calcnlation algorithm (Algorithm 4.1) calls Initialize_Kultipole() once

to build the data structure that contains all the geometry-dependent information of the problem.
"The cost of the initialization is amortized over the many calls to Calculate_Multipole Fields()
performed in the inner loop of Algorithm 4.1.

The names of functions aud variables that are particular to the implementation used for
this thesis are set in typewriter font and are discussed after the algorithm description. The
remaining symbols represent the cube hierarchy with D levels (see Section 3.2.2) and associated
quantities. A cube on level d with index j contains panels carrying total charges given by the
vector gu;, and evaluation points with potentials given by the vector pq ;. All cubes devoid
of panels or evaluation points are not inciuded in the hierarchy. These vectors are contiguous
sub-vectors of the vectors ¢ and p, which represent ali the panel charges and evaluation point
potentials in the problem. The cubz may have a multipole expansion, denoted My ;, or a local
expansion, denoted Lgj, with order I. The algorithm nses Q2M, M2M, M2L, L2L, L2P, Q2P,
Q2L and M2P matrices to calcula:e these vectors as described in Section 3.2.3. Their arguments
indicate source and destination cubes. For example, Q2M(d, 5,4, 7) produces My ; from g; ;. All
lowest-level cubes in the hierarchy have C matrices which together store the divided-difference
preconditioner, generated using Algorithm 3.8 as described in Section 3.3.4. The remaining
‘quentities describe the cube’s position in the hierarchy.

F(d,7) is the parent of cube j on level d. F with no argument refers to the sel of all parent
cubes.

C(d, 7} is the set of non-empty children of cube j on level d. C' with no argument refers to the
set of all child cubes. '

N(d,7) is the set of neighbor cubes for cube j on level d. The neighbor cube set is the non- -
"empty nearest neighbors and second-nearest neighbors of the given cube, and the given
cube itself. The nearest neighbors are those level d cubes that share a corner with the
given cube; the second-nearest neighbors are the level d cubes that share a corner with

the nearest neighbors, but are not nearest neighbors themselves. In two dimensions, as
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illustrated by the examples of previous sections, the neighbor region does not include

second-nearest neighbors. N with no argument refers to the set of all neighbor cube sets.

I(d, j) is the set or list of interaction cubes for cube 7 on level d. The set is defined in terms
of the mixed-size interaction set, which is the interaction list of the original algorithm
[52, 54], with level d ~ 1 cubes included when they do not lead to expansion evaluations
which violate the constraint (3.9). More succinctly, the mixed-size interaction set contains
all non-empty cubes on level d — 1 which are second-nearest neighbors of F(d, §), and all
non-empty level d cubes that are children of F(d,7 )'s nearest neighbors and are not in
N(d,j). For cubes with F(d, j) = Adaptive Parent Cube(d, j), I{d, ) is the mixed-size
interaction set. For lowest-level cubes, or cubes that have more than one non-empty child
cube and an adaptive parent that is different from their parent, I{d, j} is the set of all the
mixed-size interaction sets for 2ll ancestors of cube j on level d that are also descendants
of its adaptive parent cube, including the j, d cube itself. All other cubes have I(d,j)
equal to the empty set. I with no argument refers to the set of all interaction cube sets.

Only Initialize_Multipole() uses the cube hierarchy explicitly to determine the sequence
of the many transformation matrix-vector products that make up the calculation, as well as
the matrices and their source and destination vectors. The sequence information is stored
in lists of source vector, transformation matrix and destination vector triples, with one lisi
for each phase of the calculation. Subsequent application of the multipole algorithm with
Calculate_Multipole_Fields() requires only performing the matrix-vector products in the
order specified by the lists, thereby avoiding repeated cube-relation checks and transformation

madtrix calculations.

Algorithm 4.2 (Initialize Multipole(panel 1ist, depth, o, D)
/* Phase 0: Multipole Data Structure Build and Initialization */
iF, C, p, g, D] = Build_Cube_Hierarchy(panel_list, depth, o, D.
N = Build_Neighbor_Seta(F, ().
I = Build_Interaction_Sets(F, ().

/* Phase 1: Direct Multipole Operator Build */

for each finest-level cube j =1 to 87 {

" for each of cube j’ neighbor cubes j € N(D,7) {
Q2P(D,j, D,7) = Calculate_Potential_Coeff icients(D,3,D,D.
Add_To_List{diract_list,pp ;, Q2P(D,j, D,3),ep3-

/* Phase 2: Upward Pass Multipole Operator Build */
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for each finest-level cube j = 1 to 82 {
if (Length(ap,) > (I +1)?) {
QzM(D,j, D,j)= Calculate_Charge_To_Multipole(D,j, D, ).
Add_To_List(up_list, Mp;,Q2M(D, 3, D,7),qp,;)-
}

}
for each leveld=D —1t02 {

for each level d cube 7 =1 to 87 {
if (Length(ge;) > (I +1)%) {
if (Size(C(d, 7)) > 1) {
for each level d + 1 cube j € C(d, j) {
if (Longth(aasnd > (1 1) {
M2M(d,j,d+ 1,7) = Calculate_Multipole_To_Multipole(d,j,d+1,7).
Add_To_List(up_list, Mg ;, M2M(d,j,d+1,7), Mayr9)-

}

else {
Q2M(d,j,d+ 1,7) = Calculate_Charge_To_Multipole(d,j,d+1,7).
Add_To_List(up_list, My;, Q2M(d,7,d+ 1,7}, 9a+13)-

}
}
}

else {
Add_To_List(up_list, My ;,identity, Mys1,7).
}
o}
}
}
/* Phase 3: Downward Pass Multipole Operator Build */
for each level d =2 to D {
for each level d cube j = 1 to 82 with Size(I(d, i) >0 {
[1evel, cube] = Adaptive_Parent_Cube(d,j).
if (Lengeh(pa;) > (1 +1)* {
Set_Local_Expansion_Flag(d,j).
if (level > 1} { .
L2L(d, j,1evel, cube) = Calculate_Local_To_Local(d, j, level, cube ).
Add_To_List(down_list, La;, L2L(d, j,level,cubs), L 10ver, cubal .
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for each d,j € ¥{(d,5) {
if (Lengthlgz;) > (I+1)*) {
M2L(d, id, 7= Calcnlate_Multipole_To_Local(d, i, 4.
Add_To_List (down_list, Lqj, M2L(d, j,d, ), Mz;).

}

else {
Q2L(d, 7, t:.',j) = Calculate_Charga_To_Local(d,j,t:.’, .

4dd_To_List(down_list, Laj, @2L(d, 7,4, 7), ¢35+

}
}
)

else {
if (Local_Expansion Flag Set(lavel, cube) = 1) {
L2P(d,,1evel, cube) = Calculate_Local_To_Potential(d,j, level, cube).

Add_To_List(down_1ist, paj, L2P(d, ], Level,cube), L jeve, cube?-
} ]
for each d,7 € I(d,7) {
if (Length(gz;) > (14 1)%) {
M2P(d,j,d,3) = Calculate_Multipole_To_Potential(d,j, 4,D.
Add_To_List(down_list, paj, M2P(d, j,d,7), My

}

else {
Q2P(d, i d,3) = Calculate_Potential_Coefficients(d,j,d,7.

4dd_To_List(down_list, paj, Q2P(d, 5,4, 7),455)-
)

/ * Phase 4: Evaluation Pass Multipole Operator Build */’
for each finest-level cube j = 1 to 87 {

if (Lengtn(pp,;) > (1 +1)*) {
L2P(D,j, D,j) = Calculate_Local_To_Potential (D,j3,D,3).

Add_To_List(evaluation_list, pp.‘,;, L2P(D,3,D,3), Lp ;).

LS
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/* Phase 5: Preconditioner Operator Build */

for each finest-level cube j = 1 to 87 {
matrix = Lookup_Potential _Coefficients(D,j, D,N(D,i}).
Convert_Dielectric_Rows(matrix).
C(D, j) = Delete_Rows(j, N(D, j), Inverse(matrix)}).
Add_To_List{preconditioner_list, g: ; C(D,7), UN(D,i}52 -

}

Algorithm 4.2 uses several variables that are particular to this implementation. The list
below gives the variables in the order they appear, omitting several variables that are defined
in the capacitance caleulation algorithm (Algorithm 4.1) description.

direct_list is the list of destination vector, transformation matrix, source vector triples used
to perform all the direct (Coulomb’s Law) interaction required by the multipole algorithm.

matrix is a temporary matrix variable.

preconditioner_list is the list of destination vector, transformation matrix, source vector

triples used to appiy the preconditioner to the current charge vector iterate.

up_list is the list of destination vector, transformation matrix, source vector triples used. to
convert panel charge to a complete hierarchical set of multipole expansions.

identity is the identity matrix. This matrix never explicitly multiplies any vector; it is used

as a flag to copy a maltipole-expansion pointer.
level is a temporary level number variable.
cube is a temporary cube number variable,

- down.list is the list of destination vactor, transformation matrix, source vector triples used to
convert the multipole-expansion hierarchy into a local-expansion hierarchy.

evaluation.list is the list of destination vector, transformation matrix, source vector triples
used to evaluate the contribuiion of the local expansion hierarchy to the evaluation point
potentials,

All the functions used by the multipole algorithm initialization function Initialize Mul-
tipole() (Algorithm 4.2) are listed here in order of appearance. Appendix B describes the
computation done in the transformation-matrix building functions, except for the potential-
coefficient calculations for Q2P matrix entries whick are described in Section 3.1.

Build.Cube. Hierarchy{panel_ list, depth, o, [) builds the hierarchy of non-empty cubes,
returning the parent and child sets, F and C respectively, to allow references to individ ual



cubes, wnd the partitioning depth D. The function also allocates the giobal total-panel-
charge vector, ¢, and the vector of evaluation-point potentials, p, and associates each cube
with the contiguous subvectors of ¢ and p corresponding to their panels and evaluzution
points. Each dielectric panel leads to at least 20 off-panel potential evaluation points
for the calculation of divided-difference approximations to the electric field at the panel
{see also Appendix C and Section 3.3.2). If depth is auto, the pumber of partitioning
levels, D, is set to the smallest number that gives at least 90% of the finest-level cubes’
evaluation-point vectors with (I + 1)? or less entries. Otherwise D is set equal 1o dapth.

Build Neighbor Sets(F, C) builds the neighbor cube set, N(d, j), for every non-empty cube
Jonevery level 2< d < D. ‘

Build.Interaction Sets(F, C) builds the interaction cube set, I{d, j), for every non-empty
cube j on every level 2 < d < D,

Calculate Potential Coefficients(d, j, d, j) calculates the Q2P transformation matrix that
multiplies the charge vecior for cube 7, level d to produce the evaluation-point potential
vector for cube j, level d.

Look Up Potential Coefficients(d, j, J, cube_sat) looks up previously calculated poten-
tial coefficients for all pairwise interactions between panel charges in all the cubes in
cube_set on level d and evaluation-point potentials in cube 7. level d. Multiplying the
returned matrix by the parel-charge vector gives the evaluation-point potential vector.

Convert Dielectric Rows(matrix) transforms all the dielectric panel rows in a matrix of
potential coefficients to normal electric field difference coefficients. The transformation is
a series of row operations involving rows that represent evaluation point potentials used
to construct divided-difference estimates of the electric field difference at the panel. This
function implements the dielectric-panel row part of step 2 in Algorithm 3.8.

Add_To List (1ist, vector.out, matrix, vector.in) adds an entry to 1ist indicating that
one step of the multipole algorithm multiplies matrix by vector_in and stores the result
in vactor_out.

Set Local Expansion Flag(d, ) sets the local expansion flag for cube § on level d.
Inverse(matrix) converts matrix to its inverse in place by Gaussian elimination.

Delete Rows(j, cube.set, matrix) interprets matrix as a matrix of inverse pbtential and
normal electric field coefficients which gives the vector of panel charges contaired in
cube_set’s cubes when muitiplied by the same region’s evaluation-point vector, whose
entries may have the units of potential or electric field after Convart_Dielectric_Rows().
The returned matrix is matrix with all rows corresponding tv charge vector entries for

85



panels that are outside of lowest-level cube j removed. This function implements the later
part of step 2 in Algorithm 3.8.

Calculate.Charge.To Multipole(d, j, d, j) calculates the Q2M transformation matrix that
multiplies the charge vector for cube 7, level d to produce part of the multipole-expansion
coefficient vector for cube j, level d.

Calculate Multipole To Multipole(d, j, d, /) calculates the M2M transformation matrix
that multiplies the multipole-expansion coefficient vector for cube j, level d, to produce
part of the multipole-expansion coefficient vector for cube 7, level d.

Adaptive Parent Cube(d, j) returns the level and cube index of the first ancestor of cube
7, level d, that has more than one non-empty child cube. The returned cube is called the
adaptive parent cube of cube 7, level d.

Length{vector) is the number of entries in vaector.
Size(set) is the number of elements in set.

Calculate Local To_Local(d, j, d, 7 calculates the L2L transformation matrix that multi--
plies the local expansion-coefficient vector for cube 7, level d, to produce part of the local

expansion-coefficient vector for cube j, level d.

Calculate Multipole To.Local(d, j, d, j) calculates the M2L transformation matrix that
multiplies the multipole-expansion coefficient vector for cube 7, level tf, to produce part
of the local expansion-coefficient vector for cube j, level d.

Calculate Charge.To.Local(d, 7, d, /) calculates the Q2L transformation matrix that multi-
plies the charge vector for cube j, level d to produce part of the local expansion-coefficient
vector for cube j, level d.

Local Expansion Flag.Set(d,j) returns 1 if cube j on level d has had its local expansion flag
set by Set_Local_Expansion_Flag(), that is if the cube has a local expaasion.

Calculate Local To_Potential(d, j, d, j) calculates the L2P transformation matrix that mul-
tiplies the local expansion-coefficient vector for cube 7, level dto produce part of the
evaluation point potential vector for cube j, level d.

Calculate Multipole ToPotential(d, j, d, j) calculatesthe M2P transformation matrix that -
multiplies the muitipole-expansion coefficient vector for cube 7, level d to produce part of
the local expansion-coefficient vector for cube j, level d.
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4.1.3 Multipole Algorithm Field Calculation

After building the geometric-dependent multipole transformation matrices using Initial-
'jze Multipole(), the vector of panel potentials and flux-density differences, p, can be cal-
culated given a vector of panel charges, ¢, using Calculata,Hultipola.Fialda(p, q) (Algo-
rithm 4.3). Algorithm 4.3 multiplies the resulting p by the preconditioner C, thus performing
an approximate matrix-vector product for use in the precondil.ioned iterative loop of Algo-
rithm 4.1. Algorithm 4.3 is much simpler than Initialize_nultipole(p. q) (Algorithm 4.2)
since it amounts to just performing the matrix-vector products specified by the lists precon-
ditioner.list, direct.1ist, up_list, down_list and evaluation list. Each list entry
specifies a precomputed iransformation matrix, the vector it multiplies, and where to store
the result. In Phase 2 of the calculation, the assign vector.out = vector-in is implemented
as a copying of 2 pointer 10 vector_in to a poinfer o vector.out, rather than copying the
actual vector. The pointer assignment is assumned to have no cost in the complexity estimates
of Section 4.3.

The calculation uses two local vector variables, yector_out and vector_in, the temporary
matrix variable matrix, and the temporary panel variable panel. Sections 4.1.1 and 4.1.2
describe other, previously defined variables. -

The multipole algorithm field calculation function uses LWO REW functions. Apply Precondi-
tionexr(g) premultiplies g by the preconditioner matrix using the previously computed precon=
ditioner.1ist. The function is also used before the GMRES loop in the top-level capacitance
calculation algorithm, Algorithm 4.1, to multiply the right-hand-side by the preconditioner.
The vectors g and g'™ are subvectors of the panel-charge vector g.

/* Pre-Mulitiply the Charge Vector by the Stored Preconditioner */
for each ¢, C, ¢™ triple in

praconditioner_list {

qout = C- . qin.
}

Calculata_Electric_Field.Ditferenca(panel i) estimates the integral of the electric field
difference over panel i using the method described in Section 3.3.2 and Appendix C. By default
the function uses a first-order (0 =1 in Algorithm 4.1) method based on a single evaluation
point at panel i’s centroid, but all the higher-order methods of Appendix C (0 =2, 3,50r7)
are implemented. The function Build Cube Hierarchy() in Algorithm 4.2 initializes the panel
data structures to reflect the integral approximation order o, making explicit references to o

unnecessary in this function.

Algorithm 4.3 (Calculata.ﬂultipole_i‘ields(p, q))
/* Phase 1: Direct Multipole Operator Application */
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For each p®#, Q2P, and ¢'* triple in direct_list {
paut — Q2P . qin.

/* Phase 2: Upward Pass Multipole Operator Application */
For each vector_out, matrix, vector_in triple in up_list {
if (matrix is the identity) {
vector_out = vector_in.
else {

vector_out = vector_out + matrix - vector_in.

/* Phase 3: Downward Pass Multipole Operator Application */
For each vector_out, matrix, vector_in triple in down_1ist {

vector_out = vector_out + matrix . vector_in.

/* Phase 4: Evaluation Pass Multipole Operator Application */
For each p™™, L2P and L triple in evaluation_list {
P =p" + L2P. L.

/* Phase 5: Dielectric Panel Elertric Field Difference Calculation */
for each dielectric panel i in panel_list {
p; = Calculate_Electric_Field, Difference(panel i).

}

/* Phase 6: Preconditioner Operator Application */
Apply_Preconditioner{g).

4.2 Convergence and Error

The capacitatce calculation algorithin examined here is based on solving an algebraic ap-
proximation to a system of integral equations using a multipole-accelerated jiterative method.
The error in the resulting approximate solution to the analytic equations has several sources.

Section 4.2.1 treats the integral equation’s intrinsic sensitivity to discretization error. Sec-
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tion 4.2.2 investigates the closely related error arising from the weighted-residuals discretization,
which must be shown to tend to zero at some acceptable rate as the fineness of the discretization
is increased. Section 4.2.3 discusses the last class of errors, those resuliing from the approximate

solution of the discretized problem with a multipole-accelerated iterative method.

4.2.1 Uniqueness and Well-Posedness

The charge layer approach to the capacitance problem with arbitrary dielectrics (3.32-3.35)
leads to the system of integral equations formed by (3.36) and (3.39),

! ~——-—1 ! r ; .
flz) = /j; a(z )4“oﬂz — I,szs , € Se; (4.1)

0 = ) (@-a) [[ o T

ds’, 52t 4.2
dreoz — 2|2 z€ (42)

where {4.2) must hold for all dielectric interface surfaces 5%, The system may be viewed
as a single first-kind integral equation coupled with several homogeneous second-kind integral
equations, one for each dielectric interface. The first-kind equation is a Binear operator from o
onto f constrained by the second-kind boundary operator equations [72].

The system (4.1-4.2) is a partial formulation of the differential equation problem (3.32-3.35).
The differential equaiion, known as Laplace's equation with mixed boundary conditions, can be
shown to have a unique, harmonic solution ¢ whenever the conductor and dielectric surfaces are
regular and the specified boundary conditions are continuous (66, 63]. Most conductor surfaces
encountered in practice are regular, including those with corners and edges.

The first-kind integral equation (4.1) also admits a unique solution o for every f when the
surfaces are regular but, unlike 2 harmonic function, ¢ need not have any derivatives®, even if
f is continuous {126]. This is 2 general property of first-kind integral equations. The solution
is often more poorly behaved than the boundary conditions and small perturbations in the
boundary conditions can lead to discontinuous changes in the solution [30] First-kind equalions
with this behavior are said to be i!l—'po'séc.l. since even small numerical erfo_rs in an approximate
1epresentation of the bounda.rjr conditioné_could ‘lead to large errors in the solution. For the
particular first-kind integral operator (4.1), however, the integrand’s singularity makes the
operator strongly elliptic {93, 139, 4, 72]. A strongly éiliptic operator can be shown to behave
reasonably when discretized, thus ma.king the first-kind formulation well-posed for practical
purposes. [93, 139), although some existing results make smoothness assumptions that preclude
conductors with edges [4, 139, 63}, and others allow edges, but consider generalized functions

3More precisely, using terminotogy defined elsewhere {for example {32, 34]}, the first-kind integral operator
is an isomorphism {or bijection) of the sobolev space H°(S) onto H #+1(8), for any real s. 1f the surface is
not regular, the operator is still an isomorphism from H —12(5) onto H 1/2(5) [93, 4]. H’(S} is the space of
tempered distributions u defined on S such that (1 + |£[*)*/%4 is square summable. Here &(¢), £ € R?, is the
Fourier transform of u.
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as possible solutions [93, 126]. In practice, as Section 4.4 demonstrates, the formulation is
adequate, even for conductors with edges.

4.2.2 Weighted-Residuals Discretization Convergence and Error '

The error in the weighted-residuals discretization of the potential problem depends on the
specific method used. Galerkin methods can be shown to couverge to the true solution as
the number of finite-element expansion functions is increased. Similar analyses for collocation
applied to first-kind integral! equations exist only for two-dimensional problems [4, 140]. An
extension to three dimensions for the capacitance problem may be possible, but is beyond the
scope of this thesis. As the resultsin Section 4.4 indicate, the collocation-Galerkin discretization
applied to the first- and second-kind integral-equation formulation (3.36-3.39) performs well in

practice.

All the weighted-residuals methods can lead to large errors due to poor modeling of charge-
density singularities at conductor edges {45, 78]. General techniques for reducing the error exist
but are applicable mainly to Galerkin methods {11]. In the context of capacitance calculation,
other methods, such as requiring all edges to be rounded {145], discretizing more finely near
edges (109} or solving for the integral of the charge density (45}, are used. A full discussion of
these modeling issues is beyond the scope of this thesis, but Chapter 5 gives some additional
comments.

4.2.3 Linear System Solution Convergence and Error

The linear system resulting from the weighted-residuals discretization of a first-kind inte-
gral equation, unlike the corresponding matrix for a second-kind integral, is not necessarily well
conditioned [49, 47, 36). The numerical instability manifests itself in the limit of a fine dis-
cretization. The singularity of the free-space Green’s function ensures that the diagonal entry
is the largest entry in any row derived from the first-kind integral equation. This weak diago-
nal dominance leads to well conditioned matrices in most cases {15] but not always, especially
for finer discretizations [13). In contrast, the diagonal element in a row corresponding to the
second-kind equation remains constant as the discretization is refined, ensuring stability. The
capacitance-problem formulation used in this thesis always includes 2 first-kind part arising
from (3.36), and a second-kind part, from (3.39), whenever dielectric interfaces are present.
The matrix arising from the discretization is usually dominated by possibly poorly conditioned
first-kind rows corresponding to the conductor panels. However, the use of a preconditioner as
described in Sectjon 3.2.4 ensures that the effective system matrix is well conditioned, as the

results in Section 4.4 demonstrate,
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Capacitance Error Bounds

The combined effects of matrix conditioning, approximate iterative solution, and multipole-
algorithm error on the convergence of multipole accelerated GMRES iterative methods like
Algorithm 4.1 can be expressed as bounds on the capacitance errors in terms of the sum of the
iterative-loop tolerance and the multipole-algorithm error. The bounds a.pply' to capacitances

calculated using a preconditioned linear system of the form
CAq =Cb, (4.3)

where g is the panel-charge vector, b is the vector of conductor-panel potentials combined with
zeros for the dielectric panel rows, A is an » X n matrix of potential and normal-electric-field
coefficients, and € is a preconditioner appropriate for A. In particular, the linear systems
formed by the A or A" matrices arising from the collocation or collocation-Galerkin strate-
~ gies of Section 3.3.2 together with the corresponding preconditioners of Section 3.3.4 lead to
capacitance-matrix errors that car be bounded in this fashion.
An m-conductor capacitance problem reguires the solution of m linear systems of the form
(43), |
Cag=Cb, 1<i<m, (4.4)

where ¢; and b; are the panel-charge and right-hand-side vectors corresponding to conductor ¢
at unit potential, the others at zero. Adding the entries of g; corresponding to panels on each

conductor gives ¢;, the i-th column of the capacitance matrix C,

Since b; has ones in the entries corresponding to the panels on conductor #, and zeros otherwise,
ci=BTg, (4.5)
where the superscript T denotes tr.a'.nspbse, and

|| |
by by - b |-
{1 |

Using an iterative method to solve (4.4) produces an approximation to the exact ¢; whose
error is bounded by the properties of the iterative method. In the case of the GMRES iterative
method used in Algorithm 4.1, the approximate solution after the k-th iteration, §¥, has the
Euclidean norm of its residual error bounded by some tolerance. The link between the capaci-

tances and the panel charges (4.5) relates this tolerance to the error in the capacitance matrix.

[krg

B.
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H & 4 BTGk, then using (4.4) to substitute gives

BT (g: — &),

G—& =
a—& = BT[(CayICh- &
lies — &illoo < flei — &l < BTz WCA) iz H(Ch: — CAGEa, . (4.6)

where || - |lo, denotes the Lo, norm [50]%. The last norm on the right in (4.6) is the norm of the
residual corresponding to ¢ considered as a solution to (4.4).

The use of the multipole-algorithm approximation to compute the GMRES iterates leads
to bounds on a different residual than that in (4.6). Since the multipole algorithm is a linear
operator (see Section 3.2.3), using the multipole-algorithm approximation effectively replaces A
with 4 + E, where F is a bounded perturbation to A. Thus the multipole accelerated GMRES

iterative method solves the linear systems
C(A+E)g=Cb, 1<i<m, (4.7)
rather than (4.4), giving bounds on the residual norm
ICh: — C(A+ EYlle (4.8)

 rather than ||Cb; — CAgf||,. Rearranging (4.6) and using the triangle inequality uncovers {4.8)
and a term that deperds only on the multipole error,

s = &illeo < 187 CCAY s [ICoi~ CA+ BYRR +UCER ). (49)

Taking the norm of {4.4) gives
ICAlz Qlgill2 > ICbHle,
which combined with (4.9) leads to a relative error bound

llei = &lloo _ o7 (Gt — B(A + E)ib)s ucrEq.*nz]
Tl < U8 Tl (CA)[ T G (4.10)

where £(CA) = |(CA) |l ||CA|[2 is the condition number of CA [50]. Since the muitipole
accelerated GMRES iterztive method decreases the normalized residual in (4.10) on every
iteration, it can be reduced to any specified tolerance, GMREStol > 0, so that

W(Ch; - C(A + E)iblle
ICoie

Substitution into (4.10) using this expression and (4.4) gives

< GMREStol.

flei = Gilloo _ o7 IICEq"fIz]
T S 187l ~(CA) [GMREStoI+ 1Caal, (4.11)

*For an n-entry vector v, Jvfle = maxiciga [oil. For a p x » matrix A4, [Alle = maxy<i<p E:__, 14s].

92



The normalization of the capacitance matrix error can be made more attractive by assumi ng
that the discretization is fine enough for all the panel charges on a given conductor to have the
same sign. The panel charge vector can be written as the sum of two vectors,

g = ¢ + gD, (4.12)

where gjo is g; with all the dielectric-panel charge entries set to zero, and ¢;p is g; with all the
conductor-panel charge entries set to zero. The sign pattern assumption constrains g;o such
that

llaigllz < 1B  gigllz = 1BT ¢:ll2 = lleillz.

Substituting this into the triangle inequality applied to (4.12) gives

fgitl2 < fleill2 + llginl2-

This result, together with

1872 < VBTl 157l = /X 7,

where || - ||; denotes the L, norm [50]° and n; is the number of panels on the i-th conductor,

gives the final error bound when substituted into {(4.11),

lle - Edleo Meillz + aoll: 5 ICE& iz
TEST < fll_gia_-&’fn 7 Teillos K{CA) [GMRESLOI+ ICA Q.I!z] (4.13)

Error Bound Interpretation

The bound is an upper limit for the ertor in any capacitance associated with aay condue-
tor relative to the conductor’s self capacitance. The GMRES tolerance bound and the term
involving the multipole-algorithm error add since the two corresponding error mechanisms are
independent of each other. The error allowed by the GMRES residual bound is equivalent to
a right-hand-side perturbation, while the multlpole-algouthm error produces a system-matrix
perturbation. If the two types of errors are considered independently, bounds similar to the
two parts of (4.13) result {127]. For example, GMRES applied to (4.4),

CAg; =Cb;, 1<i<m, (4.14)

with no multipole acceleration leads to an error bound analogous to a normalized version of
(456),

lg: — a2 & o ICb; = CAGE)l ' L
B 42« wiCA _ , 4.15)
T N TN o wy

*For an n-entry vector v, Jlvfli = 3w, [vi]- For 2 p x u matrix A, JAlh = max;cyen 3 ony Mol
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where ¥ is the k-th iterate approximation to the exact solution ¢;.. Also an exact solution of
the linear system perturbed by the multipole approximation (4.7),

CA+E)i=Cb, 1<i<m, (4.16)
s e i = il ICEG: |
qi — 4§ 2 CA gill2 1
e = "Y1 (10

as may be verified by subtracting (4.16) from (4.14) taking norms, and dividing by the norm
of {4.4). Here §; is the exact solution to (4.16).

The bounds (4.15) and (4.17) suggest that the normalized GMRES residual and the multipole-
algorithm error should be multiplied by the condition number of the preconditioned matrix in
(4.13), as is the case, neglecting the first two terms in the bound. The first two terms occur
because (4.13) beunds the capacitance error, rather than the charge error. The leading term,
/max; m;, reflects the fact that even if each entry of the panel charge vector ¥ differs from the
true value in g; by no more than §, summing the charges over the conductors can give errors as
big as § max; n; in the capacitances. The fraction ([lcil|2 + ligipl|2)/llcilloc is present because the
dielectric-interface-panel charges ¢;p must be computed as accurately as the conductor-panel
charges, but are not directly used to calculate capacitances. This factor is unimportant for
problems with no dielectric interfaces. The condition number u(C‘A) is approximately one if
the preconditioner is effective. ”

Thus the quantity in brackets in (4.13) bounds the capacitance matrix error as closely
as is possible given the structure of the problem. Furthermore, in most cases the multipole-
algorithm error term can be made comparable with GMREStol using expansions with fairly
low order. In practice, using expansion order [ gives a comparable multipole-algorithm error
term when GMREStol = 10%2~!. The results of Section 4.4 are the most coavincing evidence
supporting this assertion, but 2 semi-analytic plausibility argument can be made by examining
the multipole-algorithm error term in (4.13),

ICEH
IC Al
If € is normal, a good zpproximation in practice, then it has an orthogonal set of eigenvectoss
0 JIClfz = 1/JC])2 and
ICEET  WCla BN _ __ REEl__  IE&]
IICAq:IIz iCAgll: — IC Iz iCAgHz ~ = Al

Assuming the iterative method is near convergence, §; ~ ¢; so that the multipole-algorithm
error term is approximately bounded by

18l
1Agl” (4.18)
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FIGURE 4-1: The cube geometry leading to the minimum separation distance, r, — R,, between
charge and evaluation points for a cube hierarchy with d x d x d lowest-leve! cubes.

the relative error in the multipole-algorithm fields calculated using the current iterate,

A bound on (4.18) in terms of the expansion order [ would allow bounds on the capacitance
error in terms of GMREStol and ! through substitution in {4.13). Such bounds are lacking for
the general, multiple-diclectric case where the multipole-algorithm computes both electric fields
and potentials. For homogeneous diclectric problems the bound

III 3;!"”4 reo(rs — Rs) < (1/V3) " (4.19)
applies, where [ is the expansion order, ¢ is the permittivity of free space, and r, and R,
are the values of the corresponding quantities r and R in Figures 3-1 and 3-4 that give the
smallest separation distance, r, — R,, allowed by the spatial-partitioning hierarchy {52]. The
hierarchy also guarantees that R/r < 1//3 for all expansion evaluations. Combininyg these
facts with the Q2M and Q2L error bounds, {3.7) and (3.11) respectively, and similar bounds
for the remaining transformations gives (4.19). Figure 4-1 illustrates that r, — B, = (3 - v3)d,
where d is the side length of the hierarchy’s lowest-level cubes. The smallest separation distance
occurs when a lowest-level cube has a second-nearest neighbor of its parent in its interactions
set®, Since r, — R; is a lower bound on the separation distance between any charge represented
by a truncated multipole or local expansion,

a1

4dilleo < 4xeo(r, — R,)’

*The same minimum separation distance and error bound result when the roles of the two cubes are reversed,
but the current implementation does not alfow interactions of that type.
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s0 that the quantity bounded by (4.19) is actually 2 lower bound on the relative error of the
multipole algorithm measured in the L., norm,

”Eq.:k"m "E%”oa
N HAG e’

making upper bounds ox (4.18) difficult to derive using (4.19). The existence of (4.19), however,

4rco(r, -~ R,) € s~

suggests that the multipole-algorithm error can be made comparable to GMREStol using rea-
sonable values of I. In practice, using expansion order { gives a comparable multipole-algorithm
error term when GMREStol = 10*>~!. The results in Section 4.4 give further evidence of this.

4.3 Algorithmic Complexity

The multipole accelerated capacitance calculation algorithm generally requires nearly O(mn)
time and O(n) storage for a m-conductor problem discretized with » panels, regardless of the
details of the discretization method. This Section gives bounds on the time and memory
complexity for the particular preconditioned adaptive multipole accelerated GMRES method
implementation (PAMA) described in Section 4.1, but it has sufficient generality to apply to
closely related methods, for example those using a fully Galerkin discretization or block iterative
techniques.

Table 4-1 summarizes the bounds on the time and memory costs for the complete capacitance .

calculation algorithm, and Table 4-2 gives a detailed account of the multipole algorithm costs
for an m-conductor problem discretized with n panels. Repeated passes through the main
GMRES loop of Algorithm 4.1 calculate new iterates, stopping when the residual is small
enough. For an m-conductor problera with » panels, the new iterate calculation begins with an
O(n) application of the multipole algorithm to calculate a new Krylov space vector, followed by
the construction of the new Krylov-subspace basis including the new Krylov vector. Referring

to Algorithm 4.1, the &-th basis-update step performs & inner products between the first &.

v’ vectors and the new Krylov vector vector, and then uses the results to orthogonalize the
new vector against the known %% at a cost of kr maltiply-adds. The norm computation and

normalization steps require » multiply-adds each, while the residual computation costs 4(k—1) -

multiply-adds [112]. Thus the total cost of one pass through the GMRES iterative loop is the
O(n) cost of the multipole algorithm plus the overhead 2(k + 1)n + 4(k — 1). If the number
of iterations is bounded above by a fairly constant number, independent of problem size and
geometry, then the basis-update step requires nearly O(n) computation, making the total cost of
one pass through the loop nearly O(n). Under the same assumption of nearly constant iteration
count, the complete GMRES Iinear-syst_em solution gives one column of the m X m capacitance
matrix in nearly O(n) time. The outer loop performs m such solutions, making the complete
capacitance matrix solve time requirements nearly O(mn), since all the other initialization
post-processing procedures are also use O(n) time and memory. The only significant memory
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Operation Time Storage Heasoning

Adaptive multipole al- MK, K"(z“*_}}‘)““ See Table 4-2.

gorithm initialization.

. + M

Application of precondi- 125K3mn — The preconditioner retains at most K rows

tioner to initial residual. from the inverse of an at most 126K, x
125K . submatrix of A to represent the
neighbor-cube interactions for the panels
in each lowest-Ievel cube and ita at moat
124 neighboring cubes, and cach lowest-level
cube contains at least one panel.

Adaptive (M: + 2Kpn)Kym — Each cail mnltiplies all the matrices con-

muttipole algorithm field structed by the multipole algorithm initial-

calculation, ization at a cost of M;. In addition, the
electric-field post-processing step requires
Kpn two-term divided differences,

Krylov subspace basie _f_};f!((f(?{—l-_l)ﬁt; (Ky+1)n Scc explanation in text. The memory is

construction. il reuscd for different conductor iterations,

Pancl-charge Kymn —_ Each poanel charge is summed on every

aurmmnation. iteration.

Capacitance m2f2 — Of-diagonals are averaged.

syrmmetrization. ]
K. is the maximum munber of panels in a lowest-level cube,
K; is the maxinmum number of GMRES iterations required to achieve the desired accuracy. In practice the precon-
ditioner makes K; nearly constant over all problems,
Ky is the memory recuired for one cube data structure,
K, is the time required to calaulate the most costly of all the transformation matrix entrics,
Kp is the number of electric field evaluation pointa associated with each dieleciric-interface pancl, which increasca
with the dielectric-interfacs-panel Galerkin-integral approximation order, ¢ in Algorithm 4.1.

M is n[250K3 + (1 + Kp)(1+ 1)? +2002(! + 1)?] = 4(l 4 1)%, the largest posaible number of double precizion mumbers
required to store all the tranaformation matrices (ece Table 4-2).

Table 4-1: Multipole a,ccelerai;ed ca.pacitance—.calculé.tion algorithm (Algorithm 4.1) time (in -
multiply-adds) and storage cost (in double precision numbers) bounds. Input, output, allocation
and assign times are taken as zero.
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Operation

Time

Storage

Reasoning

Cube
construciion,

hicrarchy

Neighbor Q2P

construction.

Lowest-level
construction
Upward
pass parent-child trans-
lation construaction,

Q2M

Downward
pass parent-child trans-

lation construction.

125K2K:n

(+1)2Kn
2{n ~ 1)1+ 1)K,

2(n - 1){{ + 1)K,

Kk(zu-- l) + 2n

125K3n

(I+1)2n

2(n—1)(I+1)*

2(n—1){I+1)*

Asmsuming all the non-adaptive prrent cubes’
rultipole cxpansions (for example the
dashed-circle expansion in Figure 4-2) are
atoted in the cube from which they origi-
nated, the number of non-empty cubes in
the hierarchy is al most the number of nodes
in the parent-child Lranslation graph, The
bounda follow from (4.21) with (4,20) substi-
tuted. The cxtra 2n ia for che panel charge
and ficld evaluation vectors (g and p in Al-
gorithm 4.2).

Each lowcst-tevel cube has Q2P interactions
with at most 124 ncighbors and itself, and
each cube containa at least one pancl (Phase
1 in Algorithm £.2}.

Each panel leads to one Q2M matrix column
{frst part of Phase 2, Algorithm 4.2).

See Section 4,31, AH M2M and Q2M trans-
formation matrices involving coarser than
loweat-level cubes are at mont (14-1)% x (I +
1)2 (second part of Phase 2, Algorithm 4.2).
See Section 4.3.1. Al the L2L and L2P
translormation matrices that involyve coarser
than lowest-level cubes are at most {1 4+1)2x
{t + 1)* (part of Phase 3, Algorithm 4.2),

Interaction translation  1998{f + 1} Kn 1998(I + 1)*n  Sec Scction 43.2. All the M2L, Q2L and

construction. Q2P mnatricea arising from operations spec-
ified in interaction lists are no larger than
{ + 1) x (I +1)* (part of Phase 3, Algo-
rithm 4.2).

Coxem (evc) 1.2Pp 1+ 1K Kn {{+1)2Kpm Each panel leads to Ky L2P matrix columna

constTuction {Phase 4, Algorithm 4.2),

Preconditioner (125K Kn 125K2n See sccond entry in Table 4-1 (Phase 5, Al-

<oustracion : ' gorithm 4.2}, S

Table 4-2: Adaptive multipole algorithm initialization (Algorithm 4.2) time (in muliiply-adds)
and storage cost {in double precision numbers) bounds. Allocation and assign times are taken
as zero. Constants are defined in Table 4-1.
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requirements of the GMRES loop is storage for the Ky + 1 n-entry v? vectors, assuming at mos*
K iterations are required. The nearly constant iteration count assumption ensures that the
required memory is nearly O(n). In practice this assumption is realistic since the preconditioner
typically assures rapid convergence (see also Section 4.4). ‘

Table 4-2 lists the O(n) costs of the muitipole algorithm by computation type, rather than
following the parts of the implementation of Section 4.1 exactly. Section 4.3.1 bounds the
costs of the parent-child translation operations performed between cubes of the upward and
downward passes, the Q2M/M2M and L2L/L2P work, respectively, while Section 4.3.2 derives
the bounds on interaction operations, the M2L, Q2L and Q2P transformations associated with
the interaction-list entries. Unlike earlier treatments (53, 52, 19], the arguments of Sections 4.3.1
and 4.3.2 assume no bounds on the spatial partitioning hierarchy, following {85). The lowest-
level multipole-expansion build (Q2M) and local-expansion evaluation (L2P) operations, as
well as the neighbor cube Q2P interactions are not included in either of these categories and
therefore have separate entries in Table 4-1. Together these bounds show that the multipole
initialization and field-calculation functions, Algorithms 4.2 and 4.3, require O(n) time and

memory.

4.3.1 Parent-Child Translation Operation Complexity

The bounds for the time and memory required to perform all the upward pass M2M or
Q2M operations between child cubes and their adaptive parent cubes (given by Adaptive Par-
ent_Cube() in Algorithm 4.2) are the same as for the downward pass L2L and L2P operations
between the adaptive parent cube and its children. The correspondence is ensured by the
Identity matrix and the Set_Local Expansion Flag() function of Algorithms 4.2 and 4.1.3.
These mechanisms ensure that cubes with single child cubes use one of their descendants’
expansions, and adaptive parent local expansions contribute directly to their first descendant
that either has more than one child or is a lowest-level cube.

The cube hierarchy, considerﬁng only adaptive parent and lowest-level cubes, leads naturally
to a graph that gives the bounds for the parent-child translation operations. The graph is
constructed from nodes representing the non-empty lowest-level cubes and all the cubes that
are adaptive parent cubes, with edges connecting every cube to its adaptive parent cube, except
for the node representing the level 0 cube. This parent-child computation graph is a tree with
certain properties. The number of non-empty lowest-level cubes in the hierarchy is denoted s.

Lemma 4.1 (Tree Structure of Computation Graph) The parent-child computation graph
is a tree with s childless or leaf nodes, and every non-leaf node, except the root, has al least
three edges connected to it. That is, each non-leaf node except the root has degree strictly greater
than two, while the root has degree at least two.

Proof. A connected graph with e edges and v nodes with e = v — 1 is a tree. The parent-child



computation graph is connected because any two nodes in the graph correspond to two cubes
that are parts of at least one larger cube. A path from any particular node Lo another node
can always be found passing through the node corresponding to the larger cube, or directly
between the two given node’s cubes if one of the two given cubes is contained in the other.
Furthermore, every node represents one cube with a single edge connecting it to its adaptive
parent, except the node corresponding to the level 0 cube. Since the level 0 node has no such
edge,
e=v-—1. (4.20)

Thus the parent-child translation computation graph is a tree, and the level 0 node may be
taken as its root. |

Since each non-leaf node in the graph corresponds to an adaptive parent cube, which must
have at least two child cubes by definition, every non-leaf node has degree at least two. A
non-leaf node that is not the root has degree strictly greater than two, due to the connection to
the node representing its adaptive parent. The root node has no such connection, making its
degree at least two. The leaves of the upward-pass tree correspond to the s lowest-level cubes
since they are the only cubes that have no children. O

'_(‘ -y
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FiGURE 4-2: A parent-child translation computation graph (left) and the corresponding 2-D
panel distribution and expansion hierarchies.

Figure 4-2 gives the parent-child translation cofnputa.tion graph for an example charge dis-
tribution. As the figure illustrates, each node in the graph corresponds Lo a cube in the hierarchy
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that requires the construction of a multipole expansion and a local expansion. Each edge in the
graph represents either an upward pass M2M or Q2M operation converling representations of
lower-level charge into higher-level multipole expansions, or an analogous downward pass L2L
or L2P operation used to construct the local expansion hierarchy. The one cube that is not
an adaptive parent in this example has the dashed-circle multipole expansion, a copy of the
child cube’s expansion, and no local expansion. The figure also illustrates the correspondence
between the non-empty lowest-level cubes and the graph’s leaf nodes.

Thus bounding the number of computation-graph edges, e, gives bounds for the time and
memory requirements for the parent-child translation operations. One such bound is a direct
result of Lemma 4.1 and elementary graph theory (see, for example [37, 28]). This theorem
leads directly to the parent-child translation cost bounds in Table 4-1.

Theorem 4.1 (Parent-Child Translation Complexity Bound) There are at most 2(n —
1) upward- or downward-pass parent-child translation operations required for the adaplive mul-
tipole algorithm applied lo an n-panel problem.

Proof. Since the sum of the degrees of any graph’s nodes is equal to twice the number of edges

in the graph (each edge connects exactly two nodes), Lemma 4.1 implies
s+ 3 v-s5-1)42 < 2,

in the case of a parent-child translation computation graph with v nodes total, s leaf nodes
and e edges. The first term is the sum of the leaf node degrees, the secord corresponds to the

non-leaf nodes, and the last is the minimum degree of the root. Since e = v—1 by Lemma 4.1,
eL2(s—1).

All the non-empty lowest-level cubes contain at least one panel so 3 < n and
e<2(n-1). (4.21)

This result and the correspondence between each computation-graph edge and a parent-child
translation operaticn imply Theorem 4.1. O

4.3.2 Interaction-Operation Complexity

Since interaction operations, those M2L, Q2L and Q2P operations involving cubes specified
in interaction sets, relate fairly distant panels, they lack the neat parent-child structure of the
other translation operations discussed in the previous section. Instead of the tree structure, the
interaction-operation count relies on the properties of clustered charge distributions of the type
illustrated in two dimensions by Figure 4-3. Such distributions have special properties summa-
rized by Lemma 4.2. Lemma 4.2 assumes that all the interaction set cubes for a given cube are
on the same level as the given cube, as do all the results of this section. The implementation of -
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FIGURE 4-3; An example clustered charge distribution. Dark squares indicate filled lowest-level
cubes; the shaded region is A's neighbor cube set, and the remaining non-empty cubes are in
A’'s interaction set.

Section 4.1 uses more efficient mixed-size interaction sets, so that the uniform-sizc assumption

leads to upper bounds on the implementation's complexity.

Lemma 4.2 (Clustered Charge Distribution Properties) If every non-emply cube on level
d of a cube hierarchy has ezactly one non-empty descendent cube on the lowest level, D, then
the total number of cubes in a given level-d cube’s interaction and neighbor sels is grealer than
or equal to the total number of interaction operations between all cubes on levelsd, d < d < D,
contributing to evaluations on the panels in the given cube. '

Proof. The lemma follows directly from the assumed structure of the distribution. A given
level-d cube’s interaction-set cubes lead to interaction operations between level-d cubes, while
each of the given cube’s neighbor cubes give rise to exactly one interaction operation between
level-(d + 1), or finer, cubes. Each of these neighbor-cube interactions is between the Jargest
cube that is a descendant of the given cube (say on level d, d < d < D) and contains the given
cube’s non-empty lowest-level cube, and the analogous level-d cube for one of the given cube's
neighbors. Since each cube involved in an interaction always contains exactly one non-empty
lowest-level cube, each non-empty lowest-level cube that is not a descendant of the given cube
gives rise to at most one interaction set operation between cubes on level d,d + 1, ..., 0r D.
The number of neighbor cubes is an upper bound on the interaction operalions arising from
the neighbor cubes since some of the possible interactions can involve neighboring lowest-level
cubes. Thus the total number of interaction- and neighbor-cube set entries for a given level-d
cube is an upper bound on the number of interaction operations performing evaluations or
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constructing expansions for the given cube and all its non-empty descendants. O

In Figure 4-3 there are ten non-empty level-(D — 3) cubes in cube A’s neighbor and inter-
action sets, but the level-D cube pair corresponding to the level-(D ~ 3) cube adjacent and
to the left of A involves neighboring level-D cubes, bringing the total number of interaction
operations associated with cube A’s panels down to nine. Qutlined cubes inside cube A’s neigh-
boring cubes show the size of the cubes involved in the corresponding interaction operations,
illustrating how the interactions can occur on level d = D — 3 or any finer level.

Extending the interaction-operation bounds to general distributions requires an inductive

argument based on Lemma 4.2.

Theorem 4.2 (Interaction Complexity Bound) There are at most 1998n interaction op-
erations required for the three-dimensional adapiive multipole algorithm applied to an n-panel
problem.

Proof. The interaction operations associated with the cubes on all levels of the hierarchy can
be counted by progressively removing panels from the problem after counting the interaction
operations associated with the cubes they empty. The removal is done so as to leave clustered
charge distributions that allow repeated application of Lemma 4.2.

To obtain a clustered distribution satisfying the assumptions of Lemma 4.2 with d = (D —1),
lowest level-cubes are emptied so that each level-(D - 1) cube has at most one non-empty child
cube. In three dimensions, any non-empty cube on the lowest level, D, has at most 875
interaction operations with the level-D members of its interaction set, and is part of no more
that 875 other level-D cubes’ interaction sets, making the total number of level-D interactions
associated with the emptied cubes no more than 1750ng,, where nf) is the number of emptied
level-D cubes. _

Since a given cube in any three-dimensional spatial-partitioning hierarchy has at most 124
reighboring cubes, and no more than 875 interaction list entries, the given cube has at most 999
cubes in its interaction and neighbor sets, and it is part of at most 999 other cubes’ interaction
and neighbor sets. This fact and Lemma 4.2 imply that if level-(D — 1) cubes are now emptied
in the clustered distribution so that each level-(D —2) cube has only a single non-empty level-D
ancestor, then the removed panels are associated with at most 1998n%,_, interaction operations,
where n%,_, is the number of level-(D — 2) cubed emptied. The procedure continues, emptying
ng lowest-level cubes from levels d = D, D ~ 1, ..., 1, and stopping after emptying cubes
on level 1, leaving the level-Q cube containing a single non-empty level-D cube. Since every

emptied cube contains a single non-empty level-D cube,

d_ng<s,

d=D



where s is the total number of non-empty lowest-fevel cubes in the original distribution. Thus
the total interaction-operation count is bounded,

1
1750n% + Y 1998n§ < 1998s
d=D~1
The final resuit of Theorem 4.2 follows since each non-empty lowest-level cube contains at least

onre panel, making s < n. OO

4,4 Performance

The practical examples of this section demonstrate the accuracy, and time and memory ef-
ficiency of the multipole accelerated capacitance calculation algorithm implementations of Sec-
tion 4.1: the preconditioned adaptive multipole accelerated GMRES iterative method (PAMA),
the adaptive multipoie accelerated GMRES method (AMA), and the multipole accelerated GM-
RES iterative method {MA). The three implementations are referred to collectively as FAST-
CAP. A result is attributed to FASTCAP in cases where that same result is obtained using
all three methods. Section 4.4.1 compares calculated capacitances to capacitance values ob-
tained from other sources, demonstrating the method’s accuracy, while Sections 4.4.2 and 4.4.3
give examples showing the algorithm’s low time and memory costs. All the computations were
~ performed with 2 Digital Equipment 3600AXP/500 workstation. ¢

4.4.1 Accuracy

The capacitances obtained using the Section 4.1 implementation compare well with analytic
and measured values, as well as with values calculated by other methods, even for problems
- with high permittivity regions. In general the capacitances of a given problem have errors
of about 1% of the self capacitances when compared to values calculated using the standard
Gaussian elimination approach. The errors are affected by the iterative loop tolerance and
expa.nsidn order as predicted by the error bounds of Section 4.2.3. The results were obtaired
using order two multipole expansions, centroid collocation, iterative loop tolerance 0.01 and the
automatic spatial partitioning depth, unless otherwise stated {({ = 2, 0 = I, GMREStol = 0.01
and depth = aulo, in Algorithm 4.1). The MA and AMA methods generally have the same
accuracy as PAMA, unless the problem is poorly conditioned.

Comparison to Known Values

Table 4-3 compares the capacitances calculated using FASTCAP to analytic results for the
spherical problems of Figure 4-4, and to values calculated elsewhere for the cube and plate
problems of Figure 4-5. The spherical conductors have radius {m, and the plate and cube have
im sides. The dielectric coating for the coated sphere problem is 1m thick and has permittivity
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Problem

Sphere  Coated Sphere Cube Plate
Method 768 Panels 864 Panels 150 Panels 625 Panels
Gauss. Elim. 110.6 148.1 73,26 40.69
FASTCAP 110.5 148.0 73.18 40.71
Other 111.0¢ 148.4f 73.5, 73.4¢ 40.54¢0

Table 4-3: Capacitance values (in pF) illustrating FASTCAP’s accuracy. {By analytic calcula-
tion. {From [109, 63]. o From {109)].

e,

FIGURE 4-4; The sphere (left) and coated sphere (right) discretizations, Some of the dielectric
panels have been removed to expose the conductor panels in the coated sphere discretization.
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FIGURE 4-5: The cube (left) and plate (right) discretizations.

twice that of free space, the surrounding material for all the examples. The cube faces and plate

are discretized using narrow edge panels to better model the charge-density singularity present

at conductor edges [109]. Although the plate and cube faces are both 1mx1im, the stronger
edge singularity of the plate’s charge density warrants a finer discretization.

The calculated spherical capacitor values are within 1% of the analytic values, while the
cube and plate values compare well with other calculations. Also given for comparison are
the capacitances obtained using Gaussian elimination applied to the linear system resulting
from the same formulation and discretization used by FASTCAP. The close correspondence of
these values with the FASTCAP results indicates that the order two multipole approximation
is sufficient to solve the linear system with 1% accuracy. Deviations from the true capacitance
values by more than 1% are typically caused by discretization error.

Comparison to Measured Data

The capacitances calculated by FASTCAP compare well with measured values reported for
real structures, such as the connector problem in Figure 4-6. Connectors of this type must be
analyzed carefully when considered for use in high-speed bus connections [141]. The U-shaped
polyester body, with relative permittivity of 3.5, holds sixteen pins with 0.65mmx0.65mm
cross-sections and 3.25mm center to center spacings. Using a 10096-panel discretization, PAMA
computes all the self and coupling capacitances for the pins in about twenty CPU minutes. The .
preconditioner is necessary because the discretization has relatively large panels on the dielectric
body, making the corresponding matrix problem poorly conditioned (see also Section 4.4.2).
An identical analysis asing standard Gaussian elimination algorithms requires roughly 1.5 CPU
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FIGURE 4-6: The backplane connector example. The actual discretization used for the compu-
tation is much finer than the ore illustrated.

days (sce also Table 4-14). The four pins in the the center have the highest self capacitances:
0.545pF. The lowest self capacitance is 0.464pF and is attained by the four corner pins. The
strongest coupling capacitances, about 0.12pF, occur between corner pins and pins next to the
sides of the connector body. By grounding four pins on a main diagonal and the four pins
on the remaining parallel two-pin diagonals, the maximum signal pin coupling capacitance is
reduced to around 0.071pF. These capacitances compare well with measured values reported in
(141).

Figure 4-7 illustrates a second practical example, a simplified model of three adjacent DRAM
cells in the 1.-Mbit DRAM described in [68). In Figure 4-7b, the dielectric interfaces are removed
to show the conductors more clearly. Each cell consists of a bit line running across the cell,
terminating in 2 via. In Figure 4-7, the three bit lines are elevated on the right side of the
figure and run dowuward to the left where they are attached to the conical vias. The vias
connect to the drains of MOS transistors formed by polycide word lines crossing the substrate
at right angles to the bit lines and 0.01 um above the substrate. The polycide word line that
controls the transistors is the lower left word line in Figure 4-7. The transistors’ sources are all
connected to the polycide cell plate, which is also 0.01 pm above the substrate. The dimples in
the ground plane below the bit line vias model the capacitors formed by the depletion regions
surrounding the drains of the bit cell MOS transistors. There are three other word lines passing
through the cells at 0.7 um (right), 1.8 um (left) and 2.2 gm (right) above the substrate. All
the lines are 1 um wide and either 0.3 um (top) or 0.9 um (bottom) thick. The bit lines
are spaced 2.4 um apart and both sets of word lines are 2 um apart. The uppér, aluminum
word lines are covered with a silicon nitride passivation layer with relative permittivity 7.0 and
nominal thickness 0.7 ym. The passivation layer is represented by the two dielectric interfaces
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FIGURE 4-T: The complete DRAM model, (2), and with the dielectric interfaces removed for

clarity, (b).
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illustrated in Figure 4-7a. The material above the top interface is air, while below the lower

interface silicon dioxide, with relative permittivity 3.9, is assumed. The computation of the

near bit line . center bif line far bit line

near bit line 2.11 —0.0663 -0.007
center bit line —0.063 2.10 —0.063
far bit line —0.007 —-0.063 2.10

Table 4-4: DRAM Bit-line capacitance matrix, fF¥.

bit-line capacitances given in Table 4-4 using a 6129 panel discretization requires about four
minutes using PAMA (see also Table 4-14). The preconditioner is necessary to offset the poor
conditioning caused by the closeness of the cell plate and lower polycide word line (see also
Section 4-14). The computed capacitances compare well with the measured data given in {68].

The final comparison is between FASTCAP capacitance values and those obtained using
formulas based on measured data {21]- The formulas apply to two parallel metal lines over
a ground plane, as pictured in Figure 4-8. The linelQ case pictured has 10m long iines with

FiGURE 4-8: The linel0 discretization of a ten-meter line.

Imxlm cross-sections spaced 1m apart and lm over the ground plane, which extends 2m
beyond the footprints of the lines. Also considered, but not pictured, is line100, which has
100m conductors and 20m ground-plane skirts, but is otherwise identical to lineld.

Table 4-5 gives the calculated capacitances for the two cases together with the values derived
using the formulas from [21]. The formulas assume the lines have infinite length, so there is
more of a discrepancy for the linel0 values, where three-dimensional effects are more importaat.
The larger difference in the ground capacitances is probably due to the formulas’ difficulty in
modeling the fringing-field interaction between the lines and the relatively close ground plane,
although the roughly 10% difference is within the rated error of the formulas. The lire-to-line
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Problem

Linel0 Line100
697 Panels 4887 Panels
Method line-to-ground line-to-line line-to-ground line-to-line
Formula 167.3 151.0 1673 1510 -
FASTCAP 264.8 147.5 1884 1587

Table 4-5: Capacitance values (in pF) comparing FASTCAP to the empirically matched for-
maulas of [21}.

capacitance, however, is better appraximated by the formulas when the lines are close to each

other, since their interaction is well approximated by considering only the parallel plates formed
by their facing sides, leading to good agreement with the FASTCAP value.

Comparison to Gaussian Elimination

Wovenl

Woven?2

Wovend

(b)

FIGURE 4-9: The 2 x 2 woven-bus problem: bars have lmx1lm cross sections. The three
discretizatjons are obtained by replacing each square face in (a) with the corresponding set of
panels in (b). '

FASTCAP is nearly as accurate as Gaussian elimination ever for problems more complicated
than those of Table 4-3, such as the 2 x 2 woven-bus structure in Figure 4-9. The capacitances

computed using the two methods are compared in Table 4-6, using coarse, medium, and fine
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f panels in (b). Conductor faces

face has been removed to expose

FIGURE 4-10; The three 2 x 2 coated woven-bus discretizations are obtained by replacing the

two dielectric interfaces in (a) with the corresponding set o
are discretized as in Figure 4-9. Part of one dielectric inter

conductor 1 for the illustration.
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Problem

Wovenl Woven?2 Wovend
1584 Panels 2816 Panels 4400 Panels
Method Ciy Cia Cu Ci2 Chn Ch2

Gauss. Elim. 251.6 —6.353 253.2 —6.446 253.7 —6.467
FASTCAP 252.0 -6.572 253.5 -6.793 253.2 -6.316

Table 4-6: Capacitance values (in pF) illustrating FASTCAP’s accuracy for the complicated
homogeneous-dielectric geometry of Figure 4-9.

Problem
Wovendil Wovendi2 Wovendi3
2060 Panels 4352 Panels 6620 Panels
Method Cn Ci2 Cii Cia Cu Ciz

Gauss. Elim. 343.2 -12.13 3432 -12.13 3444 1224
FASTCAP 344.6 -—11.87 344.2 -—-11.79 347.5 -12.26

Table 4-7: Capacitance values (in pF) illustrating FASTCAP’s accuracy for the complicated
multiple-diclectric geometry of Figure 4-10.

discretizations of the woven-bus structure, also shown in Figure 4-9. Table 4-7 gives the analo-
gous capacitances for the 2 x 2 coated woven-bus problem in Figure 4-10. The coated problem ‘
is identical to the Figure 4-9 geometry, except that the straight conductors are covered with
a 0.5m-thick permittivity-2¢, dielectric. Refining the conductor faces exactly as in Figure 4-9,
and using the corresponding dielectric interface discretization illustrated in Figure 4-10 gives
coarse, medium and fine discretizations of the coated woven-bus problem.

The coupling capacitance C;, between conductors one and two, which is at least {hirty-
times smaller thar the self capacitance Cy; in both woven-bus problems, is computed nearly as
accurately with FASTCAP as with Gaussian elimination, and is never in error by more than
about 0.1% of Cyy. Since Cy; and C,; are the smallest self and coupling capacitances, respec-
tively, for both geometries, these results indicate that the multipole algorithm approximation
does not interfere with the convergence of the capacitances as the discretization is refined.

Effect of GMRES Tolerance and Expansion Order

The results of Tables 4-6 and 4-7 use expansion order { = 2 and jterative loop tolerance
GMREStol = 0.01. As indicated by the error bounds of Section 4.2.3, the error in the capac-
itances, when compared to the vajues computed by Gaussian elimination, is bounded above
by the sum of two terms, one controlled by { and the other by GMREStol. Table 4.8 and 4-9
show how the capacitance errors for wovenl and wovendil follow this trend when FASTCAP’s



default expansion order and tolerance ¢hange”. The errors are measured as percentages of their
column’s diagonal capacitances to be consistent with the error bounds. In the table head-
ings, C;; is the value computed by Gaussian elimination and AC;; is C;; subtracted from the
corresponding value computed by FASTCAP.

Expansion Order, {

I=0 =1 =92 =23
ACY AC HCy AC2 ACY AC)2 AL AC )y
GMREStol Ciy_ Cn Chy (&)1 Chy Oy T Gy

10! 0.17% -1.34% -1.02% -0.23% -0.62% -0.12% -0.22% -0.18%
102 1.29% -1.33% -0.46% -0.27% 0.17% -0.09% 0.21% -0.16%
10-3 1.29% -1.24% -0.56% —0.13% 0.11% 0.06% 0.12% -0.02%
10~ 1.29% -1.23% -0.55% -0.12% 0.11% 0.07% 0.13% -0.01%

Table 4-8: Errors in the largest and smallest capacitances in the wovenl discretization of
Figure 4-9 illustrating the effect of expansion order and iterative loop tolerance on FASTCAP’s
accuracy for problems with a homogenecus dielectric.

Expansion Order, !
i=0 =1 1=2 I=3
GMRESwl Sgs  Ags  aga  aga o aga  apn  oga
10~* 11.6% -2.29% -1.22% -0.31% -1.22% -0.17% -151% -0.25%
1072 14.2% -1.80% 0.41% -0.13% 0.41% 0.05% 0.18% -0.07%
10~3 142% -1.78% 0.40% -0.11% 0.39% 0.07% 0.15% -0.04%
104 142% -1.79% 0.40% —0.10% 0.39% 0.09% 0.15% -0.03%

Table 4-9: Errors in the largest and smallest capacitances in the wovendil discretization of
Figure 4-10 illustrating the effect of expansion order and iterative loop tolerance on FASTCAP's .
accuracy for problems with multiple dielectrics.

In both tables the error produced using decreasing GMRES!tol values decreases to a limiting
value for a fixed expansion order. Decreasing the iterative loop tolerance below the point where
the limiting error is .reachec‘l leads to more computation with little decrease in the error. In
particular using GMREStol = 10~ with { > 1 and GMREStol = 1072 for I = 0, 1 gives
the most accurate answers at the lowest cost. Using this strategy leads to 10(2-% error for
{ > 1, and between 1% and 10% error for ! = 0, 1. The lack of improvement in C1; when
I changes from 2 to 3 for the wovenl example demonstrates how the discretization’s level of
refinement ultimately limits accuracy, In the multiple-dielectric problem wovendil, however,
the discretization’s accuracy limit of about 0.1% is only reached for I = 3. In general multiple-
dielectric problems often require higher order expansions to accurately enforce the derivative

TExperimentis with { < 2 use depth= 4, rather than aulo to avoid excessive spatizl partitioning levels.



boundary conditions at the dielectric interfaces.

The limiting behavior of the error as a function of iterative loop tolerance and expansion
order is consistent with the form of the error bound (4.13). The results indicate that decreasing
the iterative loop tolerance, GMREStol, while holding expansion order, {, constant results in
decreased error only until GMREStol reaches a certain value «, and that « .decreases as !
increases. The form of the bound, GMREStol plus a term multiplying (1/\/5)', matches this
behavior. The reduction in accuracy for multiple-dielectric problems is also suggested by the

factors that weaken (4.13) when dielectric panels are present.

High Permittivity Regions

Dielectric Panel Integral Approximation Order, o

Cratio o0=1 o=12 o=3 0=35 o=17
2 -0.24% —-0.58% -0.64% -0.71% -0.04%
4 4.76% 145% 094% 0.10% —0.69%

6 0.88% 3.49%  2.44% 1.13% -0.39%
8 174%  5.96% 4.29% 217% -0.05%
10 24.0% 8.45% 6.23% 3.26% 0.25%

Table 4-10: Errors in the computed capacitance for the coated capacitor of Figure 4-12 with
b = 2 illustrating the effect of €,41;, and the dielectric-panel integral approximation order on
FASTCAP’s accuracy.

The default boundary-element discretization technigue used by FASTCAP can lead to ap-
preciable error for problems with high permittivity regions. Figure 4-11 and Table 4-10 char-
acterize the error in the capacitance calculated using the 864-panel discretizatior pictured on
the right in Figure 4-4 for the coated sphere problem illustrated schematically in Figure 4-12.
Here the error is the analytic value subtracted from the calculated value, divided by the ana-
lytic value. The first column of Table 4-10 demonstrates that the error is a strong function of
€ratio = €1/€2 when using the default first-order dielectric-panel Galerkin integral approximation
(centroid collocation), while Figure 4-11 shows qualitatively how the error varies with coating
thickness when €44, = 10, again using the first-order approximation. Figure 4-11 illustrates _
that in general the electric field beyond the dielectric interface is always well approximated, bat
the errors in the potential and the electric field inside the i:oa.t.in_g and at the interface increase
with the -cc;ating thickness. The mismatch in the electric fields at the conductor surface, how-
ever, remains relatively constant, leading to fairly constant capacitance error as a function of
coating thickness. Decreasing the iterative loop tolerance and increasing the expansion order
also leave the error essentially unchanged, indicating that the discretization technique, rather
than FASTCAP’s approximations, causes the error.

Decreasing the error in the electric-field calculations used to enforce Gauss’s law on the
dielectric-interface panels leads to less error in the electric field inside the coating, and therefore
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charge-density shells

€2 €o

FIGURE 4-12: A schematic drawing of the coated sphere problem and the corresponding equiv-
alent charge representation used by FASTCAP.

more accurate capacitances. Increasing the order of the Galerkin integral approximation used
for dielectric panels, refining the discretization or using more complicated expansion functions
for the charge density all result in more accurate electric fields. One of these strategies, or some
combination of them, is necessary for the equivalent charge formulation used in FASTCAP (see
Figure 4-12) because of the disparity in charge-density shells required to model the electric field
in this case. In the high-permittivity limit, the electric field in the coating approaches zero,
while the outer field becomes asymptotically close to the field of a metal sphere of radius b. In
the absence of discretization error, the smaller field between the shells in the equivalent-charge
model is set entirely by the weaker inner charge-density shell. When €045 is large, however, the
strong outer-shell charge density’s discretization error leads to aberrations in the field between
the shells that are of the same order as the weaker inner-shell field. The dominance of the
outer-shell discretization error is more complete as the dielectric interface moves farther from
the conductor, leading to larger errors in the potential near the interface. In contrast, when
€retio < 1 the magnitude of the charge carried by both shells approaches the same constant,
thereby avoiding the errors.

Total Number of Discretization Panels
864 1536 2400 6096 10560
24.0% 19.1% 15.7% 11.2% 9.05%

Table 4-11: Errors in the capacitance computed using o = 1 and progressively finer discretiza-
tions for the coated capacitor of Figure 4-12 with b = 2 and €,44, = 10.

Figure 4-13, and Tables 4-10 and 4-11, show how the capacitance error can be reduced
by refining the discretization or increasing the order of the approximate Galerkin dielectric-
interface panel integrals, o, for the geometry of Figure 4-12 with b = 2. Using the higher-order

116



105

09F

0.83

0.8¢

Polentinl, volis

0.75

G651

0'60 0.5 1 15 2 25 3

Radial Distance from Center, meters

1005 T T T

095

09

0.8

Polential, volts

0.75

0.65)

o 05 1 15 2 235 3
Radiat Distance from Center, meters

FIGURE 4-13: The analytic and calculated potential as a function of radial distance for the
coated capacitor of Figure 4-12 with €rarip = 10, b = 2 using 10560 panels with o = 1 (top),
and 864 panels with o = 7 (bottom). '
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dielectric-interface panel-integral approximations of Appendix C leads to the hybrid collocation-
Galerkin approach described in Section 3.3.2 and implemented in FASTCAP. Figure 4-13 shows
that both methods reduce the error in the fields, although the highly refined 10560-panel dis-
cretization appears to lead to some inaccuracy inside the conductor. This may be the onset
of fine-discretization instability due to the firsi-kind formulation (see Section 42) Using the
alternative collocation-Galerkin approach gives 1% error up 10 €ra1i0 = 10, as Table 4-10 illus-
trates.

In general, the higher-order collocation-Galerkin methods are only necessary when the
charge densities used to model dielectric interfaces in the equivalent-charge problem are much
larger in magnitude than the conductor-charge densities. Such a situation can only occur if
a conductor is coated with permittivity €, dielectric, with ¢, much larger than that of the
surrounding diélectric, e2. In practice dielectric coatings rarely have €;/e; > 4, so lower-order

integral approximations are usually sufficient.

4.4.2 Execution Time

Figure 4-14 gives plots of the total CPU time required by the adaptive multipole accelerated
GMRES method (AMA) to calculate the complete 4 x 4 capacitance matrices for the 2X2 woven
bus and 2 X 2 coated woven bus as a function of the product of the number of panels n, and the
number of conductors m, in the discretizations of Figures 4-9 and 4-10. A coarser discretization-
than those illustrated in the figures, with four panels per face, gives the smallest-problem results
for each problem. The coarser discretizations are called woven0 and wovendi0 for the coated
and uncoated woven-bus problems respectively. The four curves in each plot corresponding
to the expansion orders { = 0, 1, 2 and 3 show that for problems with and without dielectric
interfaces, the time complexity is nearly O(mn), with the expansion order affecting only the
constant that multiplies m=n in the expression for the time®. Comparison to the run times of
GMRES with explicit, rather than multipole accelerated, matrix-vector products for the same
problems indicates that AMA is more efficient for problems having more than roughly one
thousand panels.

This performance is typical for well conditioned problems treated with AMA, and for poorly
conditioned problems solved using the preconditioned adaptive multipole accelerated algorithm
(PAMA). The only exception to this are the { = 0 times, which grow faster than linearly in both
of the Figure 4-14 graphs. As the [ = 0 iteration counts in Table 4-12 show when compared 1o
the corresponding explicit GMRES counts, the inaccuracy of the order-0 expansions makes the
effective matrix problem more poorly conditioned. The higher-order expansions, however, all
lead to roughly the same number of iterations as explicit GMRES, indicating that convergence
is essentially unaffected by the multipole algorithm approximation when the expansion order

®Experiments with { < 2 use depth = 4 rather than aufo 1o avoid. excessive spatial partitioning levels,
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FIGURE 4-14: Execution time in DEC 3000AXP/500 CPU minutes as 2 function of mn for
AMA and explicit GMRES applied to the woven-bus problem, Figure 4-9, (a) and the coated
woven-bus problem, Figure 4-10 (b)- :
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Problem

Woven0 Wovenl Woven2 Woven3
- Method 704 Panels 1584 Panels 2816 Panels 4400 Panels

Expl. GMRES 26 50 43 42
AMA [ =3 26 50 43 42
AMA,I=2 26 50 43 43
AMA,l=1 27 52 44 44
AMA,I=0 32 52 49 52

@)

Problem
Wovendi0 Wovendil Wovendi2 Wovendi3

Method 1152 Panels 2060 Panels 4352 Panels 6620 Panels
Expl. GMRES 50 88 77 {76)
AMA,1=3 51 88 78 76
AMA,I=2 51 88 78 76
AMA,I=1 52 88 78 76
AMA,I=0 55 91 82 89

®

Table 4-12: The total number of iterations required to solve for the 4 X 4 capacitance matrices
of the woven bus of Figure 4-9 (a) and coated wover bus of Figure 4-10 (b) to give the data
plotted in Figure 4-14. The parenthesis indicate an extrapolated value for a calculation that
needed excessive memory.
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l is greater than zero. Table 4-12 also illustrates the variation in iteration counts for different
discretizations of the same geometry when the iterative method uses no preconditioner (AMA).
The wovenl and wovendil discretizations, for example, lead to more iterations than the other
discretizations of the same geometry for all the methods.

Problem
Woven0 Woven]l Woven?2 Woven3
Method 704 Panels 1584 Panels 2816 Panels 4400 Panels
PAMA,I=13 141 22 20 20
PAMA,I=2 20 22 20 281
PAMA, I =1 20 23 21 20
PAMA,{=0 24 24 24 24
(a) '
Problem
Wovendi0 Wovendil Wovendi2 Wovendid
Method 1152 Panels 2060 Panels 4352 Panels 6620 Panels
PAMA,!I=3 23 24 24 321
PAMA, [ = 2 23 24 32t 324
PAMA,I=1 22 24 24 24
PAMA,[ =0 24 25 25 25
®)

Table 4-13: The total number of iterations required to solve for the 4 x 4 capacitance matrices
of the woven bus of Figure 4-9 (a) and coated woven bus of Figure 4-10 (b) to give the data
plotted in Figure 4-15. The symbols tand tindicate calculations that use D = 5 and D = 3
spatial partitioning levels respectively; all others use D = 4.

In contrast, applying PAMA to the same problems results in the reduced, and nearly con-
stant, iteration counts of Table 4-13. Since these example problems are fairly well conditioned,
however, the time cost of building and applying the preconditioner is sometimes greater than
the savings resulting from reductions in iteration count, as the time plots of Figure 4-15 illus-
trate when compared to Figure 4-14. In other cases, such as for { = 2 and { = 3 in Figure 4-15,
the PAMA time is less than the corresponding AMA time in Figure 4-14. Figure 4-15 makes it
clear, however, that inappropriate use of the preconditioner can lead to superlinear growth in
run time as a function of problem size.

The variation in the effectiveness of preconditioning is due to differenc@ in the part of
the system matrix A used to compute the preconditioner. A preconditioner that depends on
more entries of A generally is a better approximation to A~!, leading to a more favorable
eigenvalue distribution {see Section 3.2.4}, but also higher costs in the constructivn phase and
on each jteration. Since the PAMA preconditioner incorporates all the interactions between the
lowest-level cubes and their neighbors (see Section 3.2.4}, the fraction of A ased to construct
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FIGURE 4-15: Execation time in DEC 3000AXP/500 CPU minutes as a function of mn for
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Figure 4-10 (b).
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FiGURE 4-16: A schematic illustration of the diaphragm problem. The two plates are 0.02xm
apart at the center.

the preconditioner increases as the size of the lowest-level cubes increases. Thus a spatial-
partitioning hierarchy constructed for a given discretization yields preconditioners that tend to
lower iteration counts as the number of spatial-partition levels, [, decreases.

Asindicated in Table 4-13a, the preconditioner resulting when the spatial-partitioning depth
D =3 is used for the woven-bus problem gives fewer iterations (14) than the D = 4 precondi-
tioner {20-24 iterations), which in turn requires fewer iterations than the D = 5 preconditioner
(28). Figure 4-15a shows that the reduced number of iterations required by the D = 3 and
D = 4 preconditioners, however, does not offset their increased time costs. For this well con-
ditioned problem, the D = 5 preconditioner is probably best, since it leads to lower execution
time in spite of the added iterations it causes. The D = 5 preconditioner is also better for the
coated woven-bus problem as the data in Table 4-13b and Figure 4-15b indicate,

For more poorly conditioned problems, the PAMA algorithm usually picks an effective
preconditioner that leads to lower execution times. The algorithm’s performance could be
improved for well conditioned problems such as the woven-bus problems above by using only
part, rather than all, of the multipole algorithm’s nearby interaction information to form the
precorditioner (see also Section 3.2.4). Poorly conditioned problems are more common as the
results of Table 4-14 indicate,

Table 4-14 compares execution times for a representative sample of the problems discussed
in this section. The new diaphragm problem is a model for the integrated circuit pressure
transducer pictured in Figure 4-16 [64]. The 5x 5 woven bus is the extension of the 2 x 2 woven
bus illustrated in Figure 4-17. The table shows that the O(mn) FASTCAP algorithms (MA,
AMA and PAMA) outperform the O(n®) Gaussian elimination and O{mn?) explicit GMRES
methods for problems with a few thousand panels, with the disparity in the algorithms’ com-
plexities becoming more apparent as the problem size increases. For moderate sized problems
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Homogeneous Dielectric Problems

Woven2 Wovend Diaphragm 5 x 5 Woven
9816 Panels 4400 Panels 6448 Panels 9360 Panels
Method mn = 11264 mn = 17600 mn = 12896 mn = 93600
Gauss. Elim. 48.1 175 {585) (1840)
Expl. GMRES 2.81 6.30 (73.0) (121)
MA 1.14 2.33 12.2 18.7
AMA 0.80 1.34 4.96 10.5
PAMA 1.06 1.07 0.72 8.11
Multiple Dielectric Problems
Wovendil Wovendi2 DRAM Connector
2060 Panels 4352 Panels 6129 Panels 10036 Panels
Method mn = 8240 mn = 17408 mn = 18387 mn = 161536
Gauss. Elim. 17.4 185 (508) (2360)
Expl. GMRES 2.94 11.8 (52.3) (381)
MA 3.33 11.3 22.8 (155)
AMA 1.62 4.01 8.82 39.0
PAMA 1.02 2.31 3.57 12.1
@
Homogeneous Dielectric Problems _
Woven2 Woven3 Diaphragm 5 x 5 Woven
9816 Panels 4400 Panels 6448 Panels 9360 Panels
Method mn = 11264 mn = 17600 mn = 12896 mn = 93600
Expl. GMRES 43 42 (232) - - {183)
MA 43 43 232 183
AMA 43 43 232 183
PAMA 20 28 18 - 79
~ Multiple Dielectric Problems
‘Wovendil- Wovendi2 DRAM Connector
_ 2060 Panels 4352 Panels 6129 Panels 10096 Panels .
Method mn = 8240 mn = 17408 mn = 18387 mn = 161536
Expl. GMRES 88 7 (171) (462)
MA 88 78 : 171 (462)
AMA 88 78 172 462
PAMA 24 - 32 - 81 127
) |

Table 4-14: The DEC 3000AXP/500 CPU minutes (2) and total number of iterations (b)
required 1o solve for the capacitance matrices of a representative set of problems. Values in

parenthesis are extrapolated.
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FIGURE 4-17: The 5 x 5 woven-bus. discretization is obtained by replacing each face in the

illustration with nine panels, as for the wovenl problem of Figure 4-9.
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in the ten-thousand panel range, PAMA is about two orders of magnitude faster than Gaussian

elimination, as the 5 x 5 woven bus and connector reselts demonstrate.

In general the reduction in computational complexity afforded by the MA method leads to
faster run times than for GMRES with explicit multiplications. The MA method’s non-adaptive
nature, however, causes il to use ex-2ssive memory for some problems. The connector problem,
for example, could not be solved due to excessive memory use. The poor time performance
of the MA method for dielectric problems when compared to the explicit GMRES times is
probably due to the current implementation’s use of Algorithm 3.6. Algorithm 3.6 requires
off-panel evaluation points to calculate electric-field approximations by divided differences. An
implementation based on Algorithm 3.5, rather than Algorithm 3.6 avoids off-panel evaluation
points, and probably leads to fewer expansions. The AMA method avoids these shortcomings
with an adaptive approach and uses about half the CPU time required by the MA method.
The final optimization is the preconditioner, which has the most dramatic effect on the pootrly

conditioned DRAM, diaphragm and connector problems.

A capacitance problem becomes poorly conditioned when the diagonal entries in the rows of
the coefficient matrix A in Ag = b become small compared to the off-diagonal entries. By Gersh-
gorin's theorem [50], this weakened diagonal dominance can lead to less tightly clustered eigen-
values, implying poorer conditioning and slower GMRES convergence (see also Section 3.2.4).
Since the diagonal entry in a given row is a measure of how the chargeona given pane} effects
the potential or electric field on the given panel, and the ofl-diagonal entries gauge the influence
of other panel charges on the given panel, the diagonal entry can become comparable to the
off-diagonal entries if other panels are either very close to, or much larger than the given panel,
The DRAM problem, pictured in Figure 4-7, is poorly conditicned primarily because of the
close proximity of the cell plate and lower polycide word line to the substrate. The connector
problem discretization of Figure 4-6 uses much smaller pasels on the conductors than on the
large faces of the U-shaped body, leading to poor conditioning that is counteracted by the
preconditioner. The most dramatic savings in run time occur when PAMA is applied to the
diaphragm problem of Figure 4-16. The discretization uses much larger panels near the edges of
the structure than in the center, where the panels from the top and bottom conductors neasly
touch. This makes the diaphragm problem the mout poorly conditioned problem in Table 4-14,
leading to nearly a factor of seven improvement in the PAMA run time compared to the AMA
time. In fact, the diaphragm problem is so poorly conditioned that the explicit GMRES, MA
and AMA methods produce capacitance matrices that are not diagonally dominant, a physical
impossibility. The PAMA result is diagonally dominant, verifying that the preconditioner helps
maintain accuracy for poorly conditioned problems, as discussed in Section 3.2.4.

For well conditioned problems like woven2 in Table 4-14 the default preconditioner used
by PAMA can lead to increased execution time. I those cases the preconditioner is typically

too aggressive and should use a smaller part of the nearby panel interaction information, as
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FIGURE 4-18: The sixteen preconditioner test problems leading to the data in Table 4-15
result from varying the distance between the cubes and the dielectric interface, &, and using
the different face discretizations in (b) for all the conductor and dielectric faces shown in (a) to
vary-the panel edge with ratio, ayigeh-

127



AMA CPU Seconds
Distance from Dielectric Interface, £, meters
Quigth h=5x10""m h=5x10"7?m h=5x%x10°m h=5x10"3m

1.0 548 6.64 8.14 8.74

0.7 5.46 . 6.43 9.44 13.4

0.4 5.54 6.86 10.1 13.3

0.1 6.54 7.49 10.9 14.2
(2)

PAMA CPU Seconds
Distance from Dielectric Interface, b, meters
Oupicth R=5x10"Tm h=5Xx10"2m A=5x10°"m h=35x103m

1.0 5.28 6.08 5.45 5.16

0.7 5.24 6.01 541 5.11

0.4 5.14 6.10 5.32 5.05

0.1 5.60 5.62 5.42 5.13
(b)

AMA Totat Iterations
Distance from Dielectric Interface, h, meters
Gwidth h=5x10""Tm h=5%X10"2m h=5x10°m Ah=5x10"m

1.0 12 16 28 32

0.7 12 16 39 65

0.4 14 19 46 70

0.1 18 30 54 77
(c)

PAMA Total Iterations
Distance from Dielectric Interface, &, meters
Qwigth h=5x10"'m h=5x10"’m A=5x10°"m h=5x10*m

1.0 8 8 6 ' 4
0.7 8 8 -6 4
0.4 9 8 6 4
0.1 10 8 6 4

(d)

Table 4-15: The DEC 3000AXP /500 CPU seconds used by AMA (a) and PAMA (b) to calculate
capacitances for the test problems of Figure 4-18, with the corresponding iteration counts (c)
and (d).
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discussed above. The Figure 4-18 geometry is useful for illustrating what sort of discretizations
are well conditioned enough to warrant this adjustment of the preconditioner. As Figure 4-18
illustrates, the distance, h, between the Imx1mx1m cubes and the dielectric interface (€ on
top, 2¢p underneath) is varied along with the ratio of the edge-panel widths to the interior-panel
widths, awiqs, L0 generate sixteen test problems. The iteration counts and run times for AMA
and PAMA applied to the test problems are given in Table 4-15.

The AMA iteration counts in Table 4-15¢ illustrate how the conditioning worsens as h and
oiden decrease. Figure 4-19a shows the eigenvalues of the effective system matrix used by AMA,
A+ E in the terminology of Section 4.2.3, when £ = 5x 10~* and auiann = 0.1. The eigenvalues
lead to a condition number of k(A 4+ E) = 10132, indicating that the capacitances are probably
in error since AMA uses a residual convergence test (see also Section 3.2.4). In contrast, the
PAMA iteration counts are low, and actually decrease as the cubes become closer together,
making the nearby panel interactions included in the preconditioner more important. For the
h=5x 10"* and ay;gr = 0.1 case, the preconditioner ¢ produces the eigenvalue distribution
of Figure 4-19b for C(A + E), and leads to condition number x(C(A+ E)) = 30.235. Under
these circumstances the error bound (4.13) is fairly tight, indicating low error in the computed
capacitances,

The relatively constant iteration counts for the PAMA method lead to the fairly constant
execution times shown in Table 4-15a, while AMA requires increasing time as the conditioning
of the problem worsens. For the well conditioned problems with near uniform panel size and
well separated surfaces, the PAMA and AMA times become comparable, since the reduction in
iteration count afforded by preconditioning is offset by the cost of constructing and applying
the preconditioner. In those cases a heuristic based on panel-size variation and panel proximity
could be used to determine how much of the nearby panel interaction information should be
used to construct the preconditioner. Most practical examples, however, such as the DRAM,
diaphragm and connector problems of Table 4-14, require the complete preconditioner used in
PAMA.

4.4.3 Memory Use

Figure 4-20 gives‘ plots of the memory required by PAMA to calculate the complete 4 x 4
capacitance matrices for the 2 x 2 woven bus and 2 X 2 coated woven bus as a function of the
number of panels » in the discretizations of Figures 4-9 and 4-10. For these well conditioned
problems there is no appreciable difference between the memory used by PAMA and AMA.
The same coarsest discretizations for each problem used in the previous section, woven0 and
wovendi0, give the smallest-problem results. The four curves in each plot corresponding to
the expansion orders ! = 0, 1, 2 and 3 show that for problems with and without dielectric

interfaces the storage complexity is nearly O(n), with the expansion order affecting only the
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for the Figure 4-18 problem with k = 5 x 10™*m and awiss = 0.1.
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constant that multiplies n in the expression for the memory®. The O{n?) memory required to
represent the full » x n system matrix for both GMRES without multipole acceleration and
Gaussian elimination is also plotted. The current implementation uses less memory than the full
matrix storage costs for problems with more than a few thousand panels, with somewhat better
performance for homogeneous-dielectric problems. Some of the extra memory use is due to the
use of the divided-difference algorithm, Algorithm 3.6, rather than the generalized adaptive
fast multipole algorithm, Algorithm 3.5, in the current implementation. Algorithm 3.6 requires

multiple potential evaluations on each dielectric panel, leading to higher overhead costs.

Homogeneous Dielectric Problems

~ Woven2 - Wovend Diaphragm 5 x 5 Woven
Method 2816 Panels 4400 Panels 6448 Panels 9360 Panels
Full Matrix 63.4 155 333 701
MA 45.8 96.5 110 213
AMA 30.0 47.2 51.7 124
PAMA 30.2 47.3 46.1 125

Multiple Dielectric-Problems
Wovendil Wovendi2 DRAM Connector
Method 2060 Panels 4352 Panels 6129 Panels 10096 Panels

Full Matrix 33.9 151 301 815
MA 78.9 280 270 (480)
AMA 42.0 110 120 213
PAMA 42.1 110 117 211

Table 4-16: The memory, in megabytes, required to solve for the capacitance matrices of a
representative set of problems. The value in parenthesis is extrapolated.

Table 4-16 summarizes the memory costs associated with the full-matrix and FASTCAP
methods applied to the problems of Table 4-14. Generally the FASTCAP memory require-
ments are smaller than the full-matrix cost, with the difference increasing with n due to the
t:omplexity difference between the two methods. Problems with mliltiple—dieiectric regions, the
wovendil, wovendi2, DRAM and connector problems, use more memory than homogeneous-
dielectric problems of similar size due to the previously mentioned overhead of the current
implementation. The excessive memory use of the non-adaptive MA method prevents the
connector-capacitance calculation, and is evident for all the other problems. In most cases the
PAMA memory use is about the same as for AMA since the preconditioner storage is less than
5% of the full matrix cost for problems larger than a few thousand panels, and the reduction
in iterations reduces the memory needed to store the v/ vectors in the iterative loop, Algo-
rithm 4.1, For some poorly conditioned problems, like the DRAM and connector problems, the

PExperiments with { < 2 use depth = 4 rather than aulo to avoid excessive spatial partitioning levels.
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savings in iterate storage are enough to cause an appreciable difference between the PAMA and
AMA storage requirements.
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Conclusion and Future Work

The preconditioned multipole accelerated iterative capacitance calculation method rtudied
in this thesis uses nearly O(mn) computation time and O(n) storage. The lower complexity
results in faster execution times and lower memory use when compared to the standard Gaussian
elimination method for problems with more than one- or two-thousand panels. For problems
with » =~ 10000, the new method typically uses hundreds of times less computation time
than Gaussian elimination. Calculations that previcusly required ten hours now require a
few minutes, allowing accurate capacitance computations to be part of an iterative design
process. Such computations are possible while still maintaining 1% accuracy in the computed
capacitances. Execution time can be smcothly exchanged for accuracy if 1% is insufficient,
without losing the O(mn) complexity. The method is completely three-dimensional and has
the same complexity and accuracy regardless of the geometry, including problems with multiple
dielectric regions. Furthermore, bounds on the algorithm’s complexity and error that predict
this performance can be derived analytically.

This thesis demonstrates the basic effectiveness of the multipole acceleration technique in
capacitance calculations, but many refinements to the algorithm are possible. The standard
techniques used to increase the accuracy of the weighted residuals method, such as more com-
plicated expansion functions combined with collocation or Galerkin testing, should increase the
accuracy of the method and result in better conditioned matrix problems. Such a refinement
may only be useful, however, for the dielectric interface panels, since collocation of constant-
charge-density panels appears to be adequate for conductor panels.

Several improvements are possible for the preconditioned multipole acceleration method.
The current implementation stops refining the spatial partitioning when at least 90% of the
cubes on the Jowest level are exact for both the local and multipole expansions (see Sections 3.2.3
and 4.1). This strategy can lead to ineffective preconditioners for well conditioned problems
(see Section 4.4.2), although it results in reasonable performance for the adaptive algorithm.
A more careful partitioning depth selection method would resolve the conflicting needs of the
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preconditioner and the adaptive algorithm. The spatial-partitioning technique also has an effect
on the number of panels that straddle cube boundaries. In the worst case a poorly conditioned
discretization can have very large panels that extend through many lowest-level cubes, white
other much smaller panels fit easily inside the lowest-level cubes. Breaking up the larger panels
appears to be a possible solution to this problem. Closely related to this is the idea-of adaptively
refining panels in order to maintain accuracy. The solution to the a.da.puve panel refinement
problem requires a careful study of the modeling issues involved in order to determine what

kind of refinements improve accuracy.

Other impraovements involve minor optimizations of the implementation. Currently altl pan-
els that are converted to multipole expansions are first approximated as pomt charges. This
approximation is adequate for 1% calculations, but can compromise higher-accuracy computa-
tions. Converting the panel charges directly to multipole coefficients requires some modification
to the Q2M operator. Part of the reason PAMA performs poorly for well conditioned prob-
lems is due 1o inefficiencies in the realization of the Delete_Rows() function called during the
preconditioner construction phase of the multipole-algorithm initialization. A more careful
treatment of the preconditioner data structures would make Delete_Rows more efficient and
decrease the preconditioner build time. The implementation would be more accurale and time
efficient for multiple-dielectric problems if the divided-difference method, Algorithm 3.6, were
replaced with the generalized adaptive multipole algorithm, Algorithm 3.5. The translation
(M2M, L2L and M2L) operations could be improved, especially for higher orders, by first ro-
tating the source expansion and then translating it to the destination [113]. Improvements in
the representations of the expansions themselves are also possible. The current im plementation
uses spherical-coordinate expansions and transformation formulas (see Appendix B), which
have simple Cartesian equivalents for the low-order expansions useful for capacitance calcu-
lations. Converting to the Cartesian representation would eliminate transcendental function
evaluations during the initialization phase, making the calculation faster. Finally, the curreat
GMRES iterative loop compules the m potential problem solutions one at a time. Since all m
problems use the same system matrix with different right-hand-sides, a block GMRES method
might lead to savings in run time (sce also Section 3.2.1).

Certain geometries have symmetries that could lead to reduced work using the multipole
algorithm acceleration. The capacitance of any conductor in the presence of an infinite ground
plane can be calculated by the method of images {61]. The problem is equivalent to the original
conductor and its image in the ground plane, with the ground plane removed. Because of the
symmetry, the two objects give rise to multipole-expansion hierarchies that are rotated and
shifted versions of each other. The local expansions differ slightly because of interaction lists
that contain cubes on both sides of the image plane, but careful bookkeeping would probably
result in some savings. Similar situations occur when calculating capacitances for repeated

structures, such as arrays of connector pins.
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Extensions of the multipole acceleration techrique to other problems such as potential flow
[85] and inductance computation [65] have already been made. In general, any problem that
can be solved using an iterative method that requires the repeated calculation of potentials
or electric fields is a candidate for multipole acceleration. Another such application would be
certain discretizations of the diffusion equation, where a potential problem must be solved on
every time step. Generalizations of the method to problems that lack the structure of Laplace’s
equation, but still involve quantities that are less important when farther away, may exploit
similarities between the multipole algorithm and multiresolution methods, such as wavelet

[10, 62] and multigrid [3) techniques.
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Surface Layers

This appendix examiues the discontinuities in the potential and its normal derivative that
occur across charge and dipole surface layers. As described in Sections 2.1.2 and 3.3, charge
layers are used to convert the capacitance-calculation potential problem into a simpler, equiva-
lent problem. Charge layers replace conductor surfaces and dielectric interfaces, providing the
same discontinuities in the normal derivative of the surface potential. Section 2.1.1 describes
similar techniques involving dipole layers'. The derivations in this section assume a smooth
surface [14, 69, 126, 63). A careful discussion of how the nature of the surface affects the results,
including their extensions for points on conductor edges, is given in [69].

A.1 Charge Layers .

The potential at a point z due to a single point charge at a different point z’ is, by Coulomb’s

Law,

1
¥(=) = e — 7"
assuming an isotropic dielectric of permittivity e throughout space. A charge layer density may
be thought of as a superposition of infinitesimally small point charges arranged on a surface &
and characterized by a surface-charge density o, giving rise to the potential

#(z) = / fs a(x')mds', (A.2)

(A.1)

where z cannot lieon S.

In order to relate the surface potential to the charge density, (A.2) is generalized to allow =
on S by a limiting argument. In Figure A-1la, as § goes to zero, the domed surface S5 vanishes,
leaving = on the surface §. Calling the part of S not replaced by the dome Sp, the potential at

'The same formulations result when Green’s Theorem {61} is applied ¢o the problems, although the analysis
is somewhat less intuitive. See, for example, [4].
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FIGURE A-1: Taking the limit from the positive (2) and negative (b) sides of the surfa
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z can be written as

¥(z) = lim [ / ]S ‘ a(z')m.fSH f /So a(z')mefsg]. (A.3)

For § small enough, S5 may be taken as a hemisphere with constant charge density so the first

. ’ 1 / : g // ’
————dS5; = lim-— d5%;
P—I}tll./ ./s, ol )4:1'6"::: -~ z'll2 % 520 drred 55 2

o2ré%a
= lii = 0.
51_1'1‘1) Arneb 0

term reduces to

Thus only the second term in (A.3) contributes, giving a result identical to (A.2) since 55 tends
to 5 as 6 goes to zero. The expression for the potential due to a surface-charge density is
always (A.2}, even if z is on the surface’. The same result is obtained using the geometry of
Figure A-1b and taking the limit from the other side of 5.

Although the potential due to a surface-charge density is continuous across the surface S,
the normal derivative of the potential is not. Calling n the outward normal to the surface at z,
the derivative of the potential at a point s relative to n is calculated by differentiating (A.2),

3¢(3) ’
.// oz )31: 4dxefls — z‘]]gds ’ (A.4)

where n points into a medium of permittivity . By definition the normal derivative of a function

is the component of its gradient in the normal vector’s direction,

9_ 1 a2 .y 1
Indmells— 2l “drmeljs — z'||2’
(s—2

e 4wefls — z'"‘;';
— -l
cos{s — = ,;z). (A.5)
4nells — ='||3

Here cos(s — z,n) is the cosine of the angle between s — z’ and =,

A n-(s—z')

cos(s = ™) = ol

With this substitution (A.4) becomes

Ehb(s) _[_[ olz )cos(s z', n)d.S", (A.6)

dxe||s - z'}f2

which is valid for any s not on the surface S.

*Strictly speaking, the integral does change, from an ordinary integral to a convergent improper integral.
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To extend (A.6) to the case of the normal derivative at 2 point z on the charge layer surface,
a limiting argument based on the geometry of Figure A-la is used. Using (A. 6), the normal
derivative of the potential at point x is

dPs(z) _ hm[ /j a(z)cos(x-—z n)d55 ff a(z)cos(z-—z n)dSO]

on Arefjz — Anef]z — =3 Axejlz — = anejjz — 23
. o(z) . cos(z — €', R) o
= lim [- = f js cox(z ,n)dS;] - f f e G 7

§—0

Using a spherical coordinate system with n as the z axis, and 8 and ¢ as elevation and azimuth

coordinates respectively, the integral over the domed section becomes

i [ 257 R G f 662 dpd
5-?10[ 41r€62 [/ COS(.'L'-—I n)dSS] - }E}}'\: 41’662 COSBSHI ¢d

1
= --2-—cr(z).

Substitution into (A.7) gives the final expression for the normal derivative of the potential on

a charge layer, i

b)) [[ e zes 09
By convention n points away from the positive side of S. In desiving (A. 8), the dome approaches
$ from its positive side as in Figure A-la. Thus (A.8) is valid for the normal derivative of the
potential on the positive side of §. An analogous argument, using the geometry of Figure A-1b,
leads to an expression for the normal derivative of the potential on the negative side,

3"" (”) a(a:) f f o(z') ‘;":;T;_”I,H:ds' z € S. (A.9)

Together (A.8) and (A 9)indicate that the normal derivative of the potential hasa discontinuity

across a surface-charge layer of magnitude

gp_(z) _O¥slz) _ 1
m o Cor(a:).
Both the integralsin (A.8) and (A.9) must now be interpreted as convergent imptroper integrals.

A.2 Dipole Layers

The potential at = due to a single point charge at 2’ in a2 medium of permittivity ¢ is given
by (A.1), but may also be defined as the solution to the equation,

Vip(z) = -—-—6(:: - z'), | (A.10)

where 6(-) is the Dirac delta function. A dipole consists of two unit charges with opposite
polarity aligned along a unit vector p Specifically, the solution to the equation

Via(z) =~ }}3},3{513 —(z' +hp)} - 8z — = 8) (A-11)
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is the potential of a unit dipole at z with moment p. By superposition, the two terms in (A.11)

must give rise to potentials of the form of (A.1) so

bal(z) = li 1 [ 1 1 ]
¢ b h drellz — (z' + hp)llz  Amellz — 2'f|23

Thus the dipole potential is the p-directional derivative with respect to z’ of the potential of a

point charge at z,
1

Yalz) = 3p dxeflz — 2|2
Using reasoning similar to that 1 ading to {A.5), the potential of a unit dipole at x oriented in -
the p direction is

_ cos(z—2z',p)
W)= e — =

A dipole layer is formed when infinitesimally small dipoles are distributed on a surface
S, oriented in the direction of the surface’s normal n’. Such a distribution is characterized
by a dipole layer density u which produces a potential ¥;(z) due to the superposition of the
infinitesimally small dipoles,
, ;. cos(z — ) '
baim) = [ [ ) B TS (A12)

dmeljz — 'Ilz

This equation is only valid for = not on §.

The extension of (A.12) to points on the dipole layer follows the same strategy as used to
develop (A.8) and (A.9). In fact (A.6) and (A.12) differ only in sign and the treatment of
the normal, allowing the use of the same limiting argument with slight changes in the dome
integration. The expression

1 ! COS(.’L‘ II, nf) '] .
%b z)= —u(z)+4 2 y———— 48 xec S A 13
CH'( ) 26#( ) U P( ) 4 f" ;"3 ¥ E ] ( )

results when the limit is taken from the positive side of § using the geometry of Figure A-la.
Taking the limit from the negative side of § as in Figure A-1b gives

du(e) = o) + [ [ a2 #m) o zes. (A.14)

) 47el|z ~ ='}|3

In (A.13) and (A.14), the integrals are convergent, improper integrals. The potent:al is discon-

timious across a dipole layer since
' 1
V(%) — e (z) = —E#(I)-

The normal derivative of the potential, however, is continuous across a dipole layer. This fact
can be established using limiting arguments similar to those leading to the above results.
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Multipole Algorithm Formulas

This appendix presents the multipole algorithm expansion, shift and conversion formulas
used in the capacitance extraction algorithm implementation. The formulas used are equiv-
alent to those in the original multipole algorithm formulation of [52, 54] but avoid complex
arithmetic. They are obtained by combining complex conjugates in the original formulas to
obtain expressions in the style of [59)]. Section B.1 defines the real valued coefficients and the
spherical harmonics which together are used to form the multipole formulas of Section B.2.
Gaussian units are used throughout this appendix, leading to the simpler formulas used in the
implementation. For a comparison of MKSA and Gaussian units see [61].

B.1 Formula Components

Each multipole or local expansion term involves a coefficient multiplying a spherical har-
monic. When a real coefficient expansion is used this fact is obscured by the combination
of complex conjugates. However, since the real coefficient expansions are just reorganizations
of the complex coefficient formulas, the same coefficients and spherical harmonics appear in
stightly different form.

B.1.1 Real Valued Expansion Coeflicients

Given 2 multipole or local expansion coefficient, G, the corresponding real valued coeffi-

cients are defined as

2 {—H}:f = Re{G™}, [m|> 0, |m| < =n;
- A '
= B.}
G Gn, m=0,m<mn; (B.1)

0, otherwise;
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— 2,/ i {Gn), m >0, m < n;

Ame B ' |
Gr = 2\’ :t’_':-B_; M{G?}, m<0, ]m‘ <0 . (B.2)

0, otherwise,

All the multipole algorithm formulas are converted to real coefficients using these substitutions

for the complex coefficients.

B.1.2 Spherical Harmonics

Y™(6,4) 2 \/ g: T :mH;P"“'(cos pyeims, (B.3)

are called surface spherical harmonics. A surface spherical harmonic is part of 2 solution to
Laplace’s equation obtained by separation of variables. Here, as in [66, 59, 61], a surface
spherical harmonic is the product of the elevation (8) and azimuth (¢$) components of the
solution. Unlike the usual definition, however, a normalization constant is omitted following
(52, 54]. The complete solution is a product of Y™ and a power of r, the radial coordinate.

The functions

The result, for example

Ya" (8, ¢), (B.4)

r"'*'l
is called a spherical harmonic.

The function F*{cos8) is the associated Legendre function of the first kind with degree n
and order m. These functions are defined only when n is a non-negative integer and m is an
integer such that —» < m < n. For convenience any P™(cos§) whose indices do not satisfy
these restrictions is taken to be zero.

The recursion

(n — m)E](cos a)

={(2n—1) cosa P. (cosa) — (n +m — 1)P 4(cosx}, - | (B.5)

valid for 0 < m < n — 2, and the formulas

_ emy, . . _
Pr{cosa) = 2mm!(—mn a)®, 0<m, (B.6)
P,',f.,_,(cﬁs a) = (2m+ 1)cosaPy(cosa), 0Z m, (B.7)

can be used to recursively evaluate the Legendre functions {59, 75}.

B.2 Real Coeflicient Multipole Algorithm Formulas

Using the real valued coefficients and the spherical harmonics of the previous section, the
multipole algorithm formulas used in the capacitance extraction algorithm are obtained. The
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resulting real coefficient formulas eliminate the need for complex arithmetic and square root
calculations.

B.2.1 Multipole Expansion (Q2M, M2P)

The order ! multipole-expansion approximation to the potential, t, at the point (r,8,¢) is

et~ 3 MEyn,0). (B.8)

n=0m=~n

Applying the definition of the surface spherical harmonic, Y", gives

,ml) |rmd 5 um;b
¥(r.8, ¢)~’§m§n s (n+l D,P {cos8)e (B.9)

Substituting the real coefficients using (B.1) and (B.2) yields the real coefficient multipole

expansion,

(n— m)!

H(r, 0,8} ~ Z - +1 Z _ ) PP (cos8) [M" cos(mg) + M sin(mg)] - (B.10)

The complex coefficient local expansion conversion is nearly identical.
A multipole expansion is constructed from & charges with strengths g; and positions (pi, a:, £i),

i=1,...,k, using
Z g o7 Yo " (i, Bi)- (B.i1)

=1
Substituting (B.1) and (B.2) gives expressions for the real multipole coeflicients corresponding
to a set of k charges,

25, g p? PN (cos ;) cos(mBy), m| > 0, Im]| < n;

7 = § TF, 4o} P(cosay), m=0,m<n; (B.12)
0, otherwise;
25%.1 qp? P:';m'(cosa.-) sin(mB;), |m| >0, |m| < n; _

Mp = (B.13)
o, otherwise.

The extension of these equations to charge layers is straightforward.

B.2.2 Local Expansion (Q2L, L2P)

The order { local expansion approximation to the potential, 1, at the point (r,8,¢) is

¢(r,0,¢)zi zﬂj Lmy (9, é)", (B.14)

n=0m=-n
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or

m I”il) m "Tlé ﬂ
{r,0,¢) = E E Ly 1} 'Pi Icosﬂe B.15

Substituting the real coefficients using (B.1) and (B.2) yields the real coefficient local expansion,

!
W(r,0,¢) ~ Z Z (n = )IP’“(cos 8) Lz cos(mg) + L sin(me)] . (B.16)

m=0
A local expansion is constructed from k charges with strengths ¢; and positions (p;, o4, 8;),

t=1,..., k, using
k

rey ni,l Y, " (e, Bi). (B.17)

=1 Fi
Substituting (B.1) and (B.2) gives expressions for the real multipole coefficients corresponding

to a set of charges,

—"-.g- pm I(cos o) cos(mp;), |mj>0, |mj < n;

Iy = { vk, ;"xr P(cos &), m=0,m< n; (B.18)
o, otherwise;

) vF, JTT le!(cosa.) sin(mg;), |m|>0, jm| < n;

im = (B.19)
0, otherwise,

The extension of these equations to charge layers is straightforward.

B.2.3 Multipole-Expansion Shift (M2M)

Consider a muitipole expansion about the point (p, @, ). The potential at a given point
results when its coordinates relative to {p, a, ) are substituted into the expansion. If the ex-
pansion about (p, @, ) has coeflicients O, then the coefficients of 2 shifted multipole expansion

about the origin, N}‘ , are given by

n (J+k)'(.7 k)!;lkl [m|-[k-m[Y (a,f) k:::tp
Z 2 JO-nik-m)G-n—ktmi(ntmi(n-m)

n=0m=—n

Substituting for the surface spherical harmonics using (B.3) and for the complex coefficients
with (B.1) and (B.2) gives the real coefficient multipole-expansion shift formalas for 5 > k£ > 0,

(B.20)

SGHOEE 5 fum, by BT C)

n=0 m=0

k-—m-—]k—-ml
{(: 7+ k- m]) 05 ™ cos(mf) ~ Oz sin(mp)]

— i;ll e [Off,? cos(mf) + Off,’:‘ sm(mﬁ)]} ; (B.21)
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GRS 3 ftm, i EELEEE)

n=0 m=()
k--m—~lk—m|
{(.’r‘ —n+lk—m])! [Of-:t sin(mpB) + O_f_:‘ cos(mﬁ)]
(J - ‘J'E. +13¢m+ m)l [“Ofi-:l Slﬂ(mﬁ) + Ok+m cos(mﬁ)]} (B.22)
Here
1, m 95 0, k ?’1 0;
fra(m k) 2 1/2, m=0,Fk#0; (5.23)

1/2, m#0, k=0;
1/2, m=0,k=0.
B.2.4 Multipole to Local Expansion Conversion (M2L)

An order ! multipole expansion about the point (p,ca,#), with coefficients O™, can be

converted to an order / local expansion about the origin, with coefficients N J‘-E, using

VGFatm =BG+ n-m+ ey ka,gyon

Vm+m) (= m) G+ EP(G — kN (—1)= ileltiml gitns1 (B.24)

P>

n=0m=-n

Substituting for the surface spherical harmonics using (B.3) and for the complex coefficients
with (B.1) and (B.2) gives the real coefficient muitipole to local expansion conversion formulas
for12>j>k20,

ko fL(k) E( 1)“

7 P~ k)l pnHl -
i —lm-k —mi|~k—m
PJI+n kl(cosa)(.? +Eln +|m)' ST
{0 cosf(m —~ k)B) + OF sinf(m — k)g]}
i+ n—m — k)!
+P;';_",:k(cos o) G +(:: T ::)‘ )
{0 cosl(m + k)B) + OF sinf(m + k)A]} ; (B.25)

= 1 ) § L.
I =

n=0 P m=0

Gtn—im— k) pomi-tem
(n+m)! |

{0 sin(m — k)8} + O cosl(m - £)]}

(j+n—-m-k)

PI™Heosa)

itn

R eose) Ty
{0 sin[(m + k)] ~ OF cosl(m + k)B]} . (B.26)
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Here

11 k #£0; '
fr(k) = { 1/2, k=0 (B.27)

B.2.5 Local Expansion Shift (L2L)

An order { local expansion about the point (p, o, ), with coefficients O, can be converted
to an order { local expansion about the origin, with coefficients NF, using

k__ = Vin+ m)i(n = m)! ilml={ki—im~k| yﬁ}-k(a, B)O™ pn=
S Z Z Vir—-i+m—E)l(n-j- m+k)!(j+k)!(j_ k)!m_'_(—-l)n—j'

A=j m=-n

(B.28)

Substituting for the surface spherical harmonics using {B.3) and for the complex coefficients
with (B.1) and (B.2) give_s the real coefficient local expansion shift formulas for j > k£ > 0,
se_  Juk) <
Nk = "
A e PN

im- k—{m—k|

+ |m ~ E|}{(n — m)!
-{0m cos{(m ~ k)B] + O sin(m — k)8)}

n—j

fm—k|
P (cos a) 7

m+k (—l)k
+EZY (cos &)(n Jtm+ k) n—m)
: {om cos|(m + k)B] + OF sinl(m + k)B]} ; (B.29)
W = T S
—_— jm—k—im—k|
Pl (cos a)

(r=j+Im—kDi(r—m)
-{-0% sinf(m — k)B) + O cos{(m — £)B]}

(-1
m + k)l(n — m)!

-{0m sinf(m + k)B] - O cos|(m + k)8l} . (B.30)
The function fz(k) is given by (B.27).

Pm-{-k
(cosa) -7t

n=3

B.2.6 Electric Fields From Multipole Expansions (M2E)

The contribution of an order I multipole expansion to the potential at the point (r,0,¢)is
given by (B.10). If (r,6, ) are the spherical coordinates of a dielectric-panel evaluation point
with unit Cartesian-coordinate normal n = (nz,ny,n,), then the multipole expansion (B.10)

contributes

> ,.nl-a-l Z (n T )' P {cos#) [M"‘ cos(mgp) + M™ sm(mqb)]} (B.31)

n=0

Emufgn'v{
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to the electric field in the normal direction. Expanding the gradient in Cartesian coordinates
using the chain rule leads to the directional derivatives

a apmul dr Opmu a6 apmul 3¢
—— = — : B.32
szm"'(r’ 6,9) “ar 8z *"96 5z 0 oz i ( )
a Opmw OT OPmut il apmu! 3‘)5 ’
— = — _— B.33
g7 (n0®) = "5 5.t "5 oy T 0¢ Oy’ (B.33)
— = — — -_ B.34)
5z Pt (7:6,6) ar 527 06 6z 04 0z (B.34)
Performing the dot product and rearranging gives
Opmut [ Or or 21_: )
Emu‘ = ar ('a;nr + 8yny + aznz
3Pmu1 39 a0 33 )
+ 58 (az“ =% 5y +a
Zlmul (TF b —n.]. 35
+ 3o 6zn:+ Byn"+ 3zn" ( )
For the case sin @ # 0, derivatives obtained by implicit differentiation of the coordinate conver-
sion rules ’
z=rcos; z=rcospsinf; y=rsingsiné, (B.36)

together with various derivatives of {B.10},

OPmut - Xf: —(n+ 1) Z (n- m) Pm(cosg) [M:l- cos(m¢) + Mr,:l sin(n‘u;b)]; (B.37)

or . ~ rt2 (n + )l
pmut 1 Ar—-m)f(rn-m+1) (rn+1)cosl p
a ,g il = (n+m)! [ sin & Frii(cosf) =515 Fy'(cos )]
- [#rm cos(m¢) + My sin(mg)| 5 (B.38)

]

i) 1 < m — “m
I:;"' ; pee, P E: T miiP (cos8) [—mMn sin(m¢) + mM; cos(mqb)] , - (B.39)
(B.40)

are substituted into (B.35). The derivative of the associated Legendre function in (B.38) has
been replaced using the identity {75}

smﬂ d P"'(cos&) = (n—m+ 1)PJ (cos8) — (r + 1) cos 8P (cos@). (B.41)

After the substitutions (B.35) becomes

Emuf = Zo n+2 Z (n + m)l
{An cos(mq‘))P"‘(cos 8) + [F™ cos(m@) + B™ sin(m)] Pryi(cos 8)} Mz
+ {[Gn sin(me) — B™ cos(md)] Py (cos)

+ F™ sin(mg) P, (cos 6)} wn} sin@ # 0. (B.42)
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where

A, ( 1)[ (n,cosgbcos&'-}-n,smqbcosﬂ n, sin f)

- (n, sin @ cos @ + ny sin 8 sin $ + n; cosb)]; (B.43)
A .

B™ = (ngysin¢ — ny cos ¢)sm9’ (B.44)

Fr = 2 (—Tﬁ—g—f@-—l(n;cosqbcos0+ n, sin ¢ cos# — n sinb);

(n +1) [-—-—- (n cos peos b + ny singcosd — n.sin 8)
— (nzsin 8 cos ¢ + n, sin @ sin ¢ + n; cOs 8. (B.45)

For the special case sin@ = 0 (B.42) is replaced by

P i Z 4D pocosgyiag,  sind=0. (B.46)

n=0

This equation’s derivation starts from (B.10) for the special case sin@ = 0 and then proceeds
as when sin 8 # 0, with special attention to simplifications in Pm(cosd) and H P (cos9).

The normal electric field evaluation at z; = (7,0, ¢) uses either (B. 42) or (B.46), as appro-
priate, to replace the Ejjg; products in (3.50), or E,Jq, products in (3.53), corresponding to
the charge panels represented by the maultipole expansion.

B.2.7 Electric Fields From Local Expansions (L2E)

The contribution of an order I local expansion for the potential at the point {r,8,¢} is

i
Pioe(r,0,8) = > 7" Z ( — )IP"'(cosﬂ) 125 cos(m) + L sin(me)] - (B.47)

n=0 wm=0
The multipole and local expansions differ only in the powers of r that multiply each term. This
similarity allows a development analogous to that in the previous section which gives

n— (n—m)!
Epoe = Z" ! Z (n+m)'{
{A cos(mq")P’“ (cos8) + [Fr' cos(m@) + B™ sin(m@)] Pry1(cos 9)} L
4 {{Gn sin{mgp) — B™ cos(mg)] F*(cosb)
+ F™sinfmg) Py (cos )} L}, +ind #0. (B.48)
for the normal component of the electric field due to the local expansion (B.47) evaluated at

dielectric panel center (r,8,¢). The weights A, B™, FT* and G, are given by (B.43-B.45) as
in the multipole-expansion case. When sinf = 0 the normal field is

Eloe = Z nr" 1 PocosO)M2,  sind=0. (B.49)
n=0 .
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As in the multipole case, the evaluation of the normal electric field at z; = (v, 8, $) uses either
(B.48) or (B.49), as appropriate, to replace the Ej;q; products in (3.50), or quj products in
(3.53), corresponding to the charge panels represented by the local expansion.
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Galerkin Panel Integral
Approximation

Section 3.3.2 applies 2 constant-panel-charge approximation and Galerkin testing to the
integral equation arising from the boundary condition at the interface between two dielectric
regions to obtain (3.52),

i (6,, + fb)
% 2A-eg(q, - )

cos{z — z',m) , ab
d C.1
+ZqJAA /fpand:.//pmel; 4W€0]|Z“‘$r"2ds S, zeS ! ( )

where $% is the dielectric interface, ¢, and ¢ are the dielectric permittivities on either side of
the interface, n; is the normal to 52 at z that points into the ¢, regicn, S is all the conductor
and dielectric-interface surfaces in the problem, and ¢; and A; are the total charge and area
of panel i. In the collocation-Galerkin discretization of Section 3.3.2, each dielectric pane] i
gives rise to an equation of this form, which leads to one row of the matrix E given by {3.54).
Solving the corresponding matrix problem (3.53) iteratively requires multiplication of the charge
vector ¢ by EC (using Algorithm 3.5 or 3.6), which amounts to evaluating the right-hand side
of equations like (C.1) for all the dielectric parels. The second term in these evaluations can
be rearranged to read

cos(z — z', ny) ot b
d5'dS, < C.2
A; -/[ lJ_l f./pme.lg 41r£0||:c - z""2 . ¥ ( ) .

By Coulomb’s Law the inner integrand is the normal component of the electric field at the point
z on panel i due to the charge at z’ on panel j. The panel-j integral adds the contributions of
all the charge on panel j, and the summation extends the superposition to all the panels in the
problem. Thus

0=

ENOED S - j [ e Fmligs, ses® (C.3)

;——1 panel 5 47|z — |3
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is the normal electric field at the point z on panel i due to all the charge in the problem, except
for the charge on panel i, which coatributes through the first term in (C.1).

The expression (C.2) is therefore the integral of the normal electric field over panel ¢ divided
by A;, that is the average normal field on panel . Since closed form expressions for (C.2) are
not known for arbitrary panel orientations, and (C.3) can be approximated with the multipole
algorithm, the approach taken here is to approximate the averaging integral numerically using
a weighted sum of several evaluations of the integrand (C.3). In Algorithm 3.5 the normal-
field evaluations are ca.lcﬁlated directly using a generalization of the multipole algorithm, while
in Algorithm 3.6 they are approximated from multipole-algorithm potential evaluations using
divided differences.

The integral approximation formulas depend on the shape and orientation of the panel. If

panel i is a triangle, the integral

21; / /meuf:,.,,(z) ds (C.4)

is first transformed to an .ntegral over the standard triangle with corners {0, ), (1, 8) and (0,
1). The affine transformation that maps the standard triangle onto panel ¢ is easily calculated

from ‘panel i’s corner points and has the form
z=T%+w, (C.5)

where z is any point on panel i, i is the corresponding point on the standard triangle, T is a
2 % 2 matrix and v is a vector. Using (C.5) to change variables in (C.4) gives (76}

YTy R

so that any triangular-panel integral reduces to an integral over the standard triangle. Here
det(T) is the determinate of T'.
The transformed integral is approximated using 2n integration rule of the form

- ; 5 3 i d ok
L[ Bu(Ta+ u) et 5 = | det(T Y BT+ ) (C.6)

where the evaluation points i, and weights di are given in Table C-1 for the rules used in the
current implementation, Algorithm 4.1. The order 0 = 7 formula is a Gaussian quadrature
formula applied to the standard triangle by a change of variables, while the others are derived
using special techniques [128].

A formula’s order, o, is 2 measure of its accuracy. An order o formula produces the same
result as the actual integral when the integrand is any monomial of order p, 0 < p £ o. The
formulas of Table C-1 are particularly useful for (C.6) because all their eveluation points are
inside the panel, all their weights are positive, and they use a minimal number of evaluation
points. Formulas that use evaluation points on the edges of the panel produce inaccurate results
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Order, o Evaluation Points, #;, and Weights, dp Constants
1 2y =(1/3,1/3),d, = 1/2
2 zy =(1/6, 1/6),d, = 1/6
22 =(2/3, 1/6),dy = 1/6
£a=(1/6, 2/3),d3 = 1/6
3 fl = (T, 3), dl = 1/12
Zy=(s, 7),dy =1/12
Z23=(t r),ds =1/12
Zg = (1‘, t): dy = 1/12
25 = (2, 8),ds =1]12
-‘Es = (8, t), ds = 1/12

r = (.1050390091
s = 0.2319333686
t = 0.6590276224

f.'2=(f, '."'), d2=B
z3=(r, s),d3 =B
ig=(s, r),dy=B
:."':5=(u, u),dsr'-C
.’Es:(‘u, ‘U),d6=C
g7 ={v, u),dr =C

r = (6 ~ V15)/21

s = (9 +2V15)/21

x = (6 + v15)/21

v = (9 — 2v15)/21

B = (155 — v/15)/2400
C = (155 + v/15)/2400

7 i]_ = (31, 7'1(]. — 5 )), dl = BICI Ty = 0.0694318422
.'52 = (81, 1"2(1 — 3 )), dz = Bgcl r2 = 0.3300094782
i3 = (51, r3(1 ~ 81)), d3 = BsCy r3 = 0.6699905218
F4= (8]_, ?’4(1 - 31)), d4 = .3401 T4 = 0.9305681558

s = (82, r(l—53)), ds = By Ca 81 = 0.0571041961
Z6 = (52, r2(1 ~ 53)), ds = B2Cy sp = 0.2768430136
Z7 = (82, 13l — 32)), d7 = B3C» s3 = 0.5835904324
5:3 = (82, ‘."4(1 - 82)), dg = 3402 85 = 0.8602401357

£9= (83, 11(1 - 53)), dy = B1C5

%10 = (33,
211 = (83,
£12 = (83,
:313 = (343
5:14 = (34s
215 = (84,
5:16.= (34’

r2(1 ~ 53)), dio = B2Cs
ra(l — 33)), d1y = B3Cs
T4(1 — 33)), diz = B4C3
T1{1 — 84)), diz = BiC,4
r2(1 — 84)), d1a = B2Cy
r3(1 — 34)), dis = B3C,4
r4(1 — 34)), die = B4Cy

B, = 0.1739274226
B, = 0.3260725774
By = 0.3260725774
B4 = 0.1739274226
€1 = 0.1355069134
C2 = 0.2034645680
C3 = 0.1298475476

C4 = 0.0311809709

Table C-1: Evaluation points and weights used in the approximation of (C.6).
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because the panel-charge densities are constant, while formulas with negative weights are less
accurate due to cancellation errors. Although quadrilateral panel formulas exist [33, 128], the
current implementation treats quadrilateral panel integrals as two triangle integrals, unless

o0 = 1 where centroid collocation is used.

T
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Local Expansion Efficiency

Section 3.2.3 establishes that it is not computationally efficient to construct an order-f local
expansion for a cube containing n, evaluation points if

n, < ((+1)% (D.1)

If (D.1} is violated for a given cube, however, it is still possible that constructing a local expan-
sion for the given cube and then evaluating it requires more work than directly evaluating the
expansions used to build the given cube’s expansion. The final cost of the local expansion cal-
culation may be greater since the local expansion requires evaluation, possibly with a hierarchy
of lower-level local expansions sﬁpporting the eventual evaluation of lowest-level expansions,
while the direct evaluation gives the evaluation-point potentials without further computation.
The potential savings, however, are not enough to warrant checking for this possibility.

For a given cube that violates (D.1), the cost of direct evaluation must be compared to the
cost of building not only the given cube’s local-expansion, but also the cost of any local expan-
sions required in its descendent cubes to evaluate the potential at the given cube’s evaluation
points. The direct evaluation starts by evaluating the parent’s local expansion (if present) at all
the given cube’s evaluation points (L2P), and then adds in all the interaction-list contributions
for the given cube and all its descendants (M2P and Q2P). The interaction-list computations
have the form of (3.17) without the L2P transformation, with each descendant of the given
cube contributing a separate set of n;: b'4 n': transformation matrices, where the j-th descendant
contains n} evaluation points and the given cube is considered to be one of its own descendants.
The cost of the direct evaluation of all the interaction-list entries is then

J Lo
Enf,Zn;!, (D.2)

i=1 =1

where J is the total number of descendent cubes ard I; is the number of entries in the j-th
descendant’s interaction list. If the given cube’s parent has no local expansion, then (D.2) is
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the total cost of the direct-evaluation strategy, otherwise adding the cost of n, evaluations of
the ({ + 1)*-term parent-cube local expansion at the given cube’s evaluation points gives the
total cost,
J
zn»' Zn + ng{l + 1)% , (D.3)
=1
The local-expansion computation starts with a translated version of the parent’s local ex-
pansion (L2L, if present) and adds in the contributions of its interaction-list entries {(M2L and
Q2L). Assuming that none of the given cube’s descendants satisfy (D.1), the same procedure
performed recursively constructs a hierarchy of lower-level local expansions for all the descen-
dants of the given cube. Finally the lowest-level local expansions are evaluated (L2P). The
interaction-list computation has the form of (3.16) without the the L2L transformatlon with
each descendant of the given cube contributing a separate set of (I 4 1)? x ] transformation
matrices towards that descendant’s local-expansion build. Each non-empty descendent cube
leads to an ({4 1) x (1 +1)* L2L transformation matrix, assuming the parent’s local expansjon
is present, and the final I.2P evaluations require n, evaluations of ({ + 1)?-term local expansions,

making the total local-expansion computation cost

J I, i _
SSU+1E a4+ (- DU+l + 1)%, (D.4)
j=1 =1
When the given cube's parent has no local expansion, the computation is identical except that
there are no L2L transformations from the parent’s local to the given cube’s B descendants one

level finer than the given cube, so that (D.4) becomes

J L ) -
ST+ al + (-8 1)+ 1) + np(l +1)% (D.5)
=1 i=l .
Combining (D.2) with (D.5), the direct evaluation of the potentials in a given cube is
preferable to a local-expansion computation and evaluation if

J J
an,}:nf <>+ 1)’2:; +(J =B =1+ 1) +np(l+1), (D.6)
Jj=1 =1 j=1 : i=1
when the given cube’s parent has no local expansion. If the given cube’s parent has a local
expansion, then (D.3) and (D.4) imply that the direct evaluation is the same or egual cost when
S I

$niY Al <2(:+1) Zn +(J -1+ 1) (D.7)

J=1 =1 j=1 =]

The inequalities (D.6) and (D.7) are alternative local-exactness checks to (D.1). In general
(D.6) and (D 7) are easier to satisfy, so using them over {D.1) reveals more exact cubes. How-
ever, the added efficiency does not justify the extra cost of the (D.6) and (D.7) checks. The
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minimum effective interaction List length,

L
Ly & (nginan-') [ +1)

=1

is the length of the lowest-cost interaction list if it prescribes only M2L operations. Thus if
(D.6) holds then

J
LpgU+1)2 3 0] < Jlg(I+ 1)+ I+ 1)* + [2p — (B+ DU+ 1)1+ 1)

3=

J
=1

IA

Jg(U4 12 + I+ 1)+, - (B+ 1)1 +1)% (D.8)

If level D js the lowest level and the given cube is on level d, then

J
Y nl=(D-d+1)n,

j=1

since the all non-empty cubes on each level must contain all n, evaluation points in the given

cube. Substitution into (D.8) and rearranging gives
(D~d+ 1)y —1]n, < (fc,f +1)J(+ 1= (8 + 1)1+ 1)% (D.9)
Similarly, if (D.7} holds then
(D= d+ W) ppny < (Legg+ 1)JU+1)2 = (14 1)% (D.10)

However, if all the J descendants of the given cube (this includes the cube itself) have at least
(! + 1)? evaluation points?, then

(D —d+Dnp > J{ 4 1)%, (D.11)

since ali the cubes on a given level contain exactly the », evaluation points inside the given cube,
For moderate values of I.y; > 1, both (D.9) and (D.10) contradict (D.11). Since I.;s > 1is
a reasonable approximation in practice, the adaptive fast multipole algorithm uses the simpler
local-exactness condition (D.1) rather than (D.6) and (D.7).

MThis assumption does not affect the generality of the argument since it makes the direct-evaluation approach
more expensive compated to the local-expansion method.
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