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Abstract

Simulation and Modeling Techniques for Signal Integrity and Electromagnetic
Interference on High Frequency Electronic Systems.

by

Luca Daniel
Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of Californiaat Berkeley
Professor Alberto L Sangiovanni-Vincentelli, Chair

Many future electronic systems will consist of several significantly heterogeneous modules such as Opto-
Electronic and analog RF links, mixed-signal analog to digital converters (ADC), digital signal processors
(DSP), Central Processor Units (CPU), Memory modules, Microfabricated Electro-Mechanical (MEM) res-
onators, sensors and actuators with power electronics converters. When assembling such an heterogeneous
set of modules on a single package (Systems on Package: SoP) or integrated circuit substrate (Systems on
Chip: SoC), compatibility issues are soon to arise from many possible point of views. In this thesis, we will
address the physical electromagnetic point of view. We aim to encompass phenomena that range from the
well known electric field capacitive cross-talk, to the more challenging magnetic field inductive coupling,
and even full-wave propagating el ectromagnetic field couplings. We find the standard approach to Electro-
Magnetic Compatibility (EMC) used on Systems on Board (SoB) quite inappropriate for Systems on Chip
(SoC) where prototyping, metal shielding and ground planes are often expensive, and sometimes completely
impractical. In the first part of the thesis we propose instead an accurate and efficient three dimensiona
electromagnetic field solver as a valuable tool for verifying the design against al sorts of electromagnetic
interference before fabrication. In the second part, we propose modeling techniques as a valuable tool for
characterizing each module with respect to its electromagnetic properties, so that higher level circuit smula-
tors can be used effectively to check the compatibility of different blocks. In the third part of the thesis we
argue that compatibility should be achieved through an automatic interconnect synthesis process, enabled by
our newly developed parameterized modeling technique.

The new generation of fast electromagnetic analysis programs, based on accelerated integral equation
methods, has reduced the time reguired to analyze thousands of simultaneously interacting conductors from
days to minutes. However such solvers are either inappropriate for, or are very inefficient at, analyzing
interconnect exhibiting high frequency effects. With processor clock speeds exceeding two gigahertz and
harmonics exceeding twenty gigahertz, high frequency effects cannot be ignored. The effects that are most
troublesome for fast solvers are skin and proximity effects. Such phenomena can significantly affect inter-
connect performance and should not be neglected, in particular when either wire width or thicknessis greater
than two “skin-depths.” Interconnect performance on Printed Circuit Boards (PCB) and on |C Packages has
suffered from such effects for many years. Even some Integrated Circuits are now starting to be affected
at the global interconnect level (power, ground and clock distribution networks). For instance skin-depthin
aluminum interconnect at the tenth harmonic of atwo gigahertz clock is around a half micron. Skin and prox-
imity effects are troublesome for current fast solvers because they generate an exponentialy varying current
distribution inside each conductor. Trying to represent that current variation using the standard piecewise
constant basis functions commonly available in fast solvers requires alarge number of unknowns. Since the
computation time for fast solversis supposed to increase only linearly (more precisely O(nlog(n))) with the
total number n of basis functions used in the problem, it may seem that the increase in unknowns to rep-
resent current variation is not that problematic. However, when many basis functions are used to represent



the current variation in a cross-section of a conductor, those basis functions interact densely in a way that
can not be reduced by the algorithms used on most fast solvers. Thus, the computation time for modeling
high frequency effects increases with the square of the number of unknowns required to model the current
variation within conductors even for fast solvers. Two contributions of this specific Ph.D. work concentrate
on addressing this issue by generating specialized basis functions, which more efficiently capture the expo-
nential variation in the conductor current. Specifically we use the Helmholtz equation for the interior of the
conductors to generate analytic solutions in one case (the conduction modes basis functions) and humerical
solutions in the other case (the proximity templates basis functions). Both basis functions can be employed
to discretize the Mixed Potentia Integral Equation (MPIE) with a Galerkin technique. Both new sets of basis
functionsresult in simulation times and memory requirements 400 times smaller than with piecewise constant
basis functions. The analytical basis functions are more flexible when combined with model order reduction
algorithm. The numerical basis functions are more flexible when handling general wire cross-sections.

Electromagnetic analysis of a collection of interconnect is an essential tool for the verification of modern
electronic circuits. However, of possibly greater importance, is the ability to capture such detailed, accurate
and typically time consuming electromagnetic analysis into asmall model. Quick evaluation of the model is
essential for an acceptable time domain simulation speed in a circuit simulator. At the same time, parasitic
extractor accuracy is essential for providing to the circuit designer the confidence that the actua fabricated
electronic circuit will perform as predicted by the circuit simulation. Finally, producing models that preserve
important system properties such as stability, passivity, and causality is crucial for a numerically stable be-
havior of the models when used in any time domain simulator. The problem of preserving passivity has been
partially address only recently by an algorithm (PRIMA). PRIMA can be applied only when the system to
be modeled can be formulated in a very specific form. A way to formulate systems in such form has been
given in literature for a general collection of conductors. No approach to preserve passivity is available in-
stead when dielectrics or an IC substrate are present, or when full-wave analysisis needed to model systems
whose dimensions are not small compared to wavelength (such as on todays' PCB and packages, and in fu-
ture I1C power network grids). Two contributionsin thisthesis address exactly such points providing passivity
preserving reduced order modeling algorithms for such applications.

Model order reduction is typically a two-step procedure. In afirst step one would typically apply the
algorithms mentioned above since they can handle extremely large collection of interconnect and they can
reduce them to an intermediate model. In a second step, better reductions are typically obtained employing
the more optimal but also more computationally demanding Truncated Balance Realization (TBR) algorithm.
Unfortunately this algorithm, in the form available in literature, does not necessarily preserve the passivity
of the modelsit reduces. In another contribution, we developed a technique that has the same compression
capabilities as TBR, but in addition it is also guaranteed to preserve passivity. Furthermore, our algorithm
does not require the system to be in any special form.

All interconnect models mentioned so far are intended for a higher level circuit simulator for verification
of agiven design. In athird part of this thesis we begin to address the “synthesis’ problem. We develop
a parameterized model order reduction technique that produces models that feature field solver accuracy
when some pre-identified geometrical parameters (such as wire widths or wire spacing) are allowed to vary
in a design exploration space. Our models are small enough to be used within an optimization loop by
for example an interconnect router. Furthermore, the presented model generation approach is automatic. It
is based on a very fast multi-parameter moment matching model-reduction agorithm. Thus parameterized
reduced models can be constructed “on the fly”, and can account for any possible interconnect or circuit
block aready committed to layout, e.g. when designing and optimizing an interconnect bus or power and
clock distribution networks.

Professor Alberto L Sangiovanni-Vincentelli
Dissertation Committee Chair
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Chapter 1

Introduction

AN

Figure 1.1: Electro-Magnetic Interference (EMI). Arrows indicate static, quasi-static electric or magnetic
fields, and propagating electromagnetic fields that are produced by electronic circuits and can cause their
malfunction or the malfunction of other nearby circuits.

Many future electronic systemswill consist of several significantly heterogeneous modules such as Opto-
Electronic and analog RF links, mixed-signal analog to digital converters (ADC), digital signal processors
(DSP), Central Processor Units (CPU), Memory modules, Microfabricated Electro-Mechanical (MEM) res-
onators, sensors and actuators with power electronics converters. When assembling such an heterogeneous
set of modules on a single package (Systems-on-Package: SoP) or integrated circuit substrate (Systems-on-
Chip: SoC), compatibility issues are soon to arise from many possible point of views. In this thesis we will
address the physical electromagnetic point of view.

Electronic circuits inevitably produce both static and quasi-static electric and magnetic fields, as well as
a so propagating electromagnetic fields. At the sametime, similar fields present in the environment where an
electronic circuit is supposed to operate, could potentially cause its malfunction. Such phenomenon isiden-
tified with the general term Electro-Magnetic Interference (EMI). Ensuring Electro-Magnetic Compatibility
(EMC) of an electronic system means ensuring its correct operation with respect to all possible electromag-
netic interference phenomena.

A way to achieve EMC consists of finding a compromise between the levels of emissions from a device
and the levels of susceptibility of other adjacent devices. For this purpose, standards have been introduced to
specify maximum emission levels, and, in some cases, to specify susceptibility levels. Designing for EMC,
according to the classical methodol ogy, means ensuring that each device satisfies the predefined standards.

Traditionally, electromagneticinterferenceis classified as conducted and radiated, according to the method
of transmission of the disturbances. Fig. 1.1 illustrates some of the EMI phenomena. Conducted interference



2 CHAPTER 1. INTRODUCTION

refers to any transmission of disturbances by means of conductors. In power electronics, such disturbances
are induced into the power delivery network by for example electric motors, or switching power supplies.
In integrated circuits (ICs), conducted interference would include substrate currents, or the current spikes
induced into the chip power supply network by the switching activity of the digital gates. In a broader def-
inition, interference transmitted a short distance by a simple electric field (capacitive cross-talk coupling) or
by a ssimple magnetic field (inductive coupling), could aso be considered as conducted interference. Quasi-
static circuit modeling theory is applicable for their analysis. For example, coupled inductors can model the
magnetic coupling between two close pins of a package. Capacitors could model the cross-talk dueto electric
field coupling between two long and close conductors. Conducted interference has been studied and exten-
sively characterized in the literature at the Printed Circuit Board level (PCB). At that level, many methods
to control its effects are known at that level. For example, in power electronics and electric motors, filters
have been designed to suppress such interference into the power delivery network. In contrast, in ICsor IC
packages, only a few problems concerning conducted interference have been addressed. For instance, sub-
strate noise on ICs has been characterized [91, 22], and design techniques to control cross-talk effects have
been developed [75]. However, much research work is still needed, in particular with respect to conducted
emissions produced by the switching activity of digital 1C’s onto the power and ground system.

Radiated interference is concerned with transmission of disturbances by means of propagating electro-
magnetic waves. In this case, distances between source and victim are usually not negligible compared to the
wavelength. The electric and magnetic fields are interdependent. Simple quasi-static circuit models cannot be
used to model thistype of transmission. Efficient and accurate analysis and modeling techniquesfor radiated
interference are not available for any type of electronic system (ICs, packages or even PCBs).

Inthisresearch, we have devel oped adesign methodol ogy for EM C consisting of asimulationtool and of a
set of modeling and design techniques considering both conducted and radiated emissionsin PCBsand in ICs.
In thisintroduction we first show the emerging trend toward component-based design styles such as Systems-
on-Chip (SoC)[60]. We then describe the classical approachesto EMC and analyze if they can be employed
aso for SoC. To handle complexity, we formalize the compatibility problem using a hierarchical abstraction
of the electronic systems. We conclude by suggesting a design methodology working on the principles of
our hierarchical model. In the reminder of this thesis subsequent chapters will be geared toward supporting
our methodology by providing a collection of tools and techniques both for the EMI analysis, modeling, and
the EMI-aware synthesis of electronic circuits. In particular, the remaining chapters are grouped into three
“ Parts’:

e Chapters 2to 6 in Part | describe the design of our EMI simulator. Chapters 2 and 3 review existing
techniques, while Chapters4 and 5 provide two contributionsaimed at enabling full-board or full-chip
EMI analysis by speeding up simulator runtime and reducing memory requirements by factors of 400.

e Chapters 7 to 13 in Part |1 describe techniques for constructing small and accurate electromagnetic
models of interconnect that can be used in higher level circuit simulators. Introductory Chapters 7
to 10 describe the state of the art in this new field. Chapters 11 to 13 provide the details of three
contributions, aimed at preserving crucia properties such as passivity for the generated interconnect
models.

e Chapters 14 to 16 in Part 111 describe some modeling techniques supporting automatic and optimized
synthesis, such as constructing geometrically parameterized interconnect models (in Chapter 15), and
optimally sizing decoupling capacitors (in Chapter 16).

1.1 The high frequency electronic system design scenario

1.1.1 Systems-on-Board (SoB)

Electronic systems consist nowadays of one or more Printed Circuit Boards (PCB), on which different
components (e.g. |Cs and discrete elements as shown in Fig. 1.2), are placed and interconnected. The system
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designer chooses from different available integrated circuit providers. The 1Cs are mounted on the board and
connected using planar interconnect wires (sometimes referred to as traces).

chip

discrete

inductors

digital

chip

digital
chip

Figure 1.2: System-on-Board (SoB).

1.1.2 Systems-on-Chip (SoC)

With the advent of Deep Sub-Micron (DSM) technologies, an entire system can be embedded on a sin-
gle integrated circuit, including programmable components, memory and peripheral units [44, 1, 60, 70] as
sketchedin Fig. 1.3.

SoB or SoP

Figure 1.3: Complete electronic systems, once assembled as Systems on Board (SoB) are beginning to be
assembled as Systems on Package (SoP) or Systems on Chip (SoC).

Electronic systems will then consist of a single package or a single chip as shown in Fig. 1.4, on which
different components are placed and interconnected, e.g. digital, analog and power electronics Intellectual
Property (1P) circuit blocks, integrated inductors and Micro-Electro-Mechanical (MEM) devices both for RF
signal filtering and for power electronics energy storage and conversion. The system designer chooses from
different available |P component providers. The IP circuit blocks or microfabricated passive components are
then realized on a common integrated circuit and interconnected, using on chip wires.

Because of the enormous complexity of these ICs, few companies will be able to design the entire set
of components for SoC. Hence, system companies will create pressure on semiconductor manufacturers to
incorporate components designed by other design companies. A new market of IPswill come of age, where
designs will be produced and traded as chips are today. To make this evolution possible, 1P blocks will have
to be easily mixed and matched with other |P's coming from many sources. This requires each component to
be somewhat insensitive with respect to its environment, both at the functional and the physical level.

1.1.3 Main EMI problems for system design

To support the emerging design style described above, increasing attention needs to be devoted to ensure
proper component encapsulation. Encapsulation is relative to a particular phenomenon of interest. While
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Figure 1.4: System-on-Package (SoP) or System-on-Chip (SoC)

Figure 1.5: Spikes of current produced by the internal switching activity of the digital components employed
in a SoB, SoP or SoC can escape as conducted emissions and contaminate the global power distribution
system. There, they can find long enough wires to be irradiated as propagating electromagnetic fields. On
the other hand, significant electromagnetic fields can induce noise currents and voltagesin long interconnect
wires that will result in component malfunctions.

electric cross-talk, impedance matching, electro-migration have al been considered in a way, al other con-
ducted and radiated EMI phenomena have not been properly addressed this far. Since EMI emissions and
susceptibility are of growing importance, as frequencies keep increasing in the GHz region, this encapsula-
tion aspect needs to be addressed as well, in order to ensure the design quality and design time expected by
this new SoC design style.

We further recognize that EMI problems are mainly due to two mechanisms. EMI emissions due to the
components’ switching activity, and emissions and susceptibility of the communication wires interconnecting
the components.

EMI emissions due to the switching activity of digital components

Most of the components used to assemble SoB, SoP or SoC, typically contain fast switching digital circuit
blocks. Thousands to millions of gates may switch at the same time producing large spikes of currentsin the
power and ground connections of the block. Such currents are very-high-frequency conducted emissions that
escape from the component, “polluting” the entire power and ground system. Flowing on the much longer
wires of the power and ground grid, they can easily find favorable “dimension to wavelength” ratios and
radiate. This phenomenon, depicted in Fig 1.5, can be responsible for the largest portion of EMI emissions.
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Figure 1.6: Typical harmonic contents and wire lengths on present and future el ectronic systems.

Emissions and susceptibility of communication wires among system components

Components are connected by wires to provide the necessary functionality. 1/0 communication wires
represent a second very important issue, both for EMI emissions, and for susceptibility.

Such wires carry high frequency communication signal s between blocks and can be long compared to the
wavelengths of the harmonics of the signalsthey carry. EMI emissionsin this situation are very likely unless
aclose return path is provided.

Such wires can be very susceptible to radiation present in the environment, or coming from nearby sys-
tems. Incident electromagnetic fields can induce currents and voltages on such wires as shown in Fig. 1.5.
These are mixed with the signals on the wires, and act as noise to the receiving input buffers. Severe and
apparently inexplicable faults can result when this noise exceeds than the noise margins of the receiver.

1.1.4 Is EMI a problem for System-on-Package or System-on-Chip?

The problems described in the previous section are already a major concern in the design of today’s SoB
while they have not been a concern at package and IC levels yet. We believe that EMI due to communication
wires connecting componentswill become a problem for SoP where dimensionswill be comparableto signal
wavelengths. This specific problem is not instead expected for SoC since on-chip communication wires
between distant circuit blocks will always be “segmented” by buffers (repeaters), latches, registers or even
“relay stations[17]".

However, EMI emissions due to digital switching activity, will represent a major concern both for future
SoP's and for SoC’s. We outline our argumentsin the following.

1. ICsdimensions have been too small compared to the signal frequencies and their harmonics. However,
thereis a steady trend toward higher frequencies, meaning smaller wavelengths. Soon SoC power and
distribution networkswill have the same wire-lengths to wavel engths ratios observed in present SoB as
showninFig. 1.6 and 1.7. Power and ground wires of length comparable to the wavelength can pose
asevere risk on EMI emissions and susceptibility in IC's. Fig 1.7 shows the wire dimension ranges of
electronic systems compared to their ranges of frequencies; signal harmonics are included in the plot.
For example, consider atypical today’s system-on-PCB. Wire dimensions can be on the order of 10 cm,
clock frequencies on the order of 100 MHz, with harmonics on the order of 1 GHz and wavelengths
on the order of 30 cm. Such systems can be quite susceptible to EMI problems. This happens mainly
because the wire dimensions are as long as wavelengths. The same ratio between wire dimensions and
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Figure 1.7: Future IC's power and ground wires will have the same wire-length over wavelength ratios
observed in todays PCB, responsible for most EMI problems.

so far trend

Figure 1.8: Trend of interconnect behavior for global on-chip interconnect (ground, supply and clock distribu-
tion networks). Power distribution networks on global interconnect are not so resistive as local interconnect
and may be then affected by resonances.

wavelength can be found in future Systems-on-Chip. For example, consider a chip with power and
ground wires on the order of 1 cm, clock frequencies on the order of 3 GHz, harmonics on the order of
30 GHz, and wavelengths on the order of 1 cm. These systems would have the same ratio, about 1, and
could possibly have EMI problems similar to the today’s PCB systems.

2. Oneobjection to the argument above might be that wires on chips are quite resistive, and tend to behave
like RC lines, rather than transmission lines and therefore cannot resonate. This has been true so far,
but there is a trend toward the use of lower resistivity materials such as copper in place of aluminum.
Inductanceis aready becoming a problem for global on-chip interconnect. Such interconnects behave
now very much as RLC lines, rather than RC lines as shown in Fig 1.8. This suggests a behavior
similar to PCB, where one can observe both RLC resonances, as well as resonances related to wire
wavelengths. Such resonances could cause large oscillations on |C power networks resulting in the
same EMI problems observed on todays PCBs.

3. Intoday’s SoB the highly inductive pins or wire bonding often provide a natural physical isolation for
digital components (ICs) by blocking their high frequency conducted emissions due to their internal
switching activity. This isolation is slowly disappearing in SoP where less inductive solder balls are
used. Low inductive connections are desirable for a circuit block because they increase the speed of
1/0 communication with other blocks, and they increase the internal switching speed providing faster
di/dt. However that fast di /dt becomes a problem for the environment by leaking very high frequency
harmonics to the power and ground networks. This phenomenon will be particularly relevant in SoC
whereeach digital circuit block does not have any inductiveisolation from the rest of the on-chip global
ground and supply network as shownin Fig. 1.9.
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Figure 1.9: Some issues in high frequency SoC Design: digital IP circuit blocks, because of their internal
switching activity, can leak high frequency currents and contaminate in this way the power and ground
distribution grid of the entire package of 1C.

4. One might argue that on-chip nearby metal interconnects would provide enough return current paths
to eliminate any radiation or susceptibility problem. This would be true if every single interconnect
would be close enough to the power or ground grid. However, today’s digital designers do not address
this condition; thus return current paths are typically very complicated as illustrated in Fig. 1.10. The

e

Figure 1.10: Return current paths.

layers above and below awire usualy carry orthogonal wires. Although for capacitive purposes such
orthogonal wires look like an ailmost uniform metal plane, they often cannot provide a useful return
path for inductive or radiation purposes. In some designs, tens of layers are available, e.g. relatively
expensive modern and fast microprocessors, and one or more layers are used as complete metal planes.
However, many | Cs cannot afford such waste in routing area.

1.2 The present approaches to EMC for System-on-Board
1.2.1 The “Build, Test and Hope!”” design methodology

In many electronic design companies, the following approach to EMC isused. A prototype of the circuit
is built, usually with very little, or no regard for EMI issues. Emissions, and sometimes susceptibility, of
the prototype are then measured in a semi-anechoic chamber. If the prototype does not pass the test allowed
by the compatibility standard in use, an EMC expert is employed. who tries to guess what the problem is,
mainly based on previous experience with somewhat similar problems. Once problems are identified, the
EMC expert tries to suppress them using a broad range of techniques and tricks, e.g. adding components
(such as decoupling capacitors), metal shields, suggesting a re-routing of some wires, or the addition of
ground planes. Even worse, the re-layout of the whole circuit might become necessary!

This approach, in amost al cases, leads to the solution of the problem at PCB level. However, it has
potentially for high costs in terms of added components and metal shields. Furthermore, if the whole circuit
needsto be re-designed, design time and cost could double, causing the company to miss the tightly budgeted
market window for insertion of the product.
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Figure 1.11: Metal shielding around an electronic circuit. Some disadvantages are here shown: internal
interference is not blocked, the shield may cause reflections toward the circuit itself, and the emissions from
apertures and cables still persist.

1.2.2 Shielding

As mentioned, shielding, shown in Fig. 1.11, is acommon technique for obtaining compatibility. A metal
shield can block electromagnetic waves. Even though shielding might seem the solution to all EMI problems,
it has several important disadvantages. For instance, shielding can be very expensive, specialy for “cheap
systems.” Using metal shields for relatively expensive equipment such as desktop computers, servers etc.
might not affect the overall cost of the product very much. However, shields in portable computers, cellular
phones, pagers, embedded systems, etc. where cost and weight are amajor concern, might not be feasible.

Furthermore, a metal shield can block interference between the circuit and the surrounding environment,
but it cannot block interference between components within the circuit itself as depicted in Fig. 1.11. As
a matter of fact, a metal shield acts as a mirror, thereby blocking electromagnetic waves from propagating
further. The incident field induces currents on the metal surface of the shield. Such currents radiate back
toward the circuit inside the shield (Fig. 1.11). Thus the circuit inside the shield can be affected by its own
radiation emissions.

A completely closed shield would be an effective way to block almost all emissions. Unfortunately,
apertures on the shield are needed for communication and power cables, or for cooling. Such apertures
interrupt the flow of the previously mentioned currents. Electric fields can then develop across the apertures,
acting as emitting antennas toward the exterior of the shield. In some cases, emissions from apertures can be
as large as the emissions without a shield.

Communication and power cables can carry high frequency currents, such as common mode currents.
Such currents can easily radiate, but the shield would not be able to block such emissions. Cables can also
pick up external fields, and conduct the disturbance to the circuit. Once again the shield cannot block such
interference.

1.2.3 Ground planes

Insertion of auniform metal plane asalayer of aPCB isavery effective and commonly adopted technique
to control EMI. A uniform metal plane presents avery small impedance return path for al wires of the layers
above and below. Thus very close current loops are achieved, and small emissions and susceptibility are
possible. Thisis a very good solution for all electronic systems that can afford it, i.e. reasonably large and
expensive systems, but many other electronic systems cannot afford this. Often a PCB designer is constrained
to work with 2 or 4-layer boards; thus routing area cannot be wasted in a uniform metal plane. Examples
of such applications are small portable devices (pagers, cellular phones, etc.), printers, embedded systems,
ignition circuits for the automotive industry. Surprisingly, even a system running at relatively low frequencies
can present large EMI problems. While large and fast servers and computers can benefit from all kinds of
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ground planes and metal shielding, the slower embedded system circuitry cannot afford such amenities and
often has EMI problems not easy to solve.

1.3 Motivations for an EMI simulator and an EMC design methodol-
ogy

In the previous sections discussed how the present approach to EMC at the board level is both costly and
time consuming, especially for cheap systems where shielding and ground planes are not an option. A key
problem of the present approach, isthat EM C is addressed only after the design stage. Often the EMI problem
becomes evident only after a prototype has been built and tested. To address these concerns, simulation tools
and a design methodol ogy that addresses the problem at the design stage are needed.

Among the advantages of simulation we note that it can cut the cost and time needed to build and test a
physical prototype. A simulator could, infact, check if acircuit will pass measurement testsin the early stages
of the design. It can help isolate the problems. Measurements of quantities at points otherwise unreachable
by physical instruments become possible. It can provide fast exploration of alternative solutions. “What if”
analysis can be performed and an optimal solution with small cost can be achieved in short time.

In addition to simulation, we propose a hew *“correct by construction” design style, where each action is
taken and verified as part of abudgeting plan that ensures EM C during the design process. Prototyping should
stop being an iterative process. We hope that, with some of the techniques presented and others devel oped
in the future, prototyping will eventually become simply the one time and final certifying step of the design

cycle.

1.4 Our design methodology for EMC

We propose a design methodology to help ensure EM C at the design stage. This consists of acollection of
EMI-aware tools and techniques that can be used according to a hierarchical budgeting/verification strategy
early in the design and assembly of today’s Systems-on-PCB or tomorrow’s Systems-on-Chip. First, we
present a hierarchical abstraction of an electronic circuit from the EMC prospective. This model leads to a
formal definition of the compatibility problem. Finally, we describe the suggested procedure step by step.

1.4.1 A hierarchical abstraction of an electronic circuit from the EMC prospective

Considering a system under different abstracted points of view isauseful design technique. For example,
timing issues are usually analyzed separately from functionality issues. In this section, a system abstraction
of an electronic circuit from the EMC prospective is given, which decouples the EMC problem from other
design issues such astiming and functionality.

Every wire on a circuit can potentially interact with every other wire. Considering al such interactions
during the design stage would be too complex for a large circuit. To handle complexity and to facilitate
design re-usability, a hierarchical structure is proposed. As illustrated in Fig. 1.12, at each level of the
hierarchy the following components are considered: circuit block components, the wires connecting them,
and the surrounding environment.

Component characterization

Each of these elementsis regarded as a “ system component”. A system component can be characterized
from the EMC point of view specifying:

e Radiated emission spectrum, i.e. the field |R(dp)| radiated from the component at, for example, a
standard distance dgp as shown in Fig. 1.13.
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Figure 1.12: Hierarchical abstraction of an electronic circuit fromthe EMC prospective
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Figure 1.13: Component characterization from the EMC point of view.

e Radiated susceptibility spectrum, i.e. the maximum field |S| that does not cause malfunctionsin the
component

e Conducted emission spectrum. Radiation from wires attached to component terminals depends on
which currents excite them. For each pair of terminals, equivalent current or voltage sources and
impedances should be specified in order to derive the actual currents exciting the attached wires.

e Conducted susceptibility spectrum, i.e. the maximum tolerable noise level for each pair of terminals
that does not cause malfunctions.

A similar characterization is required in part by the several EMC standards imposed by the governments
of many countries. Our proposed characterization approach is different from the existing EMC standards
since such standards typically specify only emission requirements. Susceptibility requirements are usually
imposed only by military standards, or by some specific markets such as the automotive el ectronics. However,
susceptibility characterization might become necessary for any product, if a top-down design approach is
used. Susceptibility characterization might also be useful for re-usability issues, or when subcomponents are
bought from other providersin a system-assembly design style.

Furthermore, EMC standards usually impose limits on conducted emissions by specifying the voltage
levels developed on a standard impedance load for frequencies up to 30MHz. However, for the abstracted
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mode! presented in this methodology, also conducted characterization should be specified in the range of
freguencies associated with radiation (typically up to 30GHz).

1.4.2 Formal definition of Compatibility

Definition 1 Electromagnetic compatibility, with respect to radiated EMI in a system abstracted as in the
previous section, exists if for each level of the system hierarchy, for each component j, and each frequency f:

Y R(fx)) <s(f), (L.1)

where Ri(f,x;) is the field produced by component i at position x; and frequency f, while Sj(f) is the
susceptibility level of component j at frequency f, i.e. the maximum field at frequency f that component |
can tolerate without malfunctioning.

This definition, simply states that the total field at position x j, where component j is located, and due to the
contributions R; of all the other components, should not exceed the maximum field S that it can tolerate. A
similar definition is givenin [134].

A simplifying assumption

A further simplification can be used if directions are neglected and only distances are used in the charac-
terization of every component. Values R; and S corresponding to the directions of maximum radiation and
susceptibility should be used in this case. Using such an assumption, the definition of compatibility becomes

2 R(f,dij) <Si(f) (1.2)

where d;; is the distance between component i and component j.

To evaluate the compatibility constraint in the previous equation, the radiation R;(f,d;;) of component
i at the general distance dj; can be related through a function T(f,d;;) to the available information on its
radiation R;(f,do) at its characterization distance do, asillustrated in Fig. 1.14,

Ri(f,dij) < T(f,dij)R(f,do), (1.3

The problem: /// \.'.:|R(du)|
dU

T R

d

Figure 1.14: Field at a general distance d can be related to the field at the characterization distance d .
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A matrix formulation for the compatibility problem

Assume the radiation and susceptibility spectra are specified over afinite set of frequencies
{f1, f2,..., fm }, typically the clock and its first twenty harmonics. Define the radiation vector as

R = [Ru(f1,do),Re(f1,do),...,Rn(f1,do),
Ry (f2,do),Re(f2,do), ..., Rn(f2,do),

veny

1(fm,do),Re(fm, do), -, Ru(fm, do)]-
where N is the number of components. Define the susceptibility vector as

S = [Si(f1),S(f1),..,SN(f2),
Si(f2),S(f2),..., S (f2),

ceey

Si(fm), S (fm), s Su(fm)]

Now construct the matrix T evauating the function T(fn,d;j) for every frequency f, and distance dij. The
general entry in position [j, (n— 1)N +i] of the matrix T is given by the evaluation of the function T (f ,d;;)
where f,, is the n'" frequency in the considered set of frequenciesand d ij s the distance between component
i and component j.

With the previous definitions, the compatibility problem can be reformulated in matrix form

TR<S. (1.4)

1.4.3 A top-down Constraint-driven design methodology to ensure EMC

In this section, a top-down constraint driven design methodology is proposed, to ensure the EMC of an
electronic system. This methodology has been used for other design problems such as analog I C design [20].
A somewhat similar methodology has been suggested for EMC design in [134].

The design methodology is summarized with the following steps:

1. Some of the components could be already available. For example a component library could be avail-
able, or components could be acquired from external providers. Such available components are as-
sumed completely characterized. Their radiation and susceptibility spectraare known and just inserted
inthe vectorsR and S.

2. Radiation and susceptibility levels of the components to be designed are budgeted according to the
constraints stated by Eq. (1.4).

3. Once individual budget levels are known, the design of each component proceeds independently and
hierarchically. Constraints are “down propagated”. The radiation and susceptibility budgets of a com-
ponent become its environmental constraints. Down propagation continues until “leaves’, i.e. wires,
are encountered.

4. Down propagation of budgeted radiation and susceptibility levels to wires can be achieved using the
parameterized model s presented in the Chapter 15. For example, radiation and susceptibility constraints
easily trandate into physical layout constraints on the maximum length of the wires, and in particular
on the maximum allowed separation between a current and its return path. In case of emissions from
the Vdd and Gnd systems due to the switching activity of a digital block, constraints can be down
propagated to the sizing of decoupling capacitors as proposed in more detail in Section 16.2.

5. A “bottom-up” accurate verification phase is then required to check the actual radiation and suscep-
tibility levels of the designed component against the assigned budget level. Chapters 2- 6 in Part |
describe our design and implementation of such atool.
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6. If alarge positive marginisfound at the end of a component design and verification, a “re-budgeting”
phase could redistribute this margin to other components where, for example, constraints were more

difficult, or could not be met at all.
Themain contributionin thisthesis, described in the following chapters, isthe devel opment of acollection
of tools and techniques both for the EMI analysis, modeling, and the EMI-aware synthesis of electronic
circuitsin order to support our methodology or similar design methodologies.
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Chapter 2

Background: analysis tools

Examining the Signal Integrity (SI) and EMI simulation literature and market, one can distinguish, two
general types of technigues: transmission lines based simulators, and three dimensional (3D) el ectromagnetic
field solvers.

2.1 Transmission line simulators

The main steps of the Transmission-line (T-line) based simulators can be summarized as follows. Each
wire is referred to its closest metal plane or planes (above and below) and modeled using a transmission
line. Two nearby parallel wires carrying a fully differential signal can also be modeled with a transmission
line, and group of nearby parallel wires can be treated as multiconductor transmission lines. Characteristic
parameters of the line are calculated from the interconnect geometry by a parameter extractor, The extractor
istypically atwo dimensional electric field solver that cal culates per-unit-length capacitance and inductance
matrices C and L, as well as a series per-unit-length resistance matrix R accounting for conduction losses,
and aaparallel per-unit-length conductance matrix G, accounting for dielectric losses,

‘3_\; = —(R+jolL)l (2.1)
g_'z = —(G+ jaC)V. (22)

V and | are vectors with the voltages and currents along direction z of the conductors lines. Such model
can be integrated in different ways with a SPICE like circuit simulator. For instance a a subcircuit model
of the multiconductor T-line can be generated and included directly with the rest of the circuit for a SPICE
like simulator analysis. Or one can use a specialized solver to handle the multiconductor transmission lines,
and run a SPICE like simulator in paralel handling the rest the circuit. Electromagnetic radiation can be
calculated once al currents on the lines are known, using superposition and Green Function integrals [103].

2.1.1 Advantages and disadvantages of T-line based simulators

As described above, the main and almost only disadvantage of T-line based simulators is the need for a
clear and well defined return path for the current such as a parallel ground wire nearby or a metal reference
plane. Without such a reference, the transmission line propagation hypothesis fails, and T-line based sim-
ulators cannot be used. In particular, we would like to underline that by metal reference plane we mean a
complete and uniform metal plane. A layer divided into some islands of ground and Vdd partial planes does
NOT satisfy thishypothesis. All wires crossing the intersection from aground planeregionto aVdd planere-
gionwill not bein general simulated correctly. Holes on the plane and gaps can produce severe radiation that
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would not be captured by T-line simulators. For these reasons T-line simulators may not be the appropriate
choice for handling for instance two-layers PCB or 4-layers PCB without at metal plane reference.

Assuming a good reference is present, any T-line based simulator becomes a wonderful tool for Signal
Integrity and maybe even for EMI analysis. Speed is for instance among the main advantages of the T-line
based simulators. Such simulators can usually handle entire PCB systems. Their computation speed is asfast
asa SPICE like circuit simulator. T-line simulators can al so account naturally for reflections from unmatched
loads or terminations. Because they work in the time domain, they can also easily account for non-linear
devices and loads. Reflections from wire bends could be included without much effort, even though not
many available simulators implement this feature yet.

2.2 Three dimensional field solvers

We have seen in the previous section how Transmission line simulator can be the tools of choice for all
systems with a uniform metal plane or for those interconnect in a system that are fully differential. How-
ever, we have also discussed how such simulators are completely inadequate for systems with a partial and
segmented metal plane or with no plane at al. For these systems, one cannot make any assumption on the
type of propagation (e.g TEM transmission line modes). The best approach for this situation at the moment
is solving numerically the Maxwell equations. There exist many different numerical methods. Each method
hasits own peculiar characteristics that makes it suitable for one particular application rather than another. It
seems that so far no one single method is suitable for all types of application and simulation analysis. In this
section, wetry to give abrief summary of the main characteristics of the most important numerical methods
in computational electromagnetics. Our focus will be in trying to underlying the advantages and disadvan-
tages of each method rather than on giving any technical description of the method itself. We will point out
what we think are the best applications for each method, and in the process, we will select an approach for
our specific application: EMI simulation in electronic circuits.

Before we show the differences among the methods, let us present some common features. In particular,
almost all numerical methods are characterized by the following three phases:

1. Discretization of the simulation domain. Numerical methods cannot generally work with continuous
quantities. The simulation domain is therefore subdivided into elementary cells. The main idea for
most methods is that such cells are so small that field or charge and current quantities within such
cells can be considered uniform. Some methods need to use the same size cell for the entire domain.
This usually leads to waste of memory. Others can discretize with smaller cell sizes regions of space
wherefields or other quantities vary more rapidly in space. Some methods need to discretize the entire
domain of simulation. This also can lead to waste of memory and computation power. Other methods
can discretize only the parts of the simulation domain that are of interest for the particular application
(for example only conductors, or only the surface of conductors).

2. Setup of a linear system of equations. The main purpose of the discretizationisto be able, in asecond
phase, to convert some forms of the Maxwell equationsinto alinear system of algebraic equations.

3. Solution of the linear system. Finally the system is solved using algebraic techniques that in some
cases can exploit the underline physical structure of the problem.

3D solvers al discretize some form of Maxwell equations. We can distinguish four main classes based on
the the domain of the operator (giving differential equation methods or integral equation methods); and the
domain of the variable (giving time domain methods or frequency domain methods).

2.2.1 Differential methods vs. Integral equation methods.

The natural form of Maxwell equation is a system of differential equations. We call differential meth-
ods those methods that directly discretize such system. Examples are the Finite Difference Time Domain
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(FDTD) method and the Finite Element Method (FEM). Differential equations methods discretize the entire
domain. Hence they usualy end up with huge linear systems to be solved (tens to hundreds of millions of
unknowns). Fortunately, the matrices are very sparse because each cell in the discretization only interacts
with its neighbor. Hence, they massively exploit sparse matrix algorithms for the solution of their system.
Because they discretize the entire domain, they can easily handle very inhomogeneous problems, for example
when material properties vary quite rapidly in space. However, modeling of open boundary problems can be
problematic because of numerical reflections at the boundaries.

Maxwell differential equations can also be rewritten in an integral equation formulation as we show later
the next Chapter 3. Tools that discretize such formulation are called integral equation methods. Examples
are for instance the Method of Moments (MoM), or the Partial Element Equivalent Circuit (PEEC) method.
Integral methods need to discretize only the “ active” regions, for examplethe conductors, or the surface of the
conductors. Hence, they usualy end up with much smaller systems than the differential methods (hundred
thousands to millions of unknowns). Unfortunately, the resulting linear system has a very dense matrix
because each element in the discretization interacts to all other elements. Highly inhomogeneous media
are difficult to model with these methods. On the other hand, open boundary conditions and thin wire-like
geometries such asin circuits can be modeled easily.

We summarize in Table 2.1 the main characteristic of both integral and differential methods.

Table 2.1: Comparison of differential vs. integral equation methods.

Differential methods Integral Methods

discretize entire domain discretize only “active”
regions

lead to huge but sparse lead to small but dense

linear systems linear systems

good for inhomogeneous problems with inhomogeneous

materials materials

problems with open good for open boundary

boundary conditions conditions

2.2.2 Time domain vs. Frequency domain methods

A second important classification of numerical methods can be done based on the domain of the variables.
Time-domain methods can easily handle non-linearities, furthermore they can produce very educationa and
intuitive animations of the wave propagation phenomena. Among the main disadvantages, in order to produce
a spectrum result they need to run a very long time simulation in which all the significant modes need to be
exited and need to be given enough time to develop and eventually decay. Finally, a Fast Fourier Transform
of the resulting time waveforms gives the desired spectrum. The most important example of a time domain
method is the Finite Difference Time Domain (FDTD) method. Another example of a time domain method
isthe Partial Element Equivalent Circuit (PEEC) method [121].

Frequency-domain methods consider harmonic solutions of Maxwell equations, simulating the system only
at specified frequency points, Among the advantages, they naturally provide the frequency response at the
specified frequency with a reasonably short simulation time, so that if only a small frequency range is re-
quired, much computation can be saved. They produce dynamical linear systems on which it is possible
to apply the Reduced Order Modeling techniques described in Part 11 to get very accurate broad range fre-
guency responses without having to evaluate every single frequency point. Non linearities are problematic
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for frequency domain methods. Usually the system needs to be separated into a non linear part and alinear
part. The frequency domain method only handles the linear part. Examples of frequency domain methods
are the Finite Element Method (FEM), and the Method of Moments (MoM). The Partial Element Equiva-
lent Circuit (PEEC) method can be modified and used not only in the time domain but also in the frequency
domain [68, 67].

We summarize in Table 2.2 the main characteristic of both time and frequency domain methods.

Table 2.2: Comparison of time vs. frequency domain methods.

Time-domain methods Frequency-domain methods

can handle non-linearities problems with non-linearities

run a long simulation exciting solve for specific frequency

all significant modes and then points

take an FFT

can produce insightful can exploit new techniques

animations Tor Tast calculation of the
dominant eigenvalues

2.2.3 Examples of 3D field solver methods

Table 2.3 identifies according to the previoustype of classifications some of the most popular el ectromag-
netic field solvers.

Table 2.3: Classification of some of the most popular numerical methods.

Dilferential Integral
Methods Methods
Time-domain FDTD PEEC
Methods
Frequency-domain FEM MoM, PEEC
Methods

FDTD: Finite-Difference Time-Domain. It is a differential, time domain method. For most of its im-
plementations the entire simulation domain needs to be discretize in uniform cells. Maxwell differential
equations are approximated by difference equations. One very simple and intuitive (although not optimal)
example of such an approximation is illustrated in Fig. 2.1. Asiinitia conditions one needs to specify the
fieldsin every cell at theinitial simulation time. Then, as shown in Fig. 2.1 cell fields are calculated for the
next time step. The smallest feature of interest and the smallest wavel ength of interest determinethe cell size.
The cell size and the desired accuracy, together with stability requirements, decide the size of the time step.
Thisusualy leadsto large memory requirementsto store fields on all cells, and very long simulation timesto
analyze significantly long system responses to excitations. This method is becoming appealing only recently
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Figure 2.1: One very simple and intuitive (although not optimal) example of a finite-difference time-domain
(FDTD) numerical method.

thanksto the availability of large computer memory and speed. FDTD can produce very nice movie-type an-
imations of the wave propagation, facilitating very good understandings of the el ectromagnetic phenomena.
FDTD can easily handle non-linearities being a time domain method. Furthermore it can also handle non
homogeneous materials. The most critical disadvantageis the simulation of open field environment. In fact,
field reflections due to numerical errors can be produced at the boundaries of the discretized domain. To over-
come this problem, absorbing boundary conditions have been developed [117], but are still problematic in
some applications. The simulation of the effectiveness of metal shieldsis one of the applications most suited
for this method. The closed simulation environment of ashield isideal for this method. Small apertures and
attenuation across thick metals can also be modeled quite easily.

FEM: Finite Element Method. FEM isadifferential method working in the frequency domain. The entire
domain is discretized into cells. Cell sizes can be chosen according to the fast or low variations of fields
around some parts of the simulation domain. In particular, much larger cells can be used far away from
sources or conductors or non-homogeneousmedia. Because the entire domain is discretized and non uniform
cell sizes can be used, this method isideal for highly inhomogeneous materials. Because of the non uniform
cell sizes, the method has smaller memory requirements than FDTD for storing computed fields. However
additional memory is required when storing explicit matrices for the computation. Because it works in the
frequency domain, it naturally provides frequency responses but cannot handle non-linearities. The method
has the similar problems of FDTD when dealing with open field environment.
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MoM: Method of Moments. An integral equation method working in the frequency domain. Only the
surface of the conductors are discretized. The method accounts for the interactions between al surface
currents using for instance the Electric Field Integral Equation (EFIE) (eg. 3.14) formulations of Maxwell
differential equations. The linear system resulting from the discretization is much smaller than in FDTD
and FEM. This implies smaller memory requirements when using fast methods [152] that do not require
explicit storage of the system matrix. The system is unfortunately very dense, because every surface element
interacts with every other surface element. This method isideal for open field environment simulations and
can handle very efficiently antenna design application. In fact, in intentional antennae, frequencies are so
high that currents mainly flows only on the surface of the conductors.

PEEC: Partial Element Equivalent Circuit. Thisis an integral equation method originally developedin
thetime domain[121]. A similar type of discretization based on the sameintegral equation can aso beusedin
thefrequency domain [67]. Conductor surfaces are discretize to capture charge accumulation or displacement
currents. Conductor volumes are discretize to capture skin effects and proximity effects. Thisvolumeintegral
equation discretization seems suitable for the mixed simulation of electromagnetic and circuit phenomena.
In this thesis we develop techniques for improving the frequency domain volume integral eguation method
which we describein details in Chapter 3. Using such volume integral equation formulation in combination
with fast methods requires a smaller amount of memory than FDTD and FEM for many electronic systems
applications. The surfaceintegral formulation of the MoM when combined with the same fast methodswould
have required an even smaller amount of memory. However, the MoM, in its origina formulation [54], does
not capture accurately current distributions inside the conductors that are important for the range of EMI
frequencies and geometries. However new surface integral equation formulations are very recently being
developed with good accuracy on wide frequency bands [152] and memory regquirements smaller than the
volume integral equation formulations.
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Chapter 3

Background: a frequency domain
Integral equation 3D solver

In this Chapter we describein details afrequency domain integral equation 3D field solver. In Section 3.1
we formulate Maxwell equation in a Mixed Potential Differential Equation form (MPDE). In Section 3.2 we
show the correspondent Mixed Potential Integral Equation form (MPIE). In Section 3.3 we identify the main
unknowns of the problem (charges on the surface of conductorsand currentsin theinterior) and we show how
to discretize them with aclassical choice of piece-wise constant basis functions. In Section 3.4 we show how
to generate from the MPIE a system of linear equations. Sections 3.5 and 3.6 show how to solve efficiently
such system. Finally in Section 3.7 we show what kind of simulation outputs can be produced for Signal
Integrity and EMI analysis.

3.1 The Mixed Potential Differential Equation formulation (MPDE)

Maxwell differential equations expressed in the frequency domain with respect to the the magnetic field
H, and the electric field E are [62],

VxH = joeE+J 3.1)
VxE = —jopH. 3.2
VigH = 0 (33)
VeE = »p (34)

The charge density is indicated with p and the current density with J. The frequency is @ = 2rf, while pis
the magnetic permeability, and € is the dielectric constant in free space.
From (3.3) we can define avector A (the magnetic vector potential), such that

B=pH=VxA. (3.5)
Substituting (3.5) into (3.2) we obtain
Vx (E+ joA)=0. (3.6)
Hence we can define a scalar potential ¢ such that
E+ joA=—V¢. (3.7)

This equation expresses the electric field E in terms or the basic potential quantities A and ¢. We will how
express A and ¢ in terms, respectively, of the current density J, and in terms of the charge density p. First
calculate A intermson J. After substituting (3.5) and (3.7) into (3.1) we obtain

VxVxA= joue(—joA - Vo) — u (3.9)
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Using the Laplacian identity
VxVxA=V(V-A)-V3A (3.9)

and choosing the L orenz gauge
V-A=—joued (3.10)

equation (3.8) becomes an Helmholtz equation for the magnetic vector potential (3.11).

Taking the divergence of (3.7), substituting (3.4) and using the Lorenz gauge (3.10), we can express the
potential ¢(r) in terms of the charge density p using the Helmholtz equation (3.12).

In summary the Maxwell equationsin Mixed Potential Differential Equation (MPDE) form are

VZA+ oA = —pl (3.11)
V20 + 0led = —g (3.12)

3.2 The Mixed Potential Integral Equation formulation (MPIE)

In an homogeneous medium, the solution of (3.11) for the magnetic vector potential A in position r due
to a current distribution in the volumeV is given by [62]

H (r eeirr

Al = [r—r'|

T 4n ly

(3.13)

where ¢ = 1/,/[€ is the speed of light. If the medium is not uniformly homogeneous because of layered
dielectric materials present for example between PCB layers, the solution can be modified using the appro-
priate Green functions. Using the constitutiverelation for the electric field E = 6J, where ¢ isthe conductors
conductivity, and substituting equation (3.13) into the electric field equation (3.7), we obtain the electric field
integral equation (3.14).

In a homogeneous medium the solution of the Helmholtz equation for the scalar potential ¢(r) is given
by (3.15). If the medium is not uniformly homogeneous because of some layered dielectrics, once again the
expression can be maodified using the appropriate Green functions.

In summary, as described alsoin[121, 67], the following set of integral equations can be used for the solution
of the conductor current distribution, J, and of the conductor surface charge, p,

Jr) . u aelel=rl
T+JO)E/VJ(I’) U IGE (3.14)
1 p ej%lr_r" ;o
rm/sp(r)mdr =o(r), (3.15)
V.(r) =0, (3.16)
fi-J(r) = jop(r), (3.17)

whereV and Sare the union of the conductor volumes and surfaces, ¢ is the scalar potential on the conductor
surfaces. Equations (3.16) and (3.17) are added to the system to ensure current conservation in the interior of
the conductors and charge conservation on the surface of the conductors respectively.

As boundary conditions, given a collection of interconnect, i.e. conductors, in a SI or EMI analysis
one would often identify some “ports’, i.e. conductor contact areas, where some voltage excitation source
is applied and the resulting current is calculated solving the MPIE. In this way one can calculate the port
impedance matrix. Other desirable outputs of the simulation are, as illustrated in Section 3.7, for a given
excitation, the current distributions in al the conductors or the field intensity on a sphere at 3 or 10 meters
from the circuit.
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Figure3.1: Inthe Mixed Potential Integral Equation formulation (MPIE) one solves Maxwell Equations once
expressed in terms of conductor current distribution, J, and of the conductor surface charge, p

3.3 Discretization

To compute accurate conductor current and charge distributions, or terminal input and couplingimpedances,
it is necessary to solve the system of integro-differential equations given by (3.14)-(3.17). The main un-
knowns of such equations are the current density J in the interior of the conductors and the charge density
p on the surface of the conductors as illustrated in Fig. 3.1. One standard numerical procedure for solv-
ing (3.14)-(3.17) begins with approximating the volume currents and surface charges by aweighted sum of a
finite set of basis functionsw; € C3 and v; € C! asin

J(r) = ij(r)lj (3.18)
]

X

p(rs) > Vin(F's)Om, (3.19)

where |j and gn, are the basis function weights.

A Galerkin procedure[54] can be used to generate a system of equationsfor the weights. The procedure
is to substitute the representations (3.18) and (3.19) for J and p, into (3.14) and (3.15), and then insist that
the equation residuals are orthogonal to the basis functions. That is,

gir=r']
<Z]WJ JGOH/VZ el rr| i+ . W.> -

el elrs— rs‘d, 0
4n£/2 fr“ rs—o(rs) ,vi) = 0,

where the inner products are defined as

((r), wi(r) /Vwi*(r)~f(r)dr (3.20)
(@ra) () = [vi(ra)g(rs)ars, (3.21)

Theresult, asin [67], isamatrix equation of the form
R+ joL O I I/
et e[l 62

where | and g are vectors of current and charge basis function weights, respectively, and ¢ and V, are the
vectors generated by inner products of the surface potential or the volume potential gradient with the basis
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functions. The matrices R, L and P are derived directly from the Galerkin condition and are given by

Rj = 1/Wi*(r)-wj(r)dr (3.23)
L = g f i S o (3:24)
J |r—r’|
eJ Slrs—rg| ,
Pm = 4n8// (rs) vm(r =y ———drdrs. (3.25)

3.3.1 Piecewise Constant Basis Functions

Severa basis function sets are present in literature (piecewise constant, piecewise linear, RWG [6]). In
the remainder of this section we will develop the mathematical details of a particularly simple yet powerful
choice of basisfunctions: piecewise constant. These basis functionsare the classical standard choice because
of their great flexibility in representing any shape of solution. However it is possible to tune the discretization
to agiven class of problemsby selecting basis functionswhich accurately represent expected charge densities
and current flows. In thisway solution times and memory requirements can be greatly decreased. Asamatter
of fact, in two of the main contributions of thiswork presented in Chapters 4 and 5 we develop two different
choices of basis functions tuned to the particular class of interconnect problems reducing solution time and
memory by afactor of 400.

Piecewise constant basis functions for the conductor surfaces

We now show the mathematical details of the discretization. We begin here with the discretization of the
conductors surfaces referring to eg. (3.15). Let S be the union of al conductor surfaces. Subdivide Sinto
small panels of area Sy, as shownin Fig. 3.2, such that we can associate them with a constant charge

qm:/ p(r)dr (3.26)
Sn
We can express the charge density on all surfaces as a collection of such panels charges
)= Vm(r)dm (3.27)
m
where vin(r) are the surface discretizing basis functions
& ifreSy
= Sn
V(1) { 0 otherwise (328)

After the discretization equation (3.15) becomes

4, 4, 4,

Figure 3.2: Discretization of the surface of conductors into small panels to model charge accumulation or
displacement currents.

glr=r'|

/
- /S s e (3.29)

JE|r—r’\
= X [i s [e dr’] Om (3.30)
m

o(r)

4ne Sy Js, |r—r'|
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In order to generate a system of equations for the unknowns q, one choice isto enforce eg. (3.30) on each of
the discretization panels §. The most simple way, is to enforce the equation in apoint r in the center of each
panel §. Such schemeis called collocation:

o = o) (3.31)
1 1 glehn-—rl

= %[ﬁ§ %Wdrlqm (3.32)

= Y Pim0m (3.33)

pim are called coefficients of potential, and can be calculated directly from the geometry. Their interpretation
isinequation (3.33): assuming we are given the n charges q, on the n panels Sy, the coefficients of potentials
give away to calculate the n potentials ¢; on the same n panels.

For better accuracy, a Galerkin scheme could be used to calculate the coefficient of potential. In collo-
cation, the n potentials are evaluated only at one single point on the panel, typically the center pointr|. Ina
Galerkin scheme, instead, we enforce eq. (3.30) loosely speaking as an average over the entire surface of the
panel. In more precise terms, we apply the following inner product (3.21) to both sides of eqg. (3.30) obtaining

1 1 1 ej%”—r" ,
§/Sq)(r)dr — %lrmssm/s/sm e dr] Om (3.34)

O = D PimOm (3.35)

Finally, we introduce a convenient matrix notation for the rest of the chapter. The coefficient of potentials
pim, calculated with collocation or with Galerkin, can be collected into a matrix P. Equation (3.33) or (3.35)
can be expressed with:

Pg=1¢ (3.36)

where q is the vector with the n charges on the n panels, and ¢ is the vector of the n potentials on the same
panels. Note that the coefficient of potentials in matrix P are frequency dependent due to our “full-wave’
type of analysis.

Piecewise Constant Basis Functions for conductor volumes

When discretizing relatively long and thin conductors, piecewise-constant basis functions are typically
used [121, 143, 68]. The functions are generated by first chopping the long wires into a large number of
sections (Fig. 3.3) that are short compared to the wavel ength of the highest frequency of interest. Conduction
currents inside conductors, are affected by skin effects and proximity effects. For this reason we discretize
the interior of the conductors into small and short filaments of current asin Fig. 3.3. Let V be the union of

!

@Ti —

Figure 3.3: Discretization of the conductor volume into piecewise constant basis functions (i.e. short thin
filaments) to model the internal current distribution (skin effects, proximity effects).

all conductor volumes. SubdivideV into small filaments of volumeV; and cross section Aj, such that we can
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associate them with a constant current along each filament
1
I = _/ 3(r)dAdI; (3.37)
i iy Ja;

We can express the current density on al filaments as a collection of such filaments currents

r =Y wj(nl; (3.39)
i
wherew;(r) are the volume discretizing basis functions

d o ,
win=1{ & 'Trev (3:39)
0 otherwise

where dl is simply a unit vector indicating the orientation of the filament. After the discretization, equa-
tion (3.14) becomes

2ir—r|
Wil W /Z ki ST dr = Ve (3.40)

In order to generate asystem of equationswe can enforce eg. (3.40) on each of the discretization filaments
V. The collocation scheme would just enforce it on asingle point r; in the center of each filament

elri r'|

[_] .+2]co am A /\/J Iri—r|

Rali + 2 joLijlj = 0a(ri) — ¢s(ri) (3.42)
]

dr’] |j = ¢A(I"i) —(])B(ri) (3.41)

where R; is the resistance of filament i and Lj; are the partial inductances between filament i and any other
filament j. Both R; and Ljj can be calculated directly from the geometry. No numerical solution is needed.
Potentials o and ¢g are the potentials at the extremes of the filament.

For better accuracy, one can use a Galerkin scheme. Instead of enforcing equation (3.40) only in the center
points of each filament, loosely speaking we enforce it on average over the entire length of each filament. In
more preci se terms we apply the inner product (3.20) to both sides of eq. (3.40) an we obtain

Slr—r']
dl - dl; dridrfl;, = -
e Jo Jy e Searerer | = onte

Ri|i+ZJ(DLiJ'|J:¢A—¢B (3.43)
j

]I+cho

Finally, we introduce a convenient matrix notation for the rest of the chapter. The resistances R; are collected
into adiagonal matrix R. The partial inductancesL ;;, calculated with a Galerkin scheme, are collected into a
matrix L. Equation (3.43) can then be expressed with:

[R+ joL]l =V, (3.44)
where| isthe vector of the n currents on the n filaments, and V,, is the vector of the n voltages acrossthe same

filaments. Note that the partial inductancesin matrix L are frequency dependent due to our “full-wave’ type
of analysis.
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Figure 3.4: Surface panels are centered at the filaments partition points.

Interpretation as an equivalent circuit

We have shown so far how piecewise constant basis functions can be used to discretize both the interior of
the conductorsinto filaments and the surface of conductorsinto panels. The panels discretization corresponds
to filaments discretization as shown in Fig. 3.4.

We can see in Figure 3.4 how panels are centered at the filaments partition points. In the PEEC method
givenin[121], it is described how how this type of discretization can be interpreted with a circuit equivalent.
Equation (3.43) can be viewed as a branch equation for filament i. Basicaly, it states that we can model
filament i with aresistance R; in series with many coupled inductors driven by the currents | j of all the other
filaments. A wire is divided in pieces along its length which will appear in series in the equivalent circuit.
The wire is aso divided into filaments across its cross section. In our equivalent circuit, al such filaments
will appear in paralel. The resulting model is shown in Fig. 3.5. Equation (3.35) corresponds to coupled

f . &
)
", L ! [ ]
i 4 . i i i
1 AL 7 Ta ! 1 1
AL ™ =

Figure 3.5: Equivalent circuit model of a wire after the interior has been discretize into filaments. Each
filament is modeled by a resistance and many partial inductorsin series. Each of the filament of a wire cross-
section are connected in parallel in the circuit model. Finally, many such groups of filaments are connected
in series to model the entire length of the wire.

capacitorsinserted at the break points between filaments. For conductors much thinner than a wavelength it
is safe to assume that al filament cross-sections at a break point have the same potential as the panels on the
surface near such break point. This can be modeled asin the final circuit equivalent in Fig. 3.6.

3.4 Problem set up as a linear system of equations

The discretized equations (3.44) and (3.36) can be collected into a more compact block matrix form

el le)= 1] @

If we introduce the currents |, = jwq to represent the displacement current from panels we can rewrite

eguation (3.45) as _
e 2 L= a4

T®
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Figure 3.6 Equivalent circuit model from the PEEC-type discretization. Inductances and capacitances are
frequency dependent in a full-wave analysis. The panels are centered at the filament break points such that
we can insert capacitors modeling such panels between groups of parallel filaments.

where vector
Ip = { ! } (3.47)
Ip
isnow containing all branch currents of the equivalent circuit network in Fig. 3.6. Vector

Vo= { V¢] (3.48)
¢

contains al the branch voltages of the network. Defining as Zgm the branch equation impedance matrix of

the equivalent circuit network in eg. (3.46) we can rewrite (3.46) as

Zemlp =Wy (3.49)

3.4.1 The classical approach: Nodal analysis

So far we have seen how the first two equations (3.14) and (3.15) in the MPIE formulation can produce,
once discretized, aset of algebraic and linear branch equations. The remaining two equations (3.16) and 3.17)
in the MPIE can then be used to set up an algebraic linear system. Specifically, imposing such current and
charge conservation on the MPIE corresponds in the equivalent circuit interpretation to imposing Kirchoff
Currents Laws (KCL) to each node of the circuit. The PEEC method in [121] and ailmost all circuit simula-
tors such as SPICE, solve circuit networks using such nodal analysis method [56]. Substituting the branch
equations (3.49) into such KCL's, we obtain alinear system where the unknowns are the nodal potentials.

3.4.2 An alternative approach: Mesh analysis

An dternative way to impose current and charge conservations in both the MPIE or in its equivalent
circuit is to use a mesh analysis formulation as in [68] and in [67]. In fact, using loop currents as main
unknowns directly guarantees current conservation. This also guarantees directly charge conservation when
charge accumulation on the surface of the conductors are modeled as displacement current and mesh current
loopsinclude both conductor currents and displacement currents. Fig. 3.7 shows such mesh loop currents. As
shown in [68, 67, 65], mesh analysisis to be preferred to nodal analysis since it produces better conditioned
systemsand henceit gives better convergencebehavior in theiterative methodswe present later in this chapter.
A mixed mesh-nodal approach has also been presented in [86].

We describe here the details of a pure mesh analysis approach. Practically speaking using mesh analysis
means writing as many Kirchoff Voltage Laws (KVL) as independent meshes in the network as shown in
Fig. 3.7. In matrix form we have

MVp = Vins (3.50)
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Figure 3.7: Current and charge conservation can be imposed using as unknowns a set of independent mesh
or loop currents. Such currents may include displacement currents modeling charge accumulation on the
surface of the conductors.

where V, is the vector of branch voltages, Vs is the vector of mesh voltages sources, mostly zero. M is the
very sparse mesh matrix. Each row represents one KV L. Substituting the branch equations (3.49) we obtain

MZgmlb = Vins (351)

Finally we observe from circuit network theory [77] that the mesh currents | , are related to the branch
currents |y, by
lb=MTIn (3.52)

Substituting we get
MZEMM T Im = Vins (3.53)

which is alinear system of eguations in the unknowns mesh currents, | . Solving the system we get |, and
from those we can get any other quantity in the circuit

ly = Ml (3.54)
Vo = Zewmlp (3.55)

To summarize, we have so far showed how to convert alinear system of partial differential-integral equa
tions (3.14) and (3.15) into a linear system of equations (3.53). We observe that the system matrix MZ gyMT
isvery dense. The matrix dimension is the number of meshesin the equivalent circuit network, hence on the
order of the number of filaments and number of panelsin the discretization.

3.5 Solution of a large and dense linear system

Almost al the computation time of the simulator is spent in solving the large and dense system of equa-
tions (3.53). For thisreason it is crucia to select the proper solution technique and to try and improve its
simulation time and memory requirements.

3.5.1 Classical approach: LU decomposition or Gaussian elimination

Assume we are suppose to solve the linear system
Ax=Db (3.56)

where A is a known nonsingular matrix, b is a known vector and x is the vector of unknowns. The most
common way to solve such system is afancy implementation of the trivial Gaussian elimination algorithm:
LU decomposition. In LU decomposition the system matrix A is first factored into a lower triangular matrix
L and an upper triangular matrix U such that

A=LU (357)
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The system is then solved by solving two easier subsystems using forward elimination and back substitution
respectively

Ly = b (359)
Ux = vy (3.59)

The advantage of first decomposing A is evident when the system needs to be solved for many different right-
hand-sides b. This method is the method of choice when solving large and sparse systems for which the
computational complexity with respect to the dimension n of the matrix can be aslow as O(n'?). However it
is not practical for solving large and dense linear systems for which the computational complexity is O(n 2)
and it is dominated by the factorization step. Such high order of complexity implies an explosion in the
computation times when a large matrix is to be solved.

3.5.2 Kirylov subspace iterative methods

When solving large and dense linear systems it is more convenient to employ Krylov subspace iterative
methods. The main structure of thisfamily of algorithmsis as follows:

1. Pick andinitial guessfor the solution vector xg
2. REPEAT

() calculate the residue ri = Ax; — b representing the distance between x; and the exact solution of
the problem X.

(b) Choose the next vector X1 that minimizes the next residueri1 searching in the Krylov subspace
generated from the history of the previousiterations
Ki (A, r0) = Xo + span(ro, Aro, A%ro, ..., A~ 1rp).

3. UNTIL the desired accuracy (measured by r;) is achieved.

Many implementation variants are available of this Krylov subspace iterative strategy. GMRES for in-
stanceisacommon choiceis described for examplein[41]. Krylov subspaceiterative methods perform much
better than LU decomposition in terms of speed for two main reasons:

e EMI measurementsare usually not extremely precise (onthe order of few percent), while LU decompo-
sition cal cul ates the solution with as many digits as the precision avail able from the computer hardware
(typicaly 15 digits with the IEEE standard). This means in most cases a large waste of computation
power that we can instead save using an iterative method. In fact, an iterative method can stop the
computation immediately when the desired accuracy is achieved, (for example after 4-5 digits).

e The computational complexity of the Krylov subspace iterative method is dominated by the matrix
vector product Ax;, that must be evaluated at each iteration to calculate the residue and to update the
Krylov subspace. Such matrix-vector product has acomplexity of order O(n?). Many implementations
(for example GMRES that we use) are guaranteed to converge to the desired accuracy in no more than
niterations. At afirst glance this would imply an overall complexity of order O(n3). Fortunately, it is
possible to obtain a convergence in an amost constant and very small number of iterations if a good
pre-conditioner is used. For example we observed a convergence in about 20 iterations to 3-4 digits
precision aso for systems as big as n = 100,000 unknowns. The final complexity of the algorithm is
therefore only O(n?) much smaller compared to the LU decomposition O(n?).
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3.5.3 Preconditioning

In the previous section, we mentioned that in order to guarantee the convergence of the iterative methods,
we need to use a good preconditioner. Preconditioning the systems means manipulating the system Ax =b
with amatrix N in order to obtain anew system, for instance

NAX = Nb (3.60)

that shows a faster convergencein the iterative method. An example of a good preconditioner is any easy to
cal culate approximation of A~1. The perfect preconditioner in terms of convergence rate would be of course
theinverseitself: N = A~1. Infact, in that case, NA = | isjust theidentity and the convergenceis immediate.
However, if we need to invert A, we would have already solved the system without any need for iterative
methods! A good preconditioner is therefore a matrix that is as close as we can get to the inverse without
doing much calculations! Note that, if N is agood approximation for A~1, and NA ~ |. Hence, we have aso
just found agood initial guess for the iterations

%o = Nb (3.61)

L ooking for approximationsof A that are easy to invert, apractical choicefor many systemsisfor example
the diagonal of A. The preconditioner isthen

N = [diag(A)] * (3.62)

Thisis called Jacoby preconditioner and works very well especially when the matrix is diagonally dominant.
The matrix in our system is A= MZgyMT. We can observe that while Zgy might have some reasonable
diagonal dominance, it is very unlikely that MZgyMT preserves such property. Therefore the preconditioner
will not perform well in this case. A better preconditioner for this caseis instead:

N = [Mdiag(Zem)MT]* (3.63)

InvertingMdiag(Zem)MT is not expensive because M is extremely sparse and soisdiag(Zgwm ). Also, notethat
Mdiag(Zem)MT is agood approximation of MZgyMT . This preconditioner shows very good performancein
terms of convergencerate of Krylov subspace iterative methods as shownin Fig. 3.8. In such Figure, we com-
pare the convergencerate of GMRES without preconditioner, GMRES with the diagonal -of-A preconditioner
and GMRES with diagonal-of-Zgy preconditioner.

Even though the diagonal-of-Z gy preconditioner is aready very good, moreimprovement is possible. For
example, reconsider the matrix Zgy. We are approximating it with its diagonal. Thisimplies that we neglect
al the mutual coupling terms. Thisis probably not a good idea for example for the tightly coupled filaments
in paralel on the same wire section. Looking at the structure of the partial inductance matrix L inside Zgy,
we can recognize blocks of tightly coupled filaments and include them with the diagonal elements in the
preconditioner [65]. This of course increases the computation required to invert the matrix Mdiag(Z gm)MT,
which is anyway still quite sparse. The preconditioner will have better performance in terms of GMRES
convergencerate, but it gives more overhead. One can continue in this search for better preconditioners (for
further details see for instance [65]) until the overhead imposed by their inversion becomes larger than the
speed up they provide in the GMRES convergencerate.

3.6 Matrix-vector product acceleration: precorrected-FFT

While describing the Krylov subspace iterative methods, we have seen how the dominant factor in the
computational complexity is the matrix-vector product Ax; which is of order O(n?) in the size of the matrix.
Inour case A= MZgyMT and x; = Im . However, exploiting the physical structure of the problemit is possible
to calculate this matrix-vector product in just order O(nlog(n)). The method is called precorrected-FFT. The
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Figure 3.8: Convergence rate of GMRES with and without preconditioners. The size of the system is 162.
Without preconditioner, GMRES s as slow as Gaussian elimination. The Jacoby preconditioner is simply the
diagonal of the system matrix [MZgyMT]~1 and it gives a poor performance. A much better preconditioner
isinstead [Mdiag(Zem)MT] 2, which brings GMRESto convergencein 20 to 30 iterations even for systems
of hundreds of thousands of unknowns.

theoretical principles of the method have been originally developed by Joel Phillipsin [110]. Precorrected-
FFT has been already applied to the acceleration of other field solvers such as[152], and it can be applied in
particular to our EMI simulation problem.

Consider our matrix-vector product [MZgmMT ]I, . First the product Ip = MT I, can be calcul ated directly.
MT is extremely sparse and contains only +1 and —1 elements. Hence, this product is not expensive at all.
The next product isinstead quite expensive Zgmlp. Subdivideit in its components:

R+joL O I
0 P lp

jo

_ [ Rl —I—Pg(oLl } (3.64)

, where g = I,/ jo. Note that R is a diagonal matrix. Hence the product Rl takes no time. The expensive
matrix-vector products are LI and Pg. In order to evaluate them as fast as possible let us exploit what we
know about the physics of the problem. From the section on the conductor surface discretization we know
that the product Pq simply corresponds to calculating the n potentials ¢ on the n surface panels due to the
n charges in vector g on the same panels. An approximation to this physical problem can be used instead
of simply treating it as an algebraic problem of O(n?). In the same way, from the section on the conductor
volume discretization into filaments, we know that the product LI simply corresponds to calculating the m
magnetic potentials A on the m filaments due to the m currentsin vector | on the same filaments. Again, the
algebraic problem is O(m?), however precorrected-FFT offers a good and less expensive approximation to
the physics problem.

Consider for example thefirst physics problem: calculate n potentials on n panels due to n charges on the
same panels. The main idea of the precorrect-FFT algorithmis depicted in Fig. 3.9 and is summarized here:

Zemlp =

1. First superimpose an imaginary three-dimensiona grid to the entire volume. Fig. 3.9 only shows a
two-dimensional grid. Project the panel charges onto the nearby grid points. The projection is done
such that the potential produced by the new charges on the other further away grid points is the same
asthe potentia originally produced by the old charges on the panels.
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Figure 3.9: Precorrected-FFT: an algorithm for the fast evaluation of the matrix-vector product in order
O(nlog(n)). Phase 1. Projection of the panel charges to the grid points. Phase 2. Calculation of the
potentials on the grid points due to the charges on the grid points. Phase 3. Interpolation of the potentials
from the grid pointsto the panels. (Picture by Joel Phillips, Cadence Berkeley Labs)

2. Now, let us calculate the potentials on al the grid points due to the charges on the same grid points.
Given the regular structure of the operation, it basically turns out to be a convolution operation in the
space domain The convolution in the space domain can be easily calculated in the “spatial frequency
domain” using a Fast-Fourier-Transform (FFT).

3. Asafina step, after we have the potentials on the grid points, we can easily interpolate the potentials
on the panels.

Note that this algorithm does not work if two or more panels are very close to each other. The projection
step is valid only at far enough distance. Therefore we need to calculate the contributions of nearby panels
directly. The other contributions can be calculated with the algorithm above. A precorrection step will take
care of making sure that contributions of closely interacting panels are not included twice.

The computational complexity of the entire algorithm is dominated by the FFT which takes O(Nlog(N))
in the number of grid points N. In most practical applications the number of grid points N is about the same
as the number of panels (N ~ n). This is a significant improvement with respect to the classical agebraic
approach that gives O(n?).

In the same way we can eval uate the magnetic vector potentials due to the currents on the filaments.

1. Instead of projecting charges we project currentsto the grid points.

2. We then evaluate with an FFT the magnetic vector potentials on the grid points due to the currents on
the grid points.

3. Finally, weinterpolate the magnetic vector potentials from the grid points to the filaments.

The contributions from close filaments are cal culated directly and a precorrection step avoids we count them
twice in the algorithm.
3.6.1 Comparing solution methods for large and dense linear systems

Asasummary of this section we comparein Table 3.1 several methodsfor the solution of large and dense
linear systems with respect to solution time and memory requirements. The combination of Krylov subspace
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iterative methods with a the Precorrected-FFT fast matrix vector product gives in most cases an almost linear
complexity both in the time and in the memory requirements.

Table 3.1: Comparing solution methods for large and dense linear systems.

) Algorithms: Complexity: |Storage:
Gaussian elimination ON? ON%
,|Krylov subspace iterative OMN% OMN?
methods
Our approach: O(N log(N)) |O(N log(N))
Krylov iter. +
Precorrected-FFT

3.7 Examples of types of field solver analysis

3.7.1 Return current path analysis at any frequency

We have implemented the techniques described so far in this Chapter in afield solver prototype which we
then used for developing our contributions presented in the next Chapters 4 and 5. Typical analysis outputs
of an EMI fields solvers are for instance the capability for current distribution display.

Consider for instance a very small but intuitive example presented in Fig. 3.10. In such figure we show
three conductors. A simple small resistive load is driven through the shown conductors by an ideal voltage
generator. The two conductors on the left are shorted together on both sides and provide the ground return
for the conductor on the right carrying the main signal.

Figure 3.10: Smple exampleto describe high frequency effects such as skin and proximity effects. Conductors
are 6 mmlong, Immwide and 1mm far apart from each other. The two conductors on top are two possible
return paths for the current on the conductor on the bottom.

We can verify in Fig. 3.11 the expected behavior of such system:
e perfect path sharing at very small frequenciesin Fig. 3.11.a;

e increased current density on the closer conductor with smaller loop are when, at larger frequencies,
inductance becomes the dominant factor in the impedance of the return path (Fig. 3.11.b);

e skin effect and proximity effect at even larger frequenciesin Fig. 3.11.c;
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e finally current propagation in waves, with standing waves phenomena, when the conductors length
becomes comparable to the wavelength in Fig. 3.11.d.

frequency = 2 KHz frequency = 20 KHz

frequency = 20 MHz frequency = 25 GHz

Figure 3.11: Example of current distribution analysis of the very simple geometry in Fig. 3.10. Dark grays
mean small current density, lighter grays mean larger current density. a) At this small, 2 KHz, the current
is shared equally by the two returns. b) As frequency increases (20 KHz), inductance becomes the dominant
factor in the impedance of the return paths. More and more current chooses the closer return with smaller
loop area and therefore smaller inductance. c) At 20MHz current flows only near the surface of the conductors
(skin effect), in particular it flows on the side facing other nearby conductors (proximity effect). d) Finally
at very high frequencies (25GHz) the conductor length becomes comparable to the wavelength. Current
propagatesin waves and is reflected by unmatched loads. We can observe here standing waves maxima and
minima along the conductors.

3.7.2 Radiation and susceptibility patterns at any frequency

From the current distribution we can generate for example emission and susceptibility patters at any
specified frequency adding the contributions from each of the conductor discretization filaments as sketched
inFig. 3.12

Asan examplewe show in Fig. 3.13 the radiation patterns of the simple examplein Fig. 3.10 when excited
at its quarter wavelength and at its half wavel ength resonance frequencies.
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Figure 3.12: Radiated fields can be easily calculated by a post-processing step once current distribution are
available on all discretization filaments. Note that interference between filaments has already been taken

when solving for the current distributions.

Figure 3.13: Current distributions and radiation patterns for the simple circuit in Fig. 3.10 are shown in a)

and c) for its quarter wavelength resonance and in b) and d) for its half wavelength resonance.
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Chapter 4

Conduction modes basis functions

This chapter describes the first contribution presented in this thesis. The work in this chapter has been
done in collaboration also with Prof. Jacob White, Massachusetts Institute of Technology, and it has first
appeared in [35, 37, 39].

The new generation of fast electromagnetic analysis programs, based on accelerated integral equation
methods described in the previous Chapter 3, has reduced from days to minutes the time required to analyze
thousands of simultaneously interacting conductors [94, 68, 110, 136, 71]. As good as these fast solvers are,
they are either inappropriate for, or are very inefficient at, analyzing interconnect exhibiting high frequency
effects. With processor clock speeds now exceeding two gigahertz and harmonics exceeding twenty gigahertz,
it is no longer possible to ignore these high frequency effects.

The high frequency effects that are most troublesome for fast solvers are skin and proximity effects.
Nevertheless such phenomena can significantly affect interconnect performance and should not be neglected,
in particular when either wire width or thickness are equal to, or larger than two “skindepths” * In order
to describe such phenomenalet us consider the very simple example already introduced in Section 3.7 and
shownin Fig. 3.10. At low frequencies, those for which both wire with and thickness are much smaller than
two skindepths, the cross-sectional current density can be considered with a good approximation constant
as shown in Fig. 4.1. When either wire width or thickness are equal to, or larger than two “skindepths’ the

Figure4.1: Current distributions at low frequencies.

current begins to crowd toward edges and corners of the wire cross-section (skindepth effect). Furthermore,

1The skin depth for asignal at acertain frequency f isdefined asd = 1/\/mfuc, where pisthe permeability and 6 isthe conductivity
of the conductor.
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opposite currents in adjacent conductors tend to be as close as possible (proximity effect). Both such effects
arevisiblein Fig. 4.2 obtained with our simulation tool.

i A

o

Figure 4.2: Cross-sectional current distributions at high frequency. Skin and proximity effects are visible.

Interconnect performance on Printed Circuit Boards (PCB) and on IC Packages have been suffering
for many years from such effects. Even some Integrated Circuit are now beginning to be affected at the
global interconnect level (power and ground distribution network or clock distribution network). For instance
skindepth in Aluminum interconnect at the tenth harmonic of atwo gigahertz clock is around a half micron.

Skin and proximity effects are troublesome for present fast solvers because they generate an exponen-
tially varying current distribution inside each conductor. Trying to represent that current variation using the
piecewise constant basis functions described in Section 3.3.1 and in [121, 143] commonly available in fast
solvers [68] requires a large number of unknowns. Since the computation time for fast solversis supposed
to increase only linearly (more precisely O(nlog(n))) with the total number n of basis functions used in the
problem, it may seem that the increase in unknowns to represent current variation is not that problematic.
However, when many basis functions are used to represent the current variation in a cross-section of a con-
ductor, those basis functions densely interact in away that can not be reduced by the algorithms used in most
fast solvers. For this reason, the computation time for modeling high frequency effects increases with the
square of the number of unknowns required to model the current variation within conductors even for fast
solvers.

Some research efforts have been previously concentrated on solving this issue by avoiding representing
currentsin conductor interiors

° 2%—D approximations using surface impedances has been used for instance in [141, 139, 140],

e dternatively it has been recognized that the many conductor interiors can be decoupled into separate
Helmholtz problems, which can then be combined with a global exterior Helmholtz problem [138,
30, 142, 151]. The many Helmholtz equations can then be solved either by integral or by differential
methods.

e Finally Silvester proposed to expand the current in a flat conductor into a series or orthogonal eigen-
modes [133].

Two contributions of this specific Ph.D. work concentrate on addressing the same issue by generating
specialized basis functions which more easily capture the exponential variation of the conductor current:

1. Wewill developin this same Chapter the “ conduction modes basis functions” 1n such method we take
a different approach from the previous [133, 140, 138, 30, 142, 151] and use the interior Helmholtz
eguation to generate basis functions for use in the standard Galerkin technique [54] for solving the
Mixed Potential Integral Equation (MPIE).



4.1. USING CONDUCTION MODESASBASIS FUNCTIONS FOR THE CONDUCTOR CURRENT$AL

2. Wewill be present inthefollowing Chapter 5.1. the* proximity templates basisfunctions’ approach[38].
In such method we demonstrate that it is aso possible to generate numerically a set of basis functions
which efficiently represent conductor current variation. Similar performance is achieved as with the
conduction modes basis functions, but unlike the conduction mode approach, the template approach is
easily extended to general shape cross-sections (e.g. trapezoidal).

Theremainder of this Chapter is organized asfollows: in 4.1, we derive the “ conduction modes’ from the
solution of the electric field Helmholtz equation for the interior of the conductors. Based on such modes, we
define cross-section basis functions and we show how to use our hew basis functions for the discretization of
the Mixed Potential Integral Equations (MPIE) presented in Section 3.2. Severa examples are finally shown
in 4.2 to verify the capabilities of our method and its computational attractiveness. In particular, we show
how our new approach can successfully and efficiently capture skin effects, proximity effects, multiple return
current paths distributions, and transmission line resonances.

4.1 Using conduction modes as basis functions for the conductor cur-
rents

4.1.1 Conduction modes
Combining the two Maxwell differential equations,

VXE = —jouH (4.1)
VxH = (joe+0)E, (4.2

and using the “good conductor hypothesis’, 6 > jwe, we obtain the governing Helmholtz diffusion equation
for the region inside each conductor:

VxVxE+ jopcE = 0. (4.3)
In terms of the current density, J = oE, and the skin depth, 8 = \/2/(wpo), (4.3) can be rewritten as

N2
wwu(?) J=o. (4.4)

Assuming the current in each conductor section flows primarily lengthwise (as shown in Fig. 4.3), J can be
approximated by J = J,a,, where &, points along the conductor length. The scalar J, then satisfies

221, 92J 1+ )2
8722+W22_(—8]> 3=0. (4.5)

J:Jz(x,y) E

P

2

Figure 4.3: We assume the current flows primarily along the length of the conductors. the z axis in this
picture.
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The general solution of (4.5) isthe infinite series:

L(xy) =Y Cre We ™, (4.6)

where C, are free coefficients and v, and n, satisfy [40]

vo+ms = (1%1')2- (4.7)

Each term in the previous series is referred to as a “conduction mode”. As an illustrative example of a very
simple conduction mode, let

1+
v o= =t (48)
o= (4.9)

©

This mode can account for cross-sectional current distributions decaying exponentially, with spatial con-
stant 8, from one edge of the conductor cross-section. The picture on the left in Fig. 4.4 shows a graphical
representation of such a current distribution.

Figure 4.4: Current density for an “ edge mode” (on the left) associated with the shaded rectangular cross-
section (on the right). In the figure on the left, axes x and y correspond to the width and length of the wire
cross-section. Hence axis z is parallel to the direction of current flow, and shows the current density for
each point of the cross-section. The conduction mode shown here is named “ edge mode” since it represents
current crowding at one of the four edges of the wire cross-section.

For current distributions generated by interconnect problems, J, can be accurately represented using only
a few conduction modes. For example, a combination of four simple edge modes, one for each edge, can
account for most of the high frequency cross-sectional conductor current distribution. At very high frequency,
a few other modes might be needed to account for corner effects. The simplest example of corner mode is

obtained by choosing

1 /1+] )

=My=—["=—). 4.10
Yy =Ty N ( 5 ( )

Asit isshown in the picture on the left in Fig. 4.5, this mode can easily account for a cross-sectional current

distribution decaying exponentially from the corner of the conductor cross-section.
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Figure 4.5: On the left: “ corner mode” for a rectangular cross-section. On the right: example of a single
basi s function obtained combining two horizontal edge modes.

4.1.2 Discretization basis functions

Now construct a set of discretization basis functions for the conductor volumes. Long conductors are
subdivided aong their length into sections that are short compared to the smallest wavelength. The current
density is represented by a collection of basis functionsin each section,

J(r) :Zh’ijk(l"), (4.11)
ik

where | is a summation index over al the sections of all the conductors, and k is a summation index over
all the basis functions in a given section. The conduction modes in (4.6) represent a natural choice for the
section basis functions:

ZL}_{( zpei\lfjkp(x—xjkp)einjkp(y—yjkp) ifr eV
ij(r) = (4.12)

0 otherwise
whereV; isthe volume of section j, x and y are variables spanning the section j, and
I = Fjoomer T X8x; +Yay;.- (4.13)

Translation constants, Xjkp and yjkp, as well asthe “plus’ signsin front of y jxp and M jkp, account for modes
decaying from the other corners or edges. We have chosen to introduce a normalization constant A ji defined
such that parameter | ji in (4.11) represents the total current in section j associated with basis function w jk.
Therefore

Ajk:/s Ze:t‘lfjkp(x_xjkp)einjkp(y_)’jkp)dxdy’ (4.14)
i P

where Sj is the cross-section of volumeV;.

To reduce the number of degrees of freedom for the discretization, it is possibleto “ pair-up” modes which
are likely to have the same magnitude. One example where it is helpful to combine two modes into a single
basis function occurs when modeling a PCB wire. In this case, one may wish to combinethe lower horizontal
edge mode with the upper horizontal edge mode, as shown in the picture on the right in Fig. 4.5. The large
aspect ratio, and large layer separation, of the PCB cross-section wires, typically limits proximity effect
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differences between lower and upper horizontal edge modes. Edge modes on opposite latera sides (left to
right) can not be combined as differences in left to right neighboring geometry will result in different left
to right edge mode amplitudes, due to proximity effects. For this reason, the two lateral edge modes should
instead be assigned to two separate basis functions.

4.1.3 Discretization of the MPIE
Substituting (4.11) into (3.14) and using a Galerkin method as described in Section 3.3 resultsin

Y Riniklik + ., joLinjkl jk = 0a— 08 (4.15)
k ik
where one can recognize terms that could be interpreted as equivalent resistances and partial inductances of
the conduction mode basis functions

1
Rnk = -— Wi*h(l’) -Wik(r) dr (4.16)
o Jv
L H ] ej%lr_r"d q 4.17
ihjk = E/Vi/vjwih(r)'WJk(r)W rdr. (4.17)

Theindex h specifies the conduction mode basis function on the wire section i.

When using piecewise-constant, or filament basis functions for each section, the resulting resistance ma-
trix is diagonal. This is because the filament basis functions are orthogonal, which follows from the fact
that they have a non-overlapping support. The conduction modes generate non-orthogonal basis functionsin
each section, but basis functions in different sections still do not overlap. These facts imply that the resis-
tance matrix generated from conduction mode basis functions will be block diagonal, where the block size
is equal to the number of conduction modesin a section. A diagonal matrix R can be obtained by first using
Gramm-Schmidt to orthogonalize the basis functions.

Asinthe PEEC method [121], an equivalent circuit interpretation can be given also to our method (Fig. 4.6),
athough we do not use this circuit interpretation in the solution of our system. In the conventional PEEC
method, resistances and inductances refer to small cross-sectional filaments. In our case, instead, resistances
and inductancesrefer to our conduction mode basis functions.

Rii1 Y Risiklik Lizia Z'—u]k%']k
I /;/\AN\_@ML@i
Ri2i2 Y Riziklik Lizi2 Z'—mk%']k

liz

% *//\AN\_@AJWT)_@fi e
? T Rizi3 Y Rigiklik Liziz Z'—|31k%|1k ? T
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Figure 4.6: An equivalent circuit interpretation can be given to this new cross-section basis function method
as in the PEEC method. Every piece of conductor is modeled by the circuit shown here. Resistances and
inductances refer to the conduction mode basis functions, rather than to small cross-sectional conductor
filaments. In this particular model, we are showing 3 cross-section basis functions per piece of conductor.

4.1.4 Numerical implementation considerations

Theintegral in (4.17) can be evaluated numerically using, for instance, a Gaussian quadrature algorithm.
At first glance, one can observe that for the complete matrix setup, such integrals must be calculated O(n 2Ny )
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times, where n is the number of basis functions and N the number of frequency points. However, al this
computation can be performed off-line before solving the resulting linear system.

Furthermorethe amount of computation can be reduced by observing that for the purpose of evaluating the
integral in (4.17), one can introduce a piecewise constant thin filaments discretization of each cross-section
and approximate (4.17),

|NJ

Lijk ~® Y, > Win(rn,) - Wik(rn;) € ©
ni=1n;=1

% |rn; =17

il Lo, (4.18)

wheren;, nj, and ry, i Inj indicate the indexes and the centers of the integration thin filaments in conductor i
and j respectively. I:ni n; isthe well known quasi-static partial inductance Galerkin integral between two thin

filaments Vy, and A7
dr'dr
n,nJ = /an /Vn r—r| (4.19

When the two conductorsare parallel, there are formulasfor (4.19) such asin[121]. Furthermore, theintegral
IA_ni n; isnot frequency dependent, and therefore can be evaluated only once and re-used at all frequency points.
The order of computation for the complete system setup is now O(Nyy,) where Ny, is the total number of thin
filaments. Thereforein terms of setup time, the conduction modes method is ho worse than the classical thin
filament piece-wise constant method [121, 143, 68].

However, the most important contribution to the overall computation time and memory requirementsis
due to the subsequent linear system solution step, which is typically O(n?) even when using fast methods
if skin effects and proximity effects need to be accounted for accurately. In Section 4.2 examples will be
presented showing that for the same final accuracy the conduction mode basis functions method requires
1/20'™ the number of basis functions used by the classical piece-wise constant method, and therefore reduces
solution times and memory requirements by a factor of 400.

4.2 Implementation examples

Below are several example results from our implementation of the conduction modes approach. These
examples verify that the method can successfully and efficiently capture skin effects, proximity effects, re-
turn current paths distributions, and transmission line resonances. These examples also verify that, for the
same final accuracy, the method is much more efficient than the classical piece-wise constant thin filament
method [121, 143, 68].

4.2.1 Capturing skin effects on two widely separated copper strips

Table 4.1: Skin effect in copper strips (1.26cm x 0.1575cm x 32m) widely separated (60cm).

Temperat. Frequency Rpc[€2] Rac/Roc Rac/Roc Error Rac/Roc Error

deg. cent. [HZ] measured measured | 3cond. modes % | 48thinfilam. %
+6.8 225 0.0563 1.004 1.003 0.1 1.003 0.1
-2.0 708 0.0539 1.038 1.029 09 1.030 0.8
-1.8 1188 0.0541 1.085 1.067 16 1.074 11
+6.0 1900 0.0554 1.161 1131 2.6 1.145 14
-1.5 2980 0.0541 1.261 1.228 2.6 1.241 16
-5.0 3690 0.0534 1.326 1.289 2.8 1.296 22
-1.3 5169 0.0543 1.426 1.409 12 1.398 20

In this first example we reproduced in our field solver the experimental setup described in [72]. This
examplewill show that the conduction modes method can capture skin effects, matching actual experimental
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measurements. Two copper strips are placed parallel to each other at a distance of 60 cm, they are shorted at

one end and the resistance is measured at the other end at different frequencies. As observed in [72] in this
experiment a60 cm separation is large enough that proximity effects are not significant on the two strips. The
copper strips are 1.26 cm wide and 0.1575 cm thick. In [72] no explicit information is given on both their

actual length and conductivity, although such information can be partially recovered using the data given on

the measured DC resistance. In our computer model we chose strips of length 32 m which is consistent with
atypical copper conductivity around ¢ = 5.8x107(Q — m)~1. More precisely we fine tuned conductivities
such that the DC resistance of the simulated strip matched the measured DC resistances in Table 4.1 at the
different temperaturesin each experiment.
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Figure 4.7: Rac/Roc Vvs. frequency for two widely separated copper strips. The black crosses are measured
data from a physical experiment. The continuous blue lines are obtained from a classical thin filaments
discretization approach using 48 thin filaments per cross-section. Red circles indicate results from our new
method using, in this particular example, only 3 cross-sectional basis functions.

In this example, we have used a classical surface discretization with 32 small panels per wire to account
for surface charge. We have used our conduction-mode cross-section basis functions to account for cross-
sectional current density inside the conductors. In particular, we have used the fol lowing three basisfunctions:

e onefor theleft side edge-mode (on the left in Fig. 4.4);
e onefor asimilar right edge-mode;
¢ and one for the combined upper and lower conduction modes shown ontheright in Fig. 4.5.

Using such basis functions we computed the terminal impedance, Z, versus frequency and considered its real
part Rac = Re{Z} for comparison with the experimentally measured data from [72] as shown in Table 4.1
and Fig. 4.7.

In Table 4.1 and Fig. 4.7, we aso compare our conduction mode method with one that uses the same
discretization for the conductor surfaces, and a classical piece-wise constant thin filaments discretization.
From Table 4.1, our method shows a worst case 2.8% error compared to measured data. In order to achieve
a similar accuracy, the classical filament discretization method requires 12x4 = 48 thin filaments per cross-
section, even when adopting the filaments to be thinner close to edges and corners. In particular, as we get
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closer to edges and corners we kept decreasing the filament thickness by a factor of 1.5. For this example,
maintaining comparable accuracies, our method produced a system with 1/16'" the number of unknowns,
leading to a speed improvement factor of 256, when using iterative linear system solvers.

4.2.2 Capturing skin effects on a PCB wire example

A simple PCB wire example was used to test the ability of the conduction modes method to capture
frequency variations of resistance and inductance due to skin effects. We computed the terminal impedance,
Z, versus frequency for a a typical PCB wire (250um wide, 35um thick, and 5mm long). Fig. 4.9 and 4.10
shows the real part of the impedance (Re{Z}), and the imaginary part divided by o (L = Im{Z} /), as a
function of frequency.

35um

Figure 4.8: PCB wire setup
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Figure4.9: Re{Z} vs. frequency for atypical PCB wire. The continuous curves are obtained from a classical
very accurate 18x14 filaments discretization approach. Circles indicate results from our new method using,
in this particular example, only 3 cross-section basis functions.

In this example, we have used a classical surface discretization into small panels to account for surface
charge, while we have used our conduction-mode cross-section basis functions to account for cross-sectional
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Figure4.10: L = Im{Z} /w vs. frequency for a typical PCB wire. The continuous curves are obtained from
a classical very accurate 18x14 filaments discretization approach. Circles indicate results from our new
method using, in this particular example, only 3 cross-section basis functions.

current density. In particular, we have used the following three basis functions:
¢ onefor theleft side edge-mode (on theleft in Fig. 4.4);
e onefor asimilar right edge-mode;
¢ and one for the combined upper and lower conduction modes shown on therightin Fig. 4.5.

InFig. 4.9 and 4.10 we compare our method with one that uses the same discretization for the conductor
surfaces, and a very accurate classical piece-wise constant cross-sectional discretization using 18x14 small
filaments. In the filament approach, we have used thinner filaments close to edges and corners as shown in
Fig. 4.11. In particular, as we get closer to edges and corners we keep decreasing the filament thickness by a
factor of 1.5.

7

Figure 4.11: The optimal way to implement the filament approach is to use a non-uniform discretization with
thinner filaments close to edges and corners where the current density profile changes more rapidly.

Compared to the accurate filaments solution, our method shows (in the worst case):
e a5% error for the resistive part of the impedance Re{Z},

e and a(very small) 0.2% error for the inductive part of theimpedance, L = Im{Z} /.
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In a second experiment on the same example, we tested the convergence rate of the classical filaments
discretization approach. In this experiment we have observed that, in order to achieve the same accuracy of
our conduction modes method, the classical filament discretization method requires 10x7 small filaments per
cross-section, with filaments thickness decreasing at a ratio of 5 at each step as we get closer to edges and
corners. Hence in this example, for the same final accuracy, our method produced a system with 1/23 of the
number of unknowns, leading to alinear system solve 500 times faster when using iterative methods.

4.2.3 Capturing proximity effects on an IC bus example

In this second exampl e, we test the ability of our method to model proximity effects combined with skin
effects on the | C bus example shown in Fig. 4.12. Six long interconnect wires are routed very close to each
other (2um). Each wire is 2um wide and 2.5um thick, and therefore has a very different cross-sectional

/Z.Sum

Zum 2um 2um

-4

x 10

Figure4.12: 1C bus: 4 signal wires between two ground return wires. In our simulation, the second wire from
the right is shorted on one side of the bus to the lateral ground wires. The other side is driven by an ideal
voltage source. All wires are 2umwide, 2.5um thick and 2um far apart. The three legs of the bus are 100um,
200pum and 50um long respectively.

aspect ratio from the previous example. The six wires are routed in a dog-leg bus configuration, where the
three sections are 100um, 200pum and 50um long respectively. The four wires in the center of Fig. 4.12 are
signal wires. Thefirst and last wire are ground return wires. In our experiment, we grounded one side of the
second wire from the right in Fig. 4.12, and we drove the other side with an ideal voltage source.

Fig. 4.13 shows the resistive part (above) of the impedance as a function of frequency, as well as L =
Im{Z} /m, the “inductive” part of the impedance (below). The continuouslines are obtained using avery fine
piece-wise constant thin filament discretization with 90 filaments per wire cross-section. These 90 filaments
are sufficient to consider the continuous lines in Fig. 4.13 as the “exact” solution. Circles show the results
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obtained using only three conduction modes. In the worst case, our three conduction modes give an error of
1.5% in the resistive part of the impedance, and 0.9% in the inductive part of the impedance. In Fig. 4.13,
one can notice three frequency regimes.

o alow-freguency regime, with very small resistance since the current returnsfrom both available ground
wires.

e amid-frequency regime, where the closer ground begins to be preferred to the farther away ground on
the other side of the bus. The inductance begins to decrease since less current is now flowing on the
largest loop. The resistance beginsto increase.

¢ ahigh-frequency regime, where inductance keeps decreasing and resi stance starts increasing exponen-
tidly. In thisregime most of the current has crowded on only one side of the wire due to the proximity
effect. The cross-sectional current distributions on the bus are shown in Fig. 4.15 for an excitation at
30 GHz. In Fig. 4.14, we compare the cross-sectional current density on the driven wire. On the left
we show the result from the very fine thin filament discretization, and on the right we show the result
obtained using only 3 conduction modes per cross-section. Comparing the figures makes it clear that
our method captures accurately both skin effects and proximity effects.

We also observed that for the same final 1.5% accuracy, the classical method would require at least 49 thin
filaments per cross-section even when adopting the filaments to be smaller near edges and corners. Therefore,
in this example, we conclude that our approach requires 16 times fewer parameters than the classical method
for the same final accuracy, leading to system solves 256 faster when using iterative methods.
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Figure4.13: Re{Z} and L = Im{Z} /o vs. frequency for busin Fig 4.12. The continuous lines are obtained
using a very fine thin filament discretization with 90 filaments per wire cross-section. Circles show the results

obtained using only thr

ee conduction modes.
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thin filaments (9x10) 3 conduction modes

Figure 4.14: Comparison for the cross-sectional current density on the driven second wire from the right of
Fig 4.15. In the picture presented here on the left we show the result from a very fine thin filament discretiza-
tion. On the right we show the result obtained using only 3 conduction modes per cross-section.
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Figure 4.15: Cross-sectional current distributions on the IC busin Fig 4.12. The second wire from the right
isdriven by and ideal voltage source at 30 GHz. The first wire from the left and the first wire from the right
are DC ground returns.
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4.2.4 Capturing resonances on a PCB transmission line example

In athird example, we test the ability of our method to capture wavel ength related resonance phenomena.
Characterization of resonance’s positions and amplitudes is very important in applications such as signa
integrity and electromagnetic interference. Unfortunately, such resonances are typicaly difficult to simulate
with accuracy sincetheir amplitudeisvery much influenced by the conductor’s AC resistances dueto internal
current distributions. Although we present here a simple and intuitive geometry, our method can characterize
such wavelength related resonances for any general 3D geometry even when a transmission line structure is
not so well defined as in the following case.

We model here two coplanar PCB wires, 30cm long, very close together in a coplanar transmission line
configuration shown in Fig. 4.16. Wires are 250um wide, 35um thick and 150 far apart.

Figure 4.16: Shorted coplanar T-line. Wires are 250umwide, 35um thick, 30cm long and 150um far apart.

Worst case high-Q resonances are obtained when the two wires are shorted at one end, and are excited on
the other end at the resonance frequencies with an ideal voltage source. For instance, when the frequency is
such that the transmission line length is close to a quarter of a wavelength or to half a wavelength, one can
observein Fig. 4.17 and 4.18 resonance peaks. Continuouslinesin Fig. 4.17 and 4.18 are obtained using a
classical piece-wise constant very fine cross-sectional discretization of 252 thin filaments per cross-section.
This kind of discretization is sufficient to consider once again those continuous lines the “exact” solution.
Circles are obtained instead using only three conduction modes per wire cross-section. Both in the thin
filaments method and in our conduction modes method, we subdivided each wire along its length into pieces
short compared to a wavelength. In Fig. 4.18, we measure that our three conduction modes method gives a
worst case 1.3% error in the position of the second half-wavel ength admittance resonance. A higher worst
case error (9.6%) is measured on the amplitude of the same resonance. Fig. 4.19 compares at such resonance
frequency the current distributions on the cross-section of one of the wires. On the left we show the result
from the very fine 252 thin filaments discretization. On the right we show our three conduction modes
solution. One can observe that the two current distributions are very much alike, except for the corners. At
this frequency, currents begin to crowd more significantly on the corners of the cross-section, requiring the
inclusion of a few “corner modes’ in the set of the discretization basis functions, if higher accuracies are
needed.
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Coplanar T-Line (250um x 35um x 30cm, separation 150um)
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Figure 4.17: Admittance amplitude vs. frequency for a shorted coplanar T-line. Wres are 250pum wide,
35um thick, 30cm long and 150um far apart. The continuous line is obtained using a very fine 252 thin
filaments per cross-section discretization. The circles are the results obtained using only 3 conduction modes
per cross-section. In both cases conductors lengths are subdivided into 10 pieces per wavel ength along their
length.

4.3 Conclusions on the conduction modes basis functions

In this Chapter we have presented a new method for modeling internal conductor current distributions
in a quasi-static or full-wave electromagnetic smulator. We have shown how to derive conduction modes
for use in the discretization of the Mixed Potential Integral Equation. We have demonstrated the method
on three examples, from both IC and PCB applications. We showed that skin effects, proximity effects and
transmission line resonances can all be successfully and efficiently captured for different wire configurations
and cross-sectional aspect ratios. In our examples, for the same final accuracies, using our conduction modes
method, linear systems of equations are obtained on average 16 to 20 times smaller than when using the
classical thin filament discretization methods. Hence solutions on average 256 to 400 times faster are possible
when using iterative methods.
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Figure 4.18: Admittance phase vs. frequency for the same coplanar T-lineasin Fig. 4.17.

Figure 4.19: Cross sectional current distributions at the half-wavel ength resonance. On the left: result from
a very fine cross-sectional discretization. On the right: result from the 3 “edge” conduction modes per
cross-section method. Inclusion of corners modes can farther improve thefit if higher accuracies are needed.
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Chapter 5

Proximity template basis functions

In this Chapter we demonstrate that it is possible to generate numerically a set of basis functions which
efficiently represent conductor current variation. The work in this Chapter has first appeared in [38]. Our
method is based on solving a sequence of ssimple “template” problems for the typical geometries associated
with a given interconnect technology. These template problem solutions are then used as replacement for the
piece-wise constant basis functions in an integral equation method based on the Galerkin discretization of
the Mixed-Potential Integral Equation (MPIE) presented in Section 3.3. As our results will demonstrate, the
numerically computed basis functions require 7 to 20 times fewer unknowns than piece-wise constant basis
functions. It should be noted that similar performance was achieved by generating basis functions using 2-D
conduction modes [35, 37] in Chapter 4, but unlike the conduction mode approach, the template approach is
easily extended to general shape cross-sections (e.g. trapezoidal).

In Section 5.1 we describe the steps for the pre-computati on of our template basisfunctions. In Section 5.2
we show how to use the templates in the Galerkin integral equation method underlining some numerical
implementation issues. Finally in Section 5.3 we present several example results on typical IC, package and
PCB simple interconnect structures.

5.1 Pre-computation of the proximity template basis functions

In this section, we describe our procedureto construct a set of template basis functionsfor the discretiza-
tion of the conductor volumes within the context of an integral equation electromagnetic field solver. As
in the classical piece-wise constant approach [121, 143, 68] described in Section 3.3.1, or as in the con-
duction modes approach [35, 37], in Chapter 4, we assume that the current flows only along the length of
the conductors, and that long conductors are subdivided into sections short compared to the smallest wave-
length of interest. We then categorize and label each conductor section according to its cross-section “type”.
Each “type” is uniquely identified by its cross-section dimensions and shape. For instance, for wires with a
trapezoidal cross-section: width, thickness and etching slope could be used as identifying parameters.

Often when performing an electromagnetic analysis, oneisinterested in the current (or fields) distribution
at aparticular excitation frequency, or in the impedance at some terminals for several excitation frequencies.
For each frequency of interest and for each wire cross-section “ type” , we pre-compute off-line a set of prox-
imity template basis functions. Each basis function is constructed by solving a small simulation experiment:

1. Given a cross-section type, for the construction of the first template basis function we consider one
wire not interacting with any other wire, and excited with a unity current source at the frequency of
interest. For the solution of this simple problem we use a very fine piece-wise constant thin filament
discretization method [121, 143, 68]. We then choose as basis function the current density profile
derived on the entire cross-section by this analysis. We show on the left of Fig. 5.1 the thin filament
discretization of the wire cross-section and to its right the resulting cross-section current density that
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we use asfirst basis function. In Fig. 5.1 the wire cross-section is rectangular, but general cross-section
shapes can be handled in the same way by our procedure. From an intuitive point of view, the template
basis function described here is used to capture skin effect phenomena.

x 10

-5

x 10

x107°

Figure 5.1: Example of the first proximity template basis function. On the left, we show a cross-section of
the simulation experiment setup used to pre-compute the basis function. The basis function is defined as the
current density (shown on the right) resulting on the cross-section of the wire.

2.

3.

Other basis functions are then constructed to capture proximity effect phenomena. In order to capture
proximity effect phenomena due to wires on the side, we construct a second template basis function
solving a second simple experiment. In this second experiment we consider two wires not interacting
with any other wire. The cross-section of the “main” wire is chosen equal to the cross-section shape
and dimensions for the “type”’ under consideration. A second auxiliary wire is located on one of the
two sides of the main wire, as close to the “main” wire as the technology fabrication process would
alow. The auxiliary wire is chosen with the minimum width and thickness alowed by the technology
fabrication process. Fig. 5.2 shows on the left the cross-section configuration of the two wires. For the
analysis of thisproblemwe use aclassical and very fine piece-wise constant discretization for both such
wires. We short them together on one side, apply aunity current source at the remaining two terminals,
and solvefor the current density within the conductors. We finally define as second proximity template
basis function the current density profile observed on the main wire. On theright in Fig. 5.2 we show
the cross-sectional current density of the second basis function.

We proceed constructing additional proximity template basis functions using the procedure described
in point 2 above, but every time moving the auxiliary wirein adifferent location around the main wire,
aways as close to the main wire as the technology fabrication process allows. Fig. 5.3 shows other
two examples of template basis functions with their corresponding experiment setups for the same
cross-sectionasin Fig. 5.1 and 5.2.

5.1.1 Choosing the number of template basis functions per wire cross-section

More specifically, the total number of template basic functions precomputed for each cross-section type
can be decided according to the following considerations.

In some cases, one only needs to use a total of three proximity templates for each cross-section type: a
“skin effect template” constructed as in Fig. 5.1, and two “side proximity templates’, one for the right side
asin Fig. 5.2 and one for the left side (typically symmetric to the one in Fig. 5.2). This choiceis typicaly
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Figure 5.2: Example of the second proximity template basis function. On the left, a cross-section of the
simulation experiment setup used to pre-compute the basis function. On theright the basisfunction itself: i.e.
the current density resulting on the main wire cross-section.

appropriate for wires on most Printed Circuit Board (PCB) applications, where the separation between differ-
ent layersis particularly large, and proximity effects are only observed in correspondence of “side by side’
wires, and not in correspondence of wires on different layers.

When separation between metalization layersis small asin packages and in integrated circuits, one needs
to be able to account for proximity effects due not only to wires “side by side” but also due to wires on upper
and lower layers. In this case, for thin wires we use a total of nine templates: a “skin effect template”, four
proximity templates constructed using an auxiliary wire moved to each of the four sides of the main wire,
and four proximity templates with the auxiliary wire moved to each of the corners around the main wire.
Fig. 5.1, 5.2, and 5.3, show four out of nine of such templates. One can notice that in case of symmetric
cross-sections the other five templates do not need to be computed.

Finally, in the case of considerably wide wires, in addition to the nine templates previously described,
one needs to use a few more proximity templates to capture appropriately proximity effects due to thin wires
in any location above or below such wide wire. In our implementation we precompute templates using an
auxiliary wire that for each template is moved in different locations around the main wire. We remind the
reader that the auxiliary wire width an thickness are chosen as the minimum allowed by the technology
process, and that the auxiliary wire is located at the minimum distance from the main wire allowed by the
technology process. For each template we then move the auxiliary wireto locations each separated by 4 times
the auxiliary wire width.

5.1.2 Accuracy and basis function richness

The accuracy of the final solution is related to the ability of the chosen basis functionsto “explain” most
of the cross-sectional current density capturing current crowing in different parts of each cross-section dueto
the specific locations of nearby wires. More precisely, in linear algebra terms. when considering the cross-
sectional current density as a vector, the accuracy of the final solution is related to the ability of the chosen
basis functions to “span” most of the subspace generated by all practical current density vectors. In general
the accuracy of the final solution can be arbitrarily improved if the set of al basis functions that one can
choose from is sufficiently reach to span the entire subspace of al practical solutions. In our case, in theory
the basis function set is quite reach since one could increase the accuracy of the final solution by simply
adding more and more basis functions, one for each possible practical location of nearby wires. However we
have observed experimentally (see Examples 5.3.2 and Example 5.3.1) that the procedure in 5.1 and 5.1.1
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Figure5.3: Example of other two proximity template basis function. On theleft, a cross-section of the simula-
tion experiment setups used to pre-compute the basis functions. On the right the basis functions themsel ves:
i.e. the current densities resulting on the main wire cross-sections.

constructs a much smaller set of basis functions at the same time still allowing of a good final solution
accuracy.

5.1.3 Advantages and disadvantages of the proximity template basis functions

From the construction procedure described above in 5.1 and 5.1.1 one can notice several advantages and
disadvantages of our template basis functionsin particular when compared to other higher order basisfunction
choices such as the “ conduction modes” described in [35, 37]. Among the advantages it can be noticed that:

e our template basis functions can handle any wire cross-section shape, i.e. the common trapezoidal
cross-sections due to chemical etching slopes. 1n the conduction modes basis function approach [35,
37], instead, only cross-section shapes for which analytic solutions of the diffusion equation are avail-
able can be handled, i.e. mainly rectangular and cylindrical cross-sections.

e our template basis functions can capture proximity effects due to thin wires above very wide wires (as
shown later in Example 5.3.2 and Fig. 5.5) that are not captured by the “conduction mode” approach.

Among the disadvantages of our template basis functions, we remind the reader that:
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e acomplete set of template basis functions need to be pre-computed for each wire cross-section “ type”
(i.e. shape and dimensions). Fortunately, one can further observe that often the actual number of wire
cross-section types on atypical PCB, package or IC is quite limited. For instance the etching slope can
be assumed constant for all cross-sections for a given process. The variability of the wire thickness
is limited to the number of metalization layers in the design. Also the variability of the wire width
parameter in practical designsis often limited to a finite and small set of admissible values by design
rules or CAD tools. It is also worth noticing that once the template basis functions are computed they
can be stored in afile and re-used for subsequent designs based on the same process technol ogy.

¢ Another disadvantage of our proximity templates compared to the conduction modesis that acomplete
set of template basis functions need to be pre-computed for each frequency of interest. Typically one
is not interested in alarge number of frequencies. For instance in digital interconnect one is typically
only interested in the clock frequency and its first 10 to 15 harmonics. Once again, one can further
notice that once the template functions are calculated for a particul ar frequency, they can be stored and
re-used in subsequent designs for analysis at that same frequency. However admittedly a significant
advantage of the conduction mode basi s functions over our proximity templatesis the avail ability of the
conduction modesin analytical form which can be exploited when performing model order reduction.

5.1.4 Representation of basis functions

Asjust observed in the previous section, we represent our basis functionswith a piecewise constant values
of the current density on each small cross-sectional filament. In thisway for each basis function we only need
to store some information on the discretization scheme from which one can easily derive filament geometries
(e.g. width of corner filament and incremental ratio between nearby filaments), and a vector with the values
of current density on each filament.

One could think of using more efficient representationsin terms of some interpolation functionsin order
to save some storage memory and some computation time in the Galerkin integral computations. We expect
however to obtain the most advantage by fitting our templates basis functions to interpolation function not
only to represent their shape along the wire cross-section but also and above all to capture their dependency
from frequency. In fact, this could alow us to perform model order reduction with our template basis func-
tions as efficiently as with the conduction modes. However, we have not verified yet the practical feasibility
of such procedure.

5.2 Parasitic extraction for a large collection of interconnect

Given a large collection of wires, for a given frequency of interest, each wire is associated with the
set of pre-computed proximity template basis functions corresponding to its cross-section type. The basis
functions chosen in this way, together with a standard Galerkin procedure [54], are used to discretize the
Mixed Potential Integral Equation (MPIE) and calculate the overall resistance R and the partial inductance
L matricesin eg. (3.23) and (3.24) as shown in Section 3.3. Accumulation of charge on the surfaces of the
conductors can still be handled for example using the classical piece-wise constant discretization of such
surface into small panels as described in Section 3.3.1. A mesh analysis technique [67] is then finally used
to set up alinear system of equations that can be solved to find the weights w j and v, associated with each
single basis function.

From anumerical implementation prospective one can observethat the proximity template basis functions
as constructed in Section 5.1 are not orthogonal. The resistance matrix for instance is block diagonal. In
general, when the basis functions are amost linearly dependent, their associated coefficients representing the
final solution may result very large, similar in magnitude, and possibly of opposite phases partially canceling
each others, which may produce errors when using a finite precision representation. One can avoid this
problem and achieve better numerical stability by ortho-normalizing the basis functions before using them
with for instance a “ Modified Gramm-Schmidt” procedure [41]. Another advantage of orthonormalizing the
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basis functionsis that a completely diagonal resistance matrix is produced, which is convenient for instance
when performing a subsequent model order reduction step that may require an inversion of such matrix.
The orthogonalization procedure is quite fast and most importantly it is part of the “precomputation” phase,
hence it does not affect the speed and memory performance during the analysis of a very large collection of
interconnect.

Asafinal remark, it can be noticed that our proximity templates basis functions can be used in combina-
tion with fast matrix solvers[94, 68, 110, 136, 71].

5.3 Examples

5.3.1 Capturing proximity effect between two wires at arbitrary distance

In this section, we intend to show with an example that although our proximity templates are constructed
using an auxiliary wire very close to the main wire, such template basis functions can successfully capture
proximity effects due to wires at any arbitrary distance. Consider for instance a typical PCB wire 250um
wide, and 35um thick. In this example we used a set of three template basis functions per cross-section. One
template was constructed using one wire alone with a 250pum x 35um cross-section. A second template was
constructed using one main wire (cross-section: 250um x 35um) in the center and one auxiliary wire (250um
X 35um) on one side at a separation distance of 100um. A third template was constructed by moving the
auxiliary wire to the other side at the same separation distance. For the construction of the basis functions,
we discretized each wire into 24x14=344 thin filaments. After the three template basis functions have been
constructed, we used them in the integral equation Galerkin procedure described in Section 3.3 to calculate
the frequency response of two wires with the same cross-section at different separation distances: 100um,
190pm, 305um, 448um, and 629um. We compare in Fig. 5.4 the result obtained using our three proximity
template basis functions per cross-section with the result obtained using 344 thin filaments basis functions
per cross section. Of course one can expect a negligible error when the wires' separation is exactly equal
to the separation used for the construction of the basis functions (100um). However, we also observed an
equally very small error (worst case 0.7% error for the real part of the impedance, and a 0.01% error for
the imaginary part divided by w) for the case in which the separation between the two wires increased to an
arbitrary distance and did not coincide anymore with the separation used during the construction of the basis
functions.
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Figure 5.4: Frequency response of two shorted PCB wires: real part of the impedance on the top, and
imaginary part divided by w on the bottom. The different curves represent different distances between the two
wires: 100pm, 190um, 305um, 448um, and 629um (from top to bottom on the left and from bottom to top on
theright). The continuous lines are the results obtained using the classical thin filament method. The small
crosses are the results obtained using three template basis functions pre-computed for a minimum separation
distance 100um.
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Figure 5.5: Package wire cross sectional current density “ reconstructed” from a set of nine pre-computed
proximity template basis functions (picture on the left), compared to the current density (picture on the right)
fromusing a set of 16x9 = 144 thin filaments basis functions. A larger current distribution can be noticed on
one edge and on one corner of the cross-section due to the proximity of the small wire. Note that the location
of the small wire is off center, hence it does not coincide with any of the locations used to pre-compute the
nine template basis functions. One can natice that the current density is still captured accurately.

5.3.2 Capturing proximity effect between a thin wire in an arbitrary location above
a wide wire

From the previous example we have seen that the proximity templates is an approach at least as efficient
as the conduction modes approach [35] in terms of used number of unknowns. In addition, we show in
this example that the proximity templates can successfully capture one particular case not captured by the
conduction modes approach: proximity effects between a thin wire above and close to a very wide wire.
Consider for instance a package wire 40um wide and 10um thick. Pre-compute a set of nine proximity
effects basis functions for this wire. Fig. 5.1, 5.2, and 5.3 show four of such nine basis functions for the
cross-section type described in this example. The auxiliary wire is 10um wide and is moved into several
locations al around the main wire all at a distance of 10um. After the computation of the basis functions, we
have setup the experiment on top of Fig. 5.5. The small wireis 10um x 10um, the wider wire right below it
is 40um x 10um at a 10um separation. We can also notice that the small wire is off center by 4um so that
its location does not coincide with one of the locations used for the basis function construction (compare
the cross-section in Fig. 5.3 with the cross-section of the geometry in Fig. 5.5). The two remaining pictures
in Fig. 5.5 compare the cross sectional current density resulting from using our set of nine pre-computed
proximity template basis functions (left), with the result (on the right) obtained using a set of 16x9 = 144
thin filaments basis functions. We conclude that the proximity templates provide accurate results not only for
wires at an arbitrary distance as shown in Example 5.3.1, but also for wires located “in between” the original
locations used for the basis functions construction.
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Figure 5.6: A simplified representation of a power and ground grid of a package or of an integrated circuit.
Gray shading on the the grid indicate current distributions calculated by our solver when a current source
excitesthegrid nodex = 4mmand y = Omm. In this example we used three proximity template basis functions
for each wire cross-section.

5.3.3 A package power and ground distribution example

Finally we show here a package power and ground distribution grid Example (Fig. 5.7). Wires are 10um
wide and 5um thick. Vertical separation between layers is 5um. Side separation between Gnd and Vdd
linesis Imm. Thetotal package sizeis 12mm x 12mm. We assumed bond wires connections shorting Gnd
and Vdd wires to an underneath PCB on all 4 corners of the package. We can notice that only one type of
cross-section is present in this design. For that cross-section type, we have pre-computed a set of three basis
functions as in Example 5.3.1. We have then used our three basis functions per segment to discretize the
entire geometry and find the frequency response at one particular node of the grid: the node at x = 4mm and
y =0 mm (see Fig. 5.7). In our simulations we have also included the effects of charge accumulation on the
surface of the conductors using a piece-wise constant discretization into small panels. InFig. 5.7 we compare
the frequency response of the grid at the node indicated above according to our three proximity templates per
wire versus the frequency response obtained using a thin filament discretization with 5x4 = 20 thin filaments
per each wire segment of the grid. Our approach required a total of 48x3=144 unknowns for the conductor
currents, while to get a similar accuracy with the thin filament approach we had to use atotal of 48x20=960
unknowns. In particular, for our proximity templates approach we observed from the admittance phase vs.
frequency curvein Fig. 5.7 aworst case error of 0.5% in the position of the resonances. We observed from
the admittance amplitude vs. frequency curve a worst case 7% error in amplitude at the resonances, where
the impedance is mainly determined by skin effects and proximity effects.

5.4 Conclusions on the proximity templates basis functions

In this Chapter we have described a procedure to construct a set of template basis functions for the
discretization of conductor volumes in an integral equation method. The template basis functions are pre-
computed off-line using small simulation experiments. The templates can capture successfully both skin
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effect and proximity effects. Our examples show that compared to the thin filament methods they provide
the same 7 to 20 improvement factors in terms of number of unknowns reported by the conduction modes
approach presented in the previous Chapter 4. In addition the proximity templates can be employed in ap-
plications with wire cross-sections of arbitrary shape, and with proximity effects on wide wires due to above

and close thin wires.
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Figure 5.7: On top we show the admittance amplitude, on the bottom the admittance phase vs. frequency
observed at that same grid nodein x = 4mmand y = Omm of Fig. 5.6. In this example we used three proximity

template basis functions for each wire cross-section.
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Chapter 6

Future work in analysis

6.1 Adjoint method for fast transfer functions calculation

60 observation
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Figure 6.1: Typical radiation problem: obtaining all the transfer functions from the sources (e.g. 600 IC pins
on a PCB) to some observation points (e.g. 60 points) on a sphere the board at a 3 meters or 10 meters as
specified by EMI standards.

In order to quickly isolate the sources of EMI related problems a transfer function analysis capability
could be used. For example, during a PCB analysis, one would specify as possible sources of EMI al the
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pins of the chips mounted on the board. One would like also to measure the emitted fields all around the
board at a3 meters or 10 meters standard distance for semi-anechoic measurements. We have calculated that
60 observation points al around the board can give a good characterization of the radiation pattern for the
frequencies of interest to EMI.

By transfer function analysis we mean providing the transfer functions from all the source pins (e.g. 600
pins) to al the observation points (e.g. 60) asillustrated in Fig. 6.1. Pins mostly responsible for emissions
canin thisway be easily isolated and design for EMC can be driven to the wires connecting those pins.

In the classical and natural transfer function calculation method, one would apply test sources one at the
time to each of the pins and would then simulate the board to measure the emitted fields at all the observation
points. This requires one system solve for each pin.

We observed, anyway, there can be thousands or more pins even on a simple PCB with a few IC’s.
This would lead to thousands of systems solve using the classical direct method. A better way is using an
adjoint method. The main idea is that instead of obtaining from each system solve the transfer functions
from one pin to al the observation points, we set up the system such that for each system solve we obtain
the contributions from all pins to one single observation point. In this way we only perform as many system
solves as observation points, i.e. only 60.

In mathematical terms, let Er be the vector of fields measures at the 60 observation points. Let | , be the
vector of currents at the pins (or input terminals). Our objective isto ca culate the transfer functions from all
pinsto al the observation points, that is, we want to calculate all the elements of the matrix Y.

Er=Yl, (6.1)

Of course isfrequency dependent so we needto calculateY at al frequenciesof interest (typically the clock
frequency and its first few harmonicsfor digital circuits).

Thedirect method would cal culate one column at the time of the thousands of columnsof Y. We calculate
instead one row at the time of the 60 rows of Y. Let YjT be the jt" column of Y corresponding to the jt
observation point where we measure the field Er

Er, =Y/ Ip (6.2)

In order to cal cuIateYjT let usfirst show how to calculate the field Er;.

Figure 6.2: Assuming the exact current distributions |, in all filaments are known, in one system solve we can
calculate and add up their contributionsto field Er, inlocation R;.

Assuming the exact current distributions I, in al filaments are known, one can simply add up their contribu-
tionsin terms of field Er; (Fig. 6.2)

Er =c'lp (6.3)
]

where ¢T are coefficients for the field produced by a short filament antenna. Basically they are simple trans-
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lations and rotations of the formulafor a short antenna aong the & ; axis from [118]

i e ki > Jk 1\ . . 2jk 2 .
= — —k+—=+4+= 0 —+ = 0 6.4
Ci Ajnoe [( + i+ri2 SinBé&g + ri +ri2 cos0 4, (6.4)

wherel; is the length of filament i, r; is the distance from the filament to the observation point, k= 2n/A is
the wave number.
Using some of the notation of the previous Chapter 3 on the equivalent circuit network set up we have

Er, = C'lp (6.5)
= c'MTIy (6.6)

= ¢'MT(MZemMT) Wi (6.7)

= c'MT(MZemMT) 2zl (6.8)
(6.9)

where Zy, is a Thevenin impedance matrix converting the terminal current sources |, into mesh voltage
sources Vms. The column of transfer functions we are interested in is therefore

Y =c'M"(MZewM") 'z, (6.10)

or
Y, = Z§ [(MZeuMT)T] Mc (6.12)

aswe can see most of the computation is still used when solving for matrix (MZgyMT)T whichissimply the
transpose of the matrix we would solve in the direct method.

A physicdl intuitive interpretation is possible for this method. Basically instead of setting up atest current
source for each pin and measuring the fields everywhere, we set up an imaginary current source in each
observation point and then we measure the voltage induced on all the pins by such imaginary source as
shownin Fig. 6.3. This suggests also a powerful method for calculating circuit susceptibility to external EMI
as we show in the next section.

Figure6.3: A physical intuitiveinterpretation of the adjoint method: instead of setting up a test current source
for each pin and measuring the fields everywhere, we set up an imaginary current sourcein each observation
point and then we measure the voltage induced on all the pins by such imaginary source.

6.2 Susceptibility analysis using reciprocity

The previous adjoint method suggests that emission and susceptibility analysis are intimately correlated.
The main reason for this correlation is the Reciprocity Theorem. We show here how to apply such reciprocity
theorem to obtaining susceptibility analysis results from emission analysis resullts.
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Theorem 1 (The reciprocity theorem.) Consider a current distribution in some region of the space J 5. Let
E. bethefield radiated by such source. Now remove thefirst current distribution and let us consider another
current distribution Jy,. Let Ep be thefield radiated by this second source. The reciprocity theorem states that

/Ja-Ede:/Jb-EadV. (6.12)
\% \Y%

Now apply such theorem. For our purposes, we choose thefirst current distribution as a collection of current
sources applied at the terminals ports of our board (i.e. the pins)

I (r—rp)
Ja(r) =y AP 6.13
(N = X0 (6.13)
where the summation is over all terminal ports, rp, is the position of the port i and A, is its cross sectional
area.
As our second distribution of currentslet us choose a collection of small imaginary current sources placed at

the observation points all around the board mentioned in the previous section.

b(r)=Y 5T Ty) (;_ ") (6.14)

j s

Applying Theorem 1.

/JaEde - /Jb-EadV (6.15)

\Y% \Y%
/ (JadS) - (Epdl) = / Ea- (JodS)dl (6.16)

\% \%
DlpVs = Y Er[lsdl] (6.17)

i j
I]Vs = Eg[lsdl] (6.18)

where |, isthe vector of the port current sources, Er isthe vector of the fields produced by such sourcesin the
observation points. I is the vector of imaginary current sources of small length dI that we have placed in a
second experiment in the observation points. Finally, but most importantly Vs is a vector of voltages induced
by the imaginary sources on the port terminals. Vs is exactly the answer of a susceptibility problem because it
tells us what noise is induced on the port terminals due to some external field coming from the environment
around (in this specific case some points on a sphere at 3 meters or 10 meters).

We now show how we can cal culate susceptibility transfer functions from the observation points to the
port terminal s using a previous emission transfer function analysis. If we have already performed an emission
transfer function analysis, we have basically calculated all the coefficients in the matrix Y

Er=Ylp (6.19)

Substituting into (6.18) we get
I0Vs = 13YT[lsdl] (6.20)
Vs = YT[ldl] (6.22)

Hence the same transfer functions we calculated for emissions are the transfer functions for susceptibility,
and eqg. (6.21) shows us how to use them to calculate induced noise voltages Vs on the circuit ports due to
sources of interference from the environment | s.
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Electromagnetic analysis of a collection of interconnect is an essential tool for the verification of modern
electronic circuits. Such analyzes are of limited value unless the results can be combined with the circuit’'s
transistors to simulate circuit performance. Typically, a designer would identify a few terminals for which
a model of the interconnect “seen” at the selected terminals is to be constructed. Such a model should
reproduce frequency and time domain behavior at the terminal of the original interconnect with an accuracy
comparableto el ectromagnetic analysis. Then, this model would be combined with the transistors connected
to the interconnect and simulated using a circuit simulator. Quick evaluation of the model is essential for
an acceptable time domain simulation speed in the circuit simulator, but at the same time, parasitic extractor
accuracy is essential for providing confidence to the circuit designer that the actual fabricated electronic
circuit will perform as predicted by the circuit simulation.

In this chapter we will first describe a method for constructing electromagnetic models of interconnect
using the discretization techniques of the Mixed Potential Integral Equation presented in the previous Chap-
ters 3-5. Such models are based on a dynamical state space system representation. Unfortunately, the order
of the resulting dynamical state space system is as large as the number of elementsin the discretization. We
will then describe techniques that can reduce the order of the dynamical linear system while preserving time
and frequency domain behavior as well as other properties. In particular, we will illustrate the importance
of producing passive reduced order models from originally passive interconnect structures. Finally, we will
describe the main contributions of this thesis in the field of model order reduction. Specifically, we will
describe our contributions consisting in model order reduction techniques that preserve passivity:

e when handling structures that include dielectrics using polarization currents and, in the context of
Krylov subspace projection methods (Chapter 11);

¢ when handling structuresthat include dielectrics or integrated circuit substrates using specia frequency
dependent green functions, or when handling fullwave propagation kernels, in the contest of Krylov
subspace projection methods (Chapter 12);

e when using the truncated balance realizations method (Chapter 13).
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Chapter 7

Background: reduced order modeling of
Interconnect

7.1 Modeling of interconnect

Large electronic systems can be thought as a collection of analog, digital or mixed signal circuit blocks,
connected by acollection of wires (interconnect). Such a simple representation can be observed in almost all
electronic systems: Integrated Circuits (IC), package multi-chip modules (MCM), and printed circuit boards
(PCBs). In thisthesis we are interested in analyzing and modeling the interconnect. Typically, we are given
alarge collection of interconnect where some ports have been identified for the connection of some circuit
blocks. It is our task to produce a model of the interconnect as “seen” from the ports identified for the
connection to the circuit blocks (Fig. 7.1). The model should capture all the time and frequency behavior and
properties of the interconnect that are relevant for the interaction with the circuit block.

Analog or digital IP

blocks
] L I~ =
B0 e~ 1
] B B iy
Picture b < i
F 4. Phillips Z(f) M Chou "

Figure 7.1: Given a large collection of wires where some ports have been identified for the connection to
circuit blocks, we are interested in producing a small but accurate model of the interconnect as“ seen” from
the ports.

For simplicity, consider a single interconnect wire. The electromagnetic phenomena that describe the
behavior of such awire can be described as shown in Chapters 3-5in Part | using the Mixed Potential Integral
Equation formulation. The main unknownsin such formulation are the current density inside the conductors,
and the charge density on the surface of the conductors. Typically, as seen in Section 3.3.1, one represents
such unknowns using a collection of basis functions. For instance, one can represent the current inside the
conductor using a collection of short thin filaments each carrying a constant current, and one can represent
the charge on the surface of the conductors using a collection of small panels each carrying a constant charge
as shown in Fig. 3.6. As described in our contributions in the previous Chapters 4 and 5 one can choose
other basis functions for current (see for instance Fig. 4.6) and even for charges. However, regardless of the
choice adopted, it is typically possible to use the coefficients (or unknowns) associated to each of such basis
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functions as the coefficients of the state vector x describing the state of the wire in adynamical linear system
representation. A dynamical linear system is therefore one of the most natural choices that comes to mind
when trying to produce an electromagnetic model of awire. The state of the system is associated with the
energy storing elements of the system. Since charge accumulation on the surface of the conductors can be
thought as a capacitor, and since the electric energy storage on such capacitors is a function of the surface
chargeitself (or potential), one can see how the small panel charges (or potentials) are a good candidate for
the state vector. Furthermore, since the current in the conductorsis typically associated with magnetic energy
storage, which is afunction of the current itself, one can also realize how the state vector should also contain
coefficients associated with discretization basis functions for the current. The Figure 7.2 gives a graphical
representation of the relation between state vector and the equivalent circuit produced by the discretization of
awire shownin Fig. 3.6.

. dx
i LE=—R x()+ B u(t)
x(t) = p y(t)=C x(1)

Figure 7.2: A dynamical linear system can be used for electromagnetic modeling of an interconnect wire.
The discretization of the Mixed Potential Integral Equation produces an eguivalent circuit. The currents on
the inductors and the potentials on the capacitors can be used as state vector coefficients for the dynamical
linear system. If theinput is chosen as a voltage source, and the output as the resulting current into the wire,
the model represents the input admittance of the wire.

Asinput u(t) for the dynamical linear system one can choose for instance the voltage applied at one terminal
of the wire. As output y(t) one can choose the resulting current. In this way the dynamical linear system
will represent the admittance of the wire seen at such terminal. Models with multiple input and multiple
outputs can be used to model multiple terminals. The equations in the dynamical linear system are exactly
the same equations (KCL/KVL sparse tableau analysis, or KCL noda analysis, or KVL mesh analysis, or
mixed nodal-mesh analysis) that one would write when setting up a linear system for solving the system as
described in Section 3.4. Collecting terms that depend on the time derivative of the state, and terms that
depend linearly on the state one can recognize matrices L and R respectively in Fig. 7.2. Matrices B and C
relate input to the state equations and the state to the output respectively.

Although, aswewill seelater, it will beimportant to be able to work with matricesL and R separately and
with multiple input and multiple outputs, in this first introductory stage assume for simplicity of exposition
that we have only one input and one output, that matrix R is non-singular, and that the system in Fig. 7.2 is
described in time domain as

Ei—f[( =x(t)+bu(t) y(t)=c"xt), (7.1)
and in frequency domain,
SEx=x+bu y=c'x (7.2)

where E = R™IL and b = RB, and sis the Laplace frequency variable.
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7.2 Model order reduction

The order of the dynamical linear systems produced by the discretized MPIE formulation is as large as
the number of discretization elements (n = 100,000 to 500,000 for large interconnect systems). The cost of
“evaluation” of adynamical linear system model for aparticular point in time or frequency istypically of the
same complexity as solving a linear system with size as large as the order of the dynamical linear system.
Therefore the model as shown in Fig. 7.2 isin most cases of little practical use.

During the past decade much research effort has been devoted to “reducing” the order n of a given very
largedynamical linear system to amuch smaller sizeq (typicaly q < 100) asillustrated in Fig. 7.3, while pre-
serving the most relevant part of the time and frequency input/output behavior and properties of the original
system.

E —|x|=|x|+|b|u

500,000 x 500,000
1% % R

s E &fc]eru

20 x 20

~

y=0'%

Figure 7.3: Given a dynamical linear system with a large matrix descriptor E of size around n = 500, 000,
the objective of the “ model order reduction” algorithmsisto produce a dynamical linear systemwith a much
smaller matrix E of size typically around g = 20, but with the same time and frequency domain behavior and
properties.

In an integrated circuits context, initial interest in model reduction techniques stemmed from efforts to
accelerate analysis of circuit interconnect [111]. More recently, model reduction has cometo be viewed as a
method for generating compact models from all sorts of physical system modeling tools [69, 104, 120, 106,
105, 18, 19, 131, 119, 32].

In the remainder of this Chapter and in Chapters 8-9, we will review the main existing techniques for
model order reduction. In Chapters 11-13 we then develop our new algorithms.

7.3 Model order reduction via eigenmode analysis

When the matrix E can be diagonalized, the transfer function of the dynamical linear system can be
written in a pole-residue form. Specificaly, if

E=35AS? (7.3)



80 CHAPTER 7. BACKGROUND: REDUCED ORDER MODELING OF INTERCONNECT

where A isadiagonal matrix containing the eigenvalues of E, then one can write the transfer function as

H(s) = —c'(l—-sE) b= (7.4)
= —c'(sSt-ssas ) th= (7.5)
= —c'SI—-sA)"is = (7.6)
—&(1-sA) b= (7.7)

n L&b;
= —ZS' - (7.8)

=157 %
= zs_”p (7.9)

i=1 I

where the residues are rj = Tliéi b and the poles are p; = il The correspondent impul se response therefore
decomposed into its “modes”

n
h(t) = Y rieP" (7.10)
i=1
A first intuitive way to perform model order reduction consistsin observing that one can:

e remove pole/zero near-cancellations (volume discretizations are well known for introducing many of
such pole/zero near-cancellations that do not have any affect on the transfer function);

e drop all other modes with small residues;

e drop also modes decaying too “fast” for the signals of interest to the user (i.e. poles with large rea
parts);

e cluster polesthat are very close.

Retaining in thisway the dominant modes of the system isafamiliar procedureto many circuit designers.
However this procedure is not practical to solve our problem. First of al it is extremely expensive, since
finding the poles has a non-practical computational complexity O(n?). Secondly, it is relatively inefficient,
since for a given model size, many other approaches can provide better accuracy.

7.4 Model order reduction via truncated balanced realizations (TBR)

One of the approaches that can provide optimal accuracy for a given final order of the reduced model
is the Truncated Balance Redlization (TBR) algorithm. In this Section, primarily to conform to literature
standards, we will assume the system to be reduced has been put in the form

sXx=Ax+Bu y=Cx (7.11)

The TBR procedure asfirst presented in [93] is centered around information obtai ned from the controllability
Grammian W, which can be obtained from solving the Lyapunov equation

AN, + WAT = —BBT (7.12)
for W, and the observability Grammian W,, which can be obtained from the dual Lyapunov equation
AW, +WeA = —CTC (7.13)

for Ws.
Under any similarity transformation of the state-space model,

A—T7 AT, B-T7!B, C>CT (7.14)
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p
Algorithm 1 Truncated Balanced Realization (TBR)

. Solve AN + W,AT = —BBT for We
Solve ATW, + WA = —CTC for W,
. Compute Cholesky factors W, = LeLl, Wop = LolL{,

A W N R

. Compute SVD of Cholesky product UXV = L[ L
where X is diagonal positive and U,V have
orthonormal columns

5. Compute the balancing transformations
T=LVvz Y2 T 1l=3xYuT]

6. Formthe bal anped realization as
A=T AT, B=T1B, C=CT

7. Select reduced model order and partition A, B,C
conformally

8. Truncate A, B,C to form the reduced
realization A,B,C

the state-space model, and the transfer function, are invariant (only the internal variables are changed). The
Grammians, however, vary under the rules

We = T-W,T™T, Wo — TTW,T (7.15)

and so are not invariant. The TBR procedure is based on two observations about W, and W;. First, the
eigenvalues of the product WoW, are invariant. These eigenval ues, the Hankel singular values, contain useful
information about the input-output behavior of the system. In particular, “small” eigenvalues of W W, cor-
respond to interna sub-systems that have a weak effect on the input-output behavior of the system and are
therefore close to non-observable or non-controllable or both.

Second, since a similarity transformation on A induces a congruence transformation of the Grammians,
and since any pair of symmetric matrices can be simultaneously diagonalized by an appropriate congruence
transformation [57], it is possible to find a similarity transformation T that leaves the state-space system
dynamics unchanged, but makes the (transformed) W, and W, equal and diagonal . In these coordinates, with
We =W, = =, we may partition  into

0
z:[ o I, ] (7.16)

where X; describes the “strong” sub-systems to be retained and X, the “weak” sub-systems to be deleted.
Conformally partitioning the transformed matrices as

A A Ap 5 A
A= |t 2 B=| 2t |, C=[¢& &, 7.17
{ Axn Ax ] [ } (G G (7.17)

and truncating the model, retaining A = Aq1, B = By, € = C; as the reduced system, therefore has the effect
of deleting the “weak” internal subsystems. A complete TBR algorithm [78] is shown in Algorithm 1. An
approach with improved numerical properties may be found in [123].

1To see this it may help to note that W, and W transform according to the same congruence operation; but if W is diagonalized,
soisW.
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One of the attractive aspects of TBR methods is that computable error bounds are available. If the ith
diagonal entry of the matrix X in Algorithm 1 is given by 6, and the ¢; ordered 61 > 62 > --- Gy, then the
error in the transfer function of the order-q reduced model is bounded by [51]

N
IH(s) = Hq(s)||- <2 Y ok (7.18)
k=0+1

A similar algorithm (Hankel model order reduction [51] can provide an error bound twice aslower than TBR.
Although TBR and Hankel reduction algorithms provide one of the best compressionsin terms of accuracy
for a given fina order, their computational complexity, O(n?), makes them impractical as a “first stage”
reduction operating on our huge interconnect systems. However, they are often used as a “ second reduction

step” as described in Section 10.1.

7.4.1 Physical interpretation of the TBR procedure

In order to later contrast the physical significance of the passivity-preserving TBR methods developed in
Chapter 13, here we review the physical interpretation of the method in Algorithm 1.

The observability Grammian W, is related to the L, norm of the output produced in free evolution (u(t) =
0,vt > 0) from an initial state xp at time O,

oo = [ YOTYO,  X(0) =X, u(t) = Ot > 0. (7.19)

The controllability Grammian W is related to the minimum L, norm of the input over all possible input that
can control the system from state 0 to the state xg at time 0.

W, Ixo = inf {/

—oo

° u(t)Tu(t)dt, u(t) controlling to x(0) :xo}. (7.20)

Noting that f5”y(t)Ty(t)dt and f°_u(t)Tu(t)dt arethe L, norms of the system output (restricted tot > 0)
and the system input (ont < 0) respectively, it is seen that small eigenvalues of the observability Grammian
W, are associated with state eigenvectors (“norma modes’ [93]) that produce small free evolution L » output
norms. These modes are therefore relatively unimportant for the system response. Small eigenvalues of the
controllability Grammian W, are associated with state eigenvectors (modes) that can be controlled only em-
ploying inputswith large L2 norm (regardless of what trajectory we follow to reach them). Hence the system
isnot very likely to be driven into those states and they are not likely to be important for the system response.
It can be noticed that some modes, although could produce large outputs, are difficult to be controlled by
the input. Vice-versa there can be some modes that, although are controlled with small input norm, they
produce small output norms. This s the reason for the balancing procedure that transforms to coordinates
that “balance” the importance of past inputs and future outputs, the weighting revealed by the eigenval ues of
the product of the observability and controllability Grammian. The algorithm will keep in the final reduced
model all the modes that are

e either easily controllable, meaning they do not require alarge input L » norm to reach, and

e casily easily observable, meaning that they produce free evolution outputs with large L 2 norms.

7.5 Model order reduction via rational function fitting (point match-
ing)

The transfer function H(s) of adynamical system of form (7.2) and of order nis arationa function with

2n coefficients
_ bo+bis+ ...+ byt

7.21
1+a1s+...+axs" ( )

H(s)
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Thetransfer function H (s) of the system after the reduction to order q << n must also be arational function.
In this case the free coefficients are 2q.

o Do+ Dis+ ...+ byt

H() = 1+485+ ...+ 8¢ (7.22)

Hence, an ideato perform model order reductionisto choose those 2q coefficientsin order to match “as much
as possible” of the original transfer function. Perhaps the most intuitive way to achieve this is to match the
original transfer function in exactly 2q points as shownin Fig. 7.4

_ bo+Dis 4.+ b1

H(s) = . i=1..29 7.23
() 1+ &S + ... +8¢s g (7.23)

Cross-multiplying the denominators of these 2q equations generates a linear system of equations

r

Figure 7.4: Oneidea for model order reductionisto “ fit" a rational function H(s) with very few coefficients
(29 << 2n) by matching in exactly 2q points the original function H (s) described by 2n coefficients.

&
—siH(s1)) ... —STH (s1) 1 s ... Sg_i ~ H(s1)
—9H(®) .. -SH(®) 1 s ... s bo |=| M (7.24)
—soqH(S2q) .. —SjH(s2q) 1 Sq .. Sk 1 H (s2q)
[ bg-1 ]

that can be solved for the coefficients ay, ....4n, bo, ..., bn_1.

Unfortunately this approach tendsto generate avery ill-conditioned system due to the progressively higher
powers k of the test frequencies s}‘. Furthermore, the resulting transfer function is extremely sensitive to the
position of the points chosen for the matching, and large errors are typically observed in the regions between
matching points. Thisis of particular concern when the range of the frequency response that is required to be
matched by the given application contains sharp resonance peaks. A better approach to overcome the second
of these two issues is to use a moment matching approach instead of a point matching one.

7.6 Model order reduction via Pade’ approximations (moment match-
ing)

As an dternative to choosing the 2q coefficients so that the reduced order transfer function matches

the origina transfer function in 2g points, one can instead choose to match one point and the first 29— 1

derivatives at that point. Fig 7.5 is an attempt to represent this concept pictorially, where we are representing
derivatives with concentric circles around the matching point.
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Figure 7.5: Pictorial representation of the moment matching approach. The 2q coefficients of the reduced
transfer function H(s) are chosen in order to match one point of the original transfer function H(s) and
29— 1 derivatives at that same point. Matching of derivatives is represented here pictorially by concentric
circles around the matching point.

This approach corresponds to expanding the transfer function in Taylor series,

2 3
dH 1d°H 2 1 d°H 3

H(S) = H(S)|s:0+ E‘&OS-F E@ o + g@ o (725)
= Mo+ mMS+ mps® 4+ mes® + ... (7.26)
and matching its first 2q coefficients my by imposing
bo + b1S+ ... + by_1591
0 D1ST -+ Bg-1 = Mo + MyS+ Mps? + Mes® + ...Mpg 157971 (7.27)

1+4a5+... +éq5q

It can be further observed that the coefficients my of the Taylor series expansion of the transfer function are
intimately related to the time domain moments my of the impulse response,

iy = / " tkn(t)dt. (7.28)
0
Specifically it can be easily be shown that

_ 11k
( k!l) M. (7.29)

mg =

Hence, producing a reduced system which matches the first 2q Taylor series coefficients my of the origina
system, correspondsto matching its first 2g time domain moments M.
In order to produce the reduced system one can:

1. calculate the coefficients my of the Taylor series expansion up to order 2q — 1 observing that
H(s) = —c'(I—sE) b= (—cT Ekb) =Y mes (7.30)
k=0 k=0

and hence concluding that
mc=—C E*b, k=0,1,...,2q—1. (7.31)

When applied to circuits, the method in this section is referred to as AWE since the moments can be
calculated using Asymptotic Waveform Evaluations (AWE) [112];
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2. cross-multiply the denominatorsin equation (7.27) and matching like powers of s, in order to assemble
the following two linear systems

m m .. mg1 |[ & 1 My
o : = o e (7.32)
M1 ... M2 | [ & | Mpg—1
m O .. 07 1 bo
m mg O a _ b1
: 0 : a : (7.33)
Mg-1 .. mo | | dg-1 | bg—1

3. thefirst of the two systems can be solved to calculate coefficients 41, ..., 44, subsequently the second
system can be used to calculate coefficients by, ..., by 1.

Since the moment matching approach illustrated above is based on calculating the (truncated) Taylor
series expansion of the original function, it could potentially capture accurately most sharp resonance peaks
relatively close to the expansion point, without having to know their exact location before the reduction
procedure. However, the linear system (7.32) still becomes quickly ill-conditioned for large values of g
(typicaly for g > 20). As a matter of fact the moments my in (7.31), contain a power series which tend
to align the matrix vector product toward the dominant eigenvector of the matrix E corresponding to the
dominant eigenvalue A asillustrated in Fig. 7.6

me = ¢' (E*b) ~ ¢ (A*b) ~ A¥mg,  for large k. (7.34)

,,,,,

Figure 7.6: Any vector b transformed by a large power of a matrix Ei tend to “ align” toward the dominant
eigenvector of the matrix.

This implies that for large values of q the last columns (and the last rows) of the matrix in (7.32) tend to
become linearly dependent and therefore the system almost singular.

m M .. Mg Mg mo m .. mpAd2  mpAd-?
m M .. Mg1 Ny m m .. moA% 1l mAd
Mg2 Mg1 ... Mpg4 Mpg 3 moAd2 moAdl . moA%d4 mpr2a-3
Mg-1 Mg .. M3 M2 moA®t  moAd . meA%d o2

Practically speaking, onewould liketo be ableto increase the accuracy of the producemodel by increasing
its order ¢, however, since for larger values of ¢ the system becomes ill-conditioned, coefficients ay,...,aq
cannot be calculated accurately and the actual accuracy of the reduced model does not improve. This result
can be observed for instance in Fig. 7.7.
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Figure 7.7: Transfer functions calculated using AWE (Asymptotic Waveform Evaluation) or in other words
using the Pade’ approximations described in 7.6. At each iteration of the algorithm one can increase the
order g of the produced system. Results for orders q = 2,5 and 8 are compared to the original transfer
function. One can observe that because of numerical ill-conditioning of the procedure the accuracy does not
increase much when using larger values of g.[ Picture by Feldmann and Freund [45]]
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Chapter 8

Background: the projection framework

In this section we will introduce a framework that can be used to develop many different model order
reduction techniques. If we compare the two systems in Fig. 7.3 we observe that the state of the origina
system is along vector of size n (with n =~ 500,000) “living” in an n-dimensiona space. The state of the
reduced system is a short vector of size q (with g~ 20) living in a reduced subspace of size g. Assume that
the large original state can be obtained from the reduced state using a linear transformation or “change of
basis’ asillustrated in Fig. 8.1. The transformation matrix Uq has size n x g. Its columns are the vector basis
for the “reduced subspace”, or more specificaly they contain the coefficients needed to represent the basis
for the “reduced subspace” according to the basis for the original subspace.

[ & ] [ == ]
I S
(T
s f[l ﬁq .
¥ V&,
\’ 2
/ EEl N | reduced state
- T
original state Uq Note: q << N

Figure 8.1: Assume the original state can be obtained from the reduced one using a linear transformation.
The change of basis matrix Uq is assembled using as columns the basis of the reduced subspace.

Using the change of basis transformation x = UgX in the origina system
SsEx=x+bu, y=c'x (8.2)
one obtains a new dynamical linear system
SEUqR = UgR+bu, §=cTUgR (8.2)

In this new system of equations we still count n equations but we have only q variables with g << n. The
system is therefore highly over-determined. One easy way to reduce the number of equationsis to multiply
the whole system by an “equation test matrix” VqT of size g x n obtaining the reduced system in Fig. 8.2. It is
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convenient to use an eguation test matrix bi-orthonormal to the change of basis matrix
VqUg=1 (8.3)

Weillustrate pictorially in Fig.8.3 how the original matrix E is squashed by the equation test matrix and by
the change of basis matrix.

E b
sEFx=1x+bu quTEUq fczi&—f-Vquu
=g % — y=e UK

X

Figure 8.2: According to the projection framework, the reduced system can be obtained from the original
using a* change of basis matrix” Uq and by pre-multiplying by an * equation test matrix” VqT bi-orthonormal
toUg, i.e Vg Ug = lg.

qxn

axq

Figure 8.3: Using the transformation in Fig.8.2 one can “ squash” the dimensions of the original matrix E
fromn x nto the much smaller g x g.

8.1 Choosing the change of basis matrix Uq

So far we have assumed that the “reduced subspace” where the reduced state vector lives, is known and
described in terms of a set of basis that can be used as columns of matrix Ug. However finding a good
approximation for such subspace is actually the core of any of the model order reduction algorithms based on
the projection framework.

Many choices are available to provide an approximation to such subspace. One way to think about our
problem isto try to characterize somehow a subset of the original state space where the state vector “spends
most of its evolution in a practical application of the model.

1. For instance, if available one could use as a basis for the reduced subspace a few “dominant” state
eigenmodes, that is the eigenvectors of the system matrix corresponding to the eigenvalues selected
as described beforein 7.3. Reduced models of any order q could be constructed without extra effort.
Unfortunately, as mentioned before, performing an eigenmode analysis of the original huge system
requires an O(n?) diagonalization operation which is computationally not tractable.

2. An additional idea is to use dominant singular vectors of the System Grammians introduced in Sec-
tion 7.4. The dominant singular vectors of the controllability and observability Grammians are asso-
ciated to modes or state vectors of the system that are controllable by small inputs and produce large
outputs respectively. The singular vectors corresponding to modes that are both easily controllable and
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easily observable are more likely to contribute to the input/output response we want to capture, and we
can use them abasis for the reduced subspace. Computationally this approach requires calculating the
Grammians and then applying a Singular Value Decomposition for a total complexity O(n®) regard-
less of the order of the model produced. However in [81, 80, 79] more efficient methods are shown
where the dominant eigenvectors of the controllability and observability Grammians are cal culated by
iteration.

3. Another simple way to characterize the subspace where the state vector is most likely to move around
during its evolution for practical applicationsis to apply some practical inputs to the original system
and calculate its evolution for some short time for al such inputs. This would produce a large col-
lection of state vectors X = {Xy, (t1), ..., Xu, (tk); .-, Xu, (t1), ..., Xy, (t) }, Which could represent a decent
approximation to the subspace we are looking for. We could use such hk vectors as columns of U 4
directly but that could be inefficient as many of the vectors will likely be linearly dependent. Using
linearly dependent vectors would be possible but it would produce a low accuracy for a given order
g of the reduced system. What determines the accuracy of the reduced model is the dimension of the
space spanned by the columns of Ug, and not the number of vectorsin the columns of U4 [53]. A more
efficient basis of such subspace could then be obtained selecting the first g << hk dominant singular
vectors of the matrix constructed using the vectorsin X as columns. One can notice that this algorithm
is particularly expensive since it requires the simulation of the original system for different inputs and
time points. Each of the hk vectorsin X requires roughly the solution of a dense linear system of size
n = 500, 000. Each solve requires O(n log(n)), when using iterative methods with the fast matrix vec-
tor products described in 3.6. Thetotal computational complexity for constructing a reduced model of
order g would be O(hk nlog(n)).

4. For most applications of interest in digital or mixed-signal integrated circuitsthe input signals are peri-
odic andtypically oneisinterest in thefrequency responseonly up to acertain frequency. Thereforeone
could think of applying the same procedureillustrate above in the frequency domain. One could com-
pute several state vectors at several frequency points X = {Xu; (St), -+, Xuy (Sc)5 +++s Xy (S1)5 +++s Xup (S6) }
assembl e then a matrix using such vectors as columns, calculate the first g << hk dominant singular
vectors of such matrix and use those as columns of the change of basis matrix U 4. The computational
complexity of this frequency domain variant of the previous approach is the same O(hk nlog(n)).
However for those applications mentioned before one could expect dlightly smaller values of k.

5. Finally, an effective approach from a computational point of view when reducing very large and dense
systems is to construct the columns of Uq using vectorsin the Krylov subspace generated by the input
or output vectors b, ¢ and the dynamic matrix E. Details of this method are described in the following
section.

8.2 Moment matching reduction via Krylov subspace projection frame-
work methods

We have already seen in 7.6 that one way to reduced the order of the system is through matching the
first Taylor series coefficients (or moments) of its transfer functions. However, although computationally
very efficient, the approach presented in 7.6 is still of little practical value because it suffers of noticeable
numerical problems. Other approachespresentedin 7.3,7.4, and in 8.1 use numerically very stable algorithms
such as eigenvalue or singular value decomposition, however they are of little practical value because of their
huge computational cost. We present here a family of agorithms based on the projection framework that
exploit the computational efficiency of the moment matching approach and are at the same time numerically
robust.

In order to approach the details of the algorithm first consider for simplicity a single input single output
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dynamical linear system asin in (7.2), The transfer function from the input to the state is
=—(1—sE)"thu. (8.4)

Using a Taylor series expansion around the point s = 0 we can write the state x as alinear combination of a
whole bunch of vectorsEKb, k=0,1, ...

=_ i S Ebu. (8.5)
k=0

In other words the state x lives in the space spanned by vectors
x € span{b,Eb,E?b,...}. (8.6)

If we are interested in producing a reduced model where we only care about the first q coefficients of the
Taylor series expansion of the transfer function around s = 0, then a natural choice for approximating the
reduced state subspace i's to use the one spanned by thefirst q vectorsE kb, k=0,1,...,q— 1. A more general
version and proof of such conjecture will be proven later in this section by the Grimme's theorem [53]. We
recall here that subspaces of thistype are well known and studied in the linear algebraliterature.

Definition 2 The Krylov subspace of order g of amatrix E and a vector b is defined as the subspace spanned
by the vectors
Kq(E,b) = span{b,Eb,E?b,...,E9b}. (8.7)

8.2.1 Grimme’s theorem [53]

The most general version of a theorem proving the foundations of the Krylov subspace projection frame-
work methodsis givenin [53]. We recall here the theorem and we highlight afew special cases.

Theorem 2 Given adynamical linear systemasin (7.2),
IF the projection framework illustrated in Fig. 8.2 is used and matrices U 4 and Vq are constructed such as

3
columnspan(Ug) C U ((1-sE)"*E, (I-siE)™b), (8.8)
3
columnspan(Vq) C U (ET(1-sE)™T, (I-siE)7T¢) (8.9)
W|th2 [ b)+k( )]:Zq,
THEN
H(s) = H(s) forj=1,2,..J; (8.10)
d'iH(s)) dif(s) - . CIe
A = g fori=120.0 =12 kY 4K -1 (8.11)

where H(s) is the transfer function of the original system and H(s) is the transfer function of the reduced
system.

In words, the theorems proves that if we include in the column span of U 4 the first kj(b) vectors from the
Krylov subspace K () ( (I —sjE) " E, (I —sjE)"'b), then the reduced model transfer function maiches
i

the original for at least the first kgb) derivativesin sj. Furthermore, if we includein the column span of Vq the
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first k}c) vectors from the Krylov subspace K (¢ (ET (I —=siE) ™", (I —sjE)"T c) then the reduced model
j

transfer function matches the original for at least the first k\” + k! derivativesin sj. Hence we can match
as many derivatives as we want at any expansion point simply including either in the span of U 4 or V; some
vectors from the appropriate Krylov subspace. Complete proof in the general case for the theorem is given
in [53]. We recall here only two special cases that have a particular practical use.

8.2.2 Special simple case #1: reduction via Arnoldi

Corollary 1 Given adynamical linear systemasin (7.2),
IF the projection framework illustrated in Fig. 8.2 is used and matrices U 4 and Vg are constructed using the
Arnoldi processin Fig. 8.4 such that

columnspan(Ug) = Kq(E,b) = span{b,Eb,...,E% b} (8.12)
UgUg = | (8.14)
THEN
H(O) = H(0) (8.15)
dHO)  d*H(0) B
g% = g for k=12..9q-1 (8.16)

and the procedureis numerically robust (i.e. high orders of derivatives can be matched evenin finite precision
arithmetic)

When constructing the change of basis matrix U one can use any basis of the reduced space subspace. Having
chosen Kq(E, b) as reduced subspace one could at afirst glance consider using vectors {b, Eb, E %p,...,E91p}
as columns of U% However that is not a convenient choice from a numerical point of view because, as seen
in 7.6, vectors EXb tend to become linearly dependent in finite precision for values of k larger than 20. A
numerically more robust base for the same Krylov subspace can instead be constructed using the Arnoldi
orthonormalization process [53] described in Fig. 8.4. The Arnoldi process is an iterative one. At each
iteration k for k < n, anew vector is generated which expands the Krylov subspace spanned by one order. The
power series EXb still embeddedin the algorithmis not allowed to align toward the dominant eigenvector since
at eachiteration k any component in the direction of al previously generated k— 1 base vectorsisimmediately
discarded by the orthogonalization step. Hence any convergence toward any previously generated direction
is prevented.

Note that the orthonormal condition is a consequence of the Arnoldi process which provides the numerical
robustness to the algorithm.

From acomputational point of view, eachiteration of the Arnoldi process requiresamatrix-vector product
with adense matrix E of size n = 500,000 which require O(n | og(n) when using the fast-matrix vector prod-
uctsshownin 3.6. Hence the overall complexity to construct areduced model of sizeqissimply O(gqnlog(n))
which is tractable and scales with the accuracy needed for the model. One can notice that the cost to pro-
duce the entire reduced order model is the same cost that would be required to calculate g time pointsin the
time domain response of the original system or g frequency pointsin the frequency response of the origina
systems.

8.2.3 Special simple case #2: Pade’ Via Lanczos (PVL)

Corollary 2 Given adynamical linear systemasin (7.2),
IF the projection framework illustrated in Fig. 8.2 is used and matrices Uq and Vq are constructed using a
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i, =b/|b|
Fori=1tok
;1 = E i Generates k+1 vectors!
Forj=1toi
—_— —_ -7 — —_
«—u —( .U )u
i+l i+l Ll 7 s
Orthogonalize new vector
i
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uH—l & |1} || ur+1
T+1 i
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i+1,7
Figure 8.4: Arnoldi orthonormalization process of the vectors in the Krylov subspace K 4(E, b). This process

generates a numerically robust orthonormal basis for the reduced state subspace for the construction of the
change of basis matrix Ug.

Lanczos bi-orthonormalization process [45] such as

columnspan(Ug) = Kq(E,b) = span{b,Eb,...,E% b} (8.17)
columnspan(Vq) = Kq(ET,c) = span{c,E'c,...,(ET)% *c} (8.18)
VgUg = | (8.19)
THEN
HO) = H(0) (8.20)
dH©O)  d“H(0) B
% - I for k=1,2,...,29-1 (8.21)

and the procedureis numerically robust (i.e. high orders of derivatives can be matched evenin finite precision
arithmetic)

Note that the orthonormal condition is a conseguence of the Lanczos |ook-ahead bi-orthonormalization pro-
cess which provides the numerical robustnessto the algorithm. Case #2 isalso known as* PVL or Pade’ via
Lanczos’ [45]. Fig. 8.5 showstheresults of a PVL agorithm when applied to the same problem used for the
numerically unstable simple Pade approximation (or AWE) in Fig. 7.7.

From acomputational point of view, eachiteration of the Lanczos process requiresamatrix-vector product
with a dense matrix E of size n & 500,000 as for the Arnoldi process, hence the overall complexity to
construct areduced model of size gis O(qgnlog(n)). Comparing case #1 with case #1 one observes that both
cases produce a reduced model of same size g with the same amount of effort. However case #2 istwice as
efficient than case #1 sincein case#1 only g moments are matched whilein case#2, 2q moments are matched.
Intuitively case #1 was expected to be less efficient since no information from the output vector c isused in
the reduction procedure. Note that in this section we have compared case #1 and case #2 dtrictly from a
computational efficiency point of view. Such comparison however is not complete and we will extended it in
subsequent Chapter 9 to include preservation of important system properties such as passivity. A comparison
summary will be presented in Table 10 in Chapter 10.

8.2.4 *“Multi-point” moment matching

Although the most important improvement of the Krylov subspace projection framework algorithms is
their numerically stability, they also providethe ability to combine the techniques seen before of point match-
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Figure 8.5: Transfer functions calculated using PVL (Pade’ via Lanczos described in Corollary 2. At each
iteration of the algorithm one can increase the order q of the produced system. Resultsfor ordersq= 2,8 and
28 are compared to the original transfer function. Comparing with Fig. 7.7 one can observe that arbitrary
higher accuracy for the reduced model can be obtained simply using more iterations q. For instance using

g = 28 the reduced transfer function has no appreciable error from the exact one. [ Picture by Feldmann and
Freund [45]]

ing and moment matching in 7.5 and 7.6 respectively. Specifically, these algorithms allow to match an ar-
bitrary number of derivatives (or moments) around many distinct Taylor series expansion points. Fig. 8.6

illustrates pictorially such concept, where once again derivative matching is illustrated by concentric circles
around the expansion point.

)

Figure 8.6: The Krylov subspace projection framework methods allow to perform model reduction combining

point matching and moment matching. Specifically in this figure we show with concentric circles the ability
of matching derivatives (moments) around several distinct expansion points.

We recall that the only thing we need to do is “identify” areduced state subspace and some numerically
robust set of vectors that span it. Some of such vectors can be generated from the first terms of a Taylor

expansion around s = 0, but other vectors can be generated by the first terms of Taylor expansions around
other points.

Lemma 1 ATaylor series expansion around a generic point s= s; produces the following Krylov subspace

x€ Ky ((I1-sE)'E, (I-sE)"'b). (8.22)
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Proof. This can be derived for instance using a simple change of variables

s=8+s5; (8.23)
which transform the system into
(8+sj)Ex=x+bu (8.24)
or
§(1 —sjE) *Ex=x+ (I - s;E) *bu (8.25)

Finally we can use the procedureillustrated above for a Taylor series expansion around § = 0.
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Chapter 9

Background: preserving passivity

Given a large dynamical linear system that models a collection of interconnect, so far we have only
discussed how to produce a much smaller size system with a “similar” frequency response (at least in a
band of frequencies of interest). Typically thisis “good enough” in the case when the model will be used
only for a fast evaluation of the frequency response, such as in “radar cross-section” (or field scattering)
application problems. However in integrated circuit design, interconnect models are very often used in many
other possible ways. Reduced order models (ROM) can be used to capture second order parasitic effects of
interconnect wires between circuit blocks as shown in Fig. 9.1 and Fig. 9.2. Models are often connected to
construct larger models of complicated structures (Fig. 9.1). In mixed-signal or in analog circuits it is often
the case that the reduced order models of interconnect are closed in afeedback loop as shown in Fig. 9.2. All
these previous systems are then typically analyzed in atime domain simulator.

All such applications require that the composition of reduced order models with other reduced order
models or with circuit blocks is numerically “well-behaved” when we use it for instance in a time domain
simulator. We observe that any collection of interconnect is a real, stable, passive, causal system. If we
simply limit ourself to produce a reduced order model with a transfer function “similar” to the original,
we might not necessarily preserve any of those crucial system properties. For instance, we might observe
numerical instability (clearly illustrated in Fig. 9.2 or in Fig. 9.3 from [97]) when using in a time domain
simulator an unstable reduced order model, or a stable but non-passive reduced order model connected in
an externa feedback loop, or many stable but non-passive reduced order models connected arbitrarily. We
observe in particular that preserving passivity is far more important than preserving stability of the original
model. That is because not only does passivity imply stability, but also because the arbitrary interconnection
of many passive models asin Fig. 9.1 is aso guaranteed to be passive (and hence stable), while the arbitrary
interconnection of many stable (but not passive) modelsis not guaranteed to be stable (nor passive).

9.1 Passivity for systems modeling immittance

L et us now take amore formal approach, and recall some definitions and some useful linear system theory
results. In this section we will be concerned with properties of an abstract system H : X — X, transforming
vector input signals u into vector output signalsy = H u within aspace of signals X . Inthe mgjority of the IC
interconnect modeling problems, it is typical to assume that the system inputs, u: R™ — RP represent port
voltages, and that the outputsy : R* — RP represent port currents, or the converse (the inputs are currents
and the outputs voltages). The Laplace-domain representation of the system H is then a matrix H(s), such
that

y(s) =H(s)u(s), (9.1)

where u(s) and y(s) are the Laplace-domain representations of inputs u(t) and outputs y(t). Hence, H(s) is
an immittance function: either an admittance matrix Y (s), or an impedance matrix Z(s). Introduce two inner
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Figure 9.1: Many interconnect reduced order models are typically connected among them and to circuit
blocksto simulatelargecircuits. Preserving the passivity of the reduced modelsiscrucial. Whilethearbitrary
interconnection of passive models is passive (and hence also stable), the arbitrary interconnection of stable
(but not passive) modelsis not necessarily even stable.

productsin X, the standard inner product

wy) = [ ywTuod:, 92

and a product which acts on truncated signals

(Y= () =y = [ yoTuoet, 03

where u(t) = {u(t) if t <t,0if t > 1}.

If uand y are port current/voltage pairs, y(t) Tu(t) has the physical interpretation of power, (u,y) isthetotal
energy passed by the system up to time 1. We will generally work in the space of signalsx € X = L, that
have finite norm ||x|| for any 1, where [|x||2 = (x,X),.

A passive system is a system that cannot produce energy. For the systems of interest here we may define:

Definition 3 (Passivity) AsystemH : X — X ispassiveif
(UWHu,>0,VteR*, YueX, u:RT - RP, (9.4

In practice, amost all systems of interest for model reduction are non-ideal and contain some loss. That is,
they internally consume energy. If a system consumes energy, it is said to be strictly passive.

Definition 4 (Strict Passivity) A systemH isdtrictly passiveif thereisad € R™ st.
(uHU), > §||ul|?, VT e RT, Yu: Rt — RP. (9.5)

For many electrical systems of interest, passivity isimplied by positive-realness of the transfer function
H(s).
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ROM

Figure 9.2: In mixed-signal and anal og circuits interconnect models may be included in feedback loops. Only
preserving the passivity of the model we are guaranteed that the feedback loop does not cause numerical
instability in a time domain simulator.

Definition 5 (Positive Realness) Let H(s) : C — C™" be a matrix-valued function of complex variable.
Then H(s) is positive-real [4] if

H(3) =H(s), (9.6)
H(s) isanalyticin Re(s) > 0, 9.7)
Ix(s) =H(s) + H(s)* > 0inRe(s) > 0. (9.8

where the overline bar indicates complex conjugate, while the asterix indicates complex conjugate and trans-
posed.

Definition 6 (Strict Positive Realness) A matrix valued function H(s) is strictly-positive-real [145] if there
existsane € R™ st. H(s—¢) is positive-real.

Intuitively, the first condition requires that the time domain impulse response is real, the second condition
requires that the system is stable, finaly the third condition requires that the symmetric and rea part (or

loosely speaking the resistive part) of the immittanceis a matrix positive semi-definite in the entire right half
plane.

Definition 7 (Positive Semi-Definiteness) A square matrix E € R™" is positive semi-definite if
x'Ex>0, VxeR™! (9.9)

Positive realnessis of interest because of its relation to passivity for lumped networks:

Theorem 3 AsystemH with rational system transfer function H(s) is passive and stable if and only if H(s)
is positive-real [4].

In the context of model reduction, the implication for state-space systemsis that if areduction algorithm for
lumped RLC networks produces models with positive-real transfer functionsH (s), then it generates guaran-
teed passive models.
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Figure 9.3: Numerical instability and simulation explosions usually manifest themselves as growing oscilla-
tions in time domain waveforms, as in this example where a stable but not passive model of a lossy trans-
mission line has been connected to a driver and a load and simulated in a time domain circuit simulator.
[Picture from[97] by A. Odabasioglu, M. Cdlik, L. T. Pileggi] .

9.1.1 Congruence transformations

In the remainder of this Chapter we will make extensive use of the concept of congruence transformations
and their propertiesrelated to passivity. Hence we briefly recall them here.

Definition 8 (Congruence Transformation) GivenasquarematrixE € R NxN and a rectangular matrixU e
R™4 with g < n, a congruence transformation isa matrix E € R9*9 defined as

E=UTEU. (9.10)

Lemma 2 (Congruence transformations preserve positive semi-definiteness) Given a positive semi-definite
matrix E, any congruence transformation U TEU is also positive semi-definite.
Proof. This can be derived by observing that congruence transformations preserve the field of values, i.e.

{X'TUTEUX, ¥xeR"} C {x'Ex, VxeR"}. (9.11)

Lemma 3 (Congruence transformations preserve positive realness) Given a positivereal matrix valuefunc-
tion Z(s), any congruence transformation U TZ(s)U is positive real.

Proof. Conditions (9.6) and (9.7) are easily verified. Condition (9.8) can be derived from Lemma 2.

9.1.2 Tools for assessing passivity

It is generally necessary to be able to easily assess the passivity of a generated model. It is not practical
to check the conditions (9.6), (9.7), and in particular (9.8), via explicit evaluation since an infinite number of
values {s, Re(s) > 0} should be checked.

Checking positivity only on the imaginary axis

We can observethat, thanksto the analyticity of H(s) in the right half plane, the positivity condition (9.8)
simply needs to be verified on the contour of the right half plane, i.e. theimaginary axis[4]:
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Theorem 4 Arational H(s) is positive-real if and only if (9.6) and (9.7) hold, and
My(jo) =H(jo)+H(jo)* >0, Vo eR (9.12)

except for simple polesiwg of H(s), where the residue matrix must be nonnegativedefinite[4]. H(s) isstrictly
positivereal if the inequality is strict [4, 145].

However even using this result, we would still need to check (9.12) for an infinite number of frequencies jm
on theimaginary axis, whichis still not practical.
A necessary but not sufficient condition for passivity

A common misconception when checking for passivity is to simply verify that al poles and zeros arein
theleft half plane. The following theorem isin part responsible for such misconception.

Theorem 5 If arational matrix valued function H(s) is positive-real then H ~1(s) is positive-real.

Based on this theorem we observe that a hecessary condition for passivity is that, not only al poles of the
transfer functions are in the left half plane (stability), but aso that all zeros arein the left half plane. However
we point out that this condition is not sufficient. Hence checking for location of poles and zeros can only be
used to prove that a given model is not passive when someright half plane poles or zeros are found. Nothing
instead can be concluded about passivity of the system when all poles and zeros are found in the left half
plane.

A sufficient but not necessary condition for passivity

Theorem 6 Given adynamical linear systemin the general form

SEx=Ax+Bu, y=0Cx (9.13)
IF
E = ET (9.14)
E > 0, E is positive semi — definite (9.15)
—A > 0, —A is positive semi — definite (9.16)
c = g' (9.17)

THEN the systemis passive.

Proof. In order to provethat the system in passive we simply need to show that its transfer function H(s) =

C(sE — A)~1B is positive real. From the first three conditions (9.14)-(9.16), we can easily conclude that the
function sE — Ais positivereal. From Theorem 5 Z(S) = (sE — A) ~lispositivereal. Finaly, if C =BT then
H(s) = BT Z(s) B is a congruence transformation which preserves positive semi-definiteness from lemma 3.

This theorem gives a nice way to prove that a system is passive when observing that matrices E and —A are
positive semi-definiteand C = BT . We care to correct here a second common misconception: such properties
are not necessary for passiveness. In other words, there are plenty of passive systems with indefinite matrices.
As amatter of fact, it usually requires a particular care to describe a passive system, such as a collection of
i nterconnect, with positive semi-definite matrices. That can be achieved for instance when only RLC elements
are modeled, and Modified Nodal Analysis (MNA) is used as in [97]. However, if sign conventionsin the
KCLs are not used consistently across all circuit nodes indefinite matrices can easily be produced.

Example 1 Let’'s assume for example that a transmission line has been described using a dynamical linear
system as in Fig. 7.2 constructed using Modified Nodal Analysis (MNA). If things are done properly it is
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possible in this particular case to obtain system matrices that verify the sufficient conditions for passivity in
Theorem 6, in particular L = E and R= —A are both positive semi-definite, and C = BT. For this particular
example we can further observe that matrix E is diagonal and all entries are positive. Now change the sign
of one of the equationsin the dynamical linear system. Algebraically this correspondsto pre-multiplying by
matrix

S -
0 0
01 0
Q= 0 -1 0 (9.18)
0 10
0 .. 0
L O 1_
Wk obtain the system

SQEx = QAx+ QBu, y=B"x. (9.19)

We can observe that for instance matrix QE is still diagonal, with all entries positive except for one negative
entry. QE istherefore indefinite. Although the conditionsin Theorem 6 are not satisfied, the transfer function
is exactly the same

Ho(s) = BT(SQE—QA) 'QB= (9.20)
= B'(sE-A'Q'oB= (9.21)
= H(s), (9.22)

hence still positive real or in other words the systemis still passive.

Example 2 Another particularly interesting example is the following. Consider again the same passive
system described by positive semi-definite matrices E and —A with C = BT asin Theorem 6. Consider the
transformation assumed in all the projection framework algorithms presented in Chapter 8,

sAlEx=x+A"1Bu, y=BTx (9.23)
Such new system has the same positive real transfer function of the original system, henceit is still passive,

however once again the matrix A~1E may not bein general positive semi-definite.

9.1.3 A necessary and sufficient condition for passivity

All the passive conditions presented so far are only sufficient or only necessary or not practical. Fortu-
nately another mean is available [4] to certify the passivity of a system with apractical efficient algorithm.

Lemma 4 (Positive-Real Lemma, Version 1) Let H(s) = D + C(sl — A) "B be a matrix-valued function,
(A,B,C,D) minimal, with poles either in the left half-plane or on the imaginary axis, in which case they are
simple. H(s) is positive-real if and only if there exist matrices X; = XCT,JC, K¢ such that the Lur’ e equations:

AXe+ XAT = —KeKT (9.24)
XCT—-B=—KJ, (9.25)
JJI =D+D' (9.26)

are satisfied, and X; > 0 (X; is positive semi-definite).

Xc is analogous to the controllability Grammian. In fact, it is the controllability Grammian for a system
with the input-to-state mapping given by the matrix K¢. It should not be surprising that there are a dual set
of Lur'e equations for X, = X! > 0,J,,K, that are obtained from Eqns. (9.24)-(9.26) by the substitutions
A— AT B CT,CT - B.
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Lemma 5 (Positive-Real Lemma, Version 2) Let H(s) = D + C(sl — A) ~1B be a matrix-valued function,
(A,B,C,D) minimal, with poles either in the left half-plane or on the imaginary axis, in which case they
are simple. H(s) is positive-real if and only if there exist matrices X, = XJ , Jo, Ko such that the dual Lur’e
eguations:

ATXo+ XA = —KJ Ko (9.27)
XoB—C" = —KJJo, (9.28)
)N =D+D". (9.29)

are satisfied, and X, > 0 (X, is positive semi-definite).

The dua equations have a corresponding observability quantity X, > O for a positive-real H(s). It is easy
to verify that X¢, X transform under similarity transformation just as We, Wo (Egn. 7.15 in Section 7.4), that
their eigenvalues are invariant, and in fact in most respects they behave as the GrammiansW¢,W,. Lemmas 4
or 5 can be used to check the passivity of the produced systemsin form:

SX=Ax+Bu, y=Cx+Du. (9.30)

Computational proceduresmay be foundin [5]. Also, [9] gives a computational procedure that involves only
standard matrix computation, such as computing the eigenval ues of amatrix or amatrix pencil. Extensions of
the positive-real lemma are available for transfer functionsin the descriptor form H(s) = D +C(sE — A) ~1B.
Such extensions can be used to check the passivity of the systemsin form:

SEx= Ax+Bu, y=Cx+Du, (9.31)

where E is singular such that the transfer function cannot be put into the above form [61]. Computational
procedures can be found in [109].

9.2 Passivity for systems modeling scattering parameters

In some PCB, some package, and some microwave applications we may encounter interconnect models
where the system inputs, u, represent incoming waves of voltage (or current, or electromagnetic field), and
that the outputs y represent outgoing waves of voltage (or current, or electromagnetic field). In this case
the Laplace-domain representation of the system transfer function H isthen a“ scattering parameter” matrix
function H(s). In this case we can define the two following inner productsin X,

wy) = [ _uwTund- [ yoTymd, (932)
and a product which acts on truncated signals
(WY =) = (wyd = [ uoTuwdi— [ yoTywet (933
where
w={ 80 15D -

u(t)Tu(t) and y(t)Ty(t) have the physical interpretation of energy of the incoming and outgoing waves re-
spectively. (u,y). is the difference between the two, hence it is the total energy passed by the system up to
time 1. To represent a passive system in this case it is necessary that H(s) be bounded-real [4].

Definition 9 (Bounded Realness) A matrix valued function H(s) is bounded-real if
H(3) =H(s), (9.35)
H(s) isanalyticin Re(s) > 0, (9.36)
I —H(s)*H(s) > 0inRe(s) > 0. (9.37)
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The term “bounded” arises as Eqn. (9.37) is equivaent to stating that ||H(s)||2 < 1 in the open right-half
plane. Intuitively this correspondsto roughly requiring that the amplitude of all reflection coefficientsisless
than one.

9.2.1 Bounded-Real conditions

In order to check if the transfer function of a system is bounded real one can use the following necessary
and sufficient conditions.

Lemma 6 (Bounded-Real Lemma, Version 1) Let H(s) = D+ C(sl — A) !B be a matrix-valued function,
(A,B,C,D) minimal, with poles either in the left half-plane or on the imaginary axis, in which case they are
simple. H(s) is bounded-real if and only if there exist matrices Y =Y, , J., K¢ such that the Lur’ e equations:

AY; + YAT = —BBT — KK/ (9.38)
Y.C"T +BD = —KJ J (9.39)
JJ =1-D'D (9.40)

are satisfied, and Y¢ > 0 (Y is positive semi-definite).
A dual condition can aso be given.
Lemma 7 (Bounded-Real Lemma, Version 2) Let H(s) = D + C(sl — A) !B be a matrix-valued function,

(A,B,C,D) minimal, with poles either in the left half-plane or on the imaginary axis, in which case they are
simple. H(s) is bounded-real if and only if there exist matrices Yo = Y4 , Jo, Ko Such that the Lur’ e equations:

AT, +YoA= —CTC— KK, (9.41)
YoB+CT'D = —K,J{, (9.42)
JNHp=1-D'D (9.43)

are satisfied, and Yo > 0 (Y, is positive semi-definite).

9.3 Causality

A causal system is a system whose output depends only on past inputs, not future inputs.

Definition 10 (Causality) AsystemH iscausal if and onlyif Hu(t) = Hu(t), V1€ RT, Vu: RT — RP.

All physical systems are causal. Hence, causality is a necessary property of all modelsintended to be used in
any simulator that has a concept of time. However, it is often neglected, specialy when modeling distributed
systems. When constructing model reduction algorithms for distributed systems, we must keep in mind that
the condition in Equation (9.12) is not sufficient by itself to insure that the model is physical and well-behaved
when used in atime domain simulator.

There are systems that satisfy the passivity conditions without being causal. Those systems both cannot
represent any physical interconnect, and cannot be represented by dynamical models to be used in causal
time-domain simulators.

Example 3 Let's consider from a practical point of view a one port (p = 1) network function Z g, (jo) =
Ro+ RaC\/W that is commonly used as a model for the* resistance” of interconnect in the skin-effect regime.
This function satisfies all the passivity conditions including ITz(jw) > 0, ¥V ® € R. However, it is not a
representation of any passive system, because it is not a causal function. In fact, it can be shown that
any physical, passive network function that is purely real must be constant with respect to the frequency
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. In Section 12.4.3 we further illustrate the non-causality of this model. Practically speaking, although
the function is passive no physical collection of interconnect can have such function as a transfer function.
Furthermore no causal dynamical system model for a time-domain simulator can be constructed to represent
it.

Algorithms that generate successively better rational approximations of non-causal systems (for example,
Zgin(j®)) mustinsomelimit fail to be passive, for example by generating unstable approximants. Therefore

we will require that al the systems representing interconnect we are supposed to reduce be not only passive
but also causal.

9.4 Existing model reduction methods preserving passivity (PRIMA)

Because of the need to obtain accurate high-order models at reasonable computational cost, the Krylov-
subspace model reduction methods [46, 73, 13, 53, 74, 99, 43, 130, 97, 128, 12, 16] have occupied the
forefront of research over the past five years. The importance of producing passive reduced models has been
realized, and several algorithmsthat preserve passivity of RLC circuitsin specialized cases have appeared [13,
95, 74, 11, 10, 42, 100, 99, 47, 43, 97, 87, 48, 102, 14, 98, 16, 28, 27]. In Chapters 11, 12 and 13 we will
present the algorithms that we have devel oped to preserve passivity in cases not yet covered in literature [ 36,
33, 108, 109]. In this section we describe instead PRIMA [100, 99, 97], a crucial modification of the Krylov
subspace projection framework via Arnoldi presented in Section 8.2.2. Consider a dynamical linear system
in the form

SEx=Ax+Bu, y=Cx (9.44)

that not only is passive but aso the much stronger sufficient conditionsin Theorem 6 in Section 9.1.2 are all
satisfied.

1. Asin Section 8.2.2 consider the equivalent system

sAlEx=x+A"1Bu, y=Cx (9.45)

2. Asin Section 8.2.2, calcul ate the change of basisU ¢ matrix using the Arnoldi processin Fig. 8.4 whose
columns span the Krylov subspace Kq(A~1E,A~1B).
3. Asin Section 8.2.2 choose Vq = Uq.

4. In Section 8.2.2 the projection framework was applied to the system (9.45), obtaining the reduced

system

Ug A 'EUgx =x+Uq A 'Bu, y=CUgx. (9.46)
In PRIMA instead the projection framework is applied to the origina system (9.44), obtaining the
reduced system

Ug EUgx = Ug AUgx+Uq Bu, y=BTUgx. (9.47)

Theorem 7 The reduced system produced by PRIMA is passive.

Proof. This can be seen observing that the projection framework, when choosing V4 = Ug as in this case,
results in congruence transformations for matrices E and A. From Lemma 2, since the original matrices
were positive and negative semi-definite respectively, aso the reduced matrices are positive and negative
semi-definite respectively. We farther observe that the projection framework in this special case preservesthe
input/output symmetry condition, i.e. if C =BT thenCUq = UqT B. In conclusion, when the original system
is passive and satisfies all the strong sufficient conditions in Theorem 6 then the reduced by PRIMA also
satisfies to the same conditions and hence is guaranteed passive.

Examining example 2 one can instead realize that the the same result cannot be achieved by the ssimple

reduction via Arnoldi in Section 8.2.2. In that case although the original system is passive, matrix A —1E
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is not necessarily positive semi-definite and therefore the reduction via congruence transformation does not
produce necessarily positive semi-definite matrices.

Finally, besides preserving passivity, PRIMA has the same matching properties and numerical robustness
of the reduction via Arnoldi in Section 8.2.2

Theorem 8 Thetransfer function H (s) of thereduced system produced by PRIMA matchesthe first q deriva-
tives (or moments, or Taylor series coefficients) of the transfer function H(s) of the original system

H(O) = H(0) (9.48)
?jk—S':(O) = C;k—sT(O) for k=1,2,..,q9—1 (9.49)

and the procedureis numerically robust (i.e. high orders of derivatives can be matched even in finite precision
arithmetic)

Proof. The numerical robustness derives as usua from the Arnoldi orthonormalization process. In order
to show the moment matching properties we can expand in Taylor series the origina model and the reduced
model

H(s) = Zrn(sk 2 [ A-lE)kA-1B| & (9.50)

H(s) = 2 s = Z [(UqT B)" ((Ug AUq)~(Uq EUg))*(Uq AUg) "2 (Ug B) | s (9.51)
k=0

(9.52)

For each of the first g moments we can show that

M = BTUg(Ug Alg) "Uq EUg...(Ug Alg) 1Uq EUq(Ug AUg) 'Ug B (9.53)
= BTUg(Uq AUg) U EUq...(UJ AlUg) TU4 EUQUG A 1B (9.54)

= BTUg(Uq AUg) 'Uq EUq...(Ug AUg) 'UJEA'B (9.55)

= BTUq(Uq Alq)~ 1uq EUg..UgA 'EA !B (9.56)

= B'(A'E)..(AE)A 1B (9.57)

= BT(AE)*A~!B (9.58)
Mk (9.59)

Note that UqT Uqg = | because of the Arnoldi orthonormalization process used to construct Ug4. In general

instead UqU(;r is not the identity matrix. However, in the previous derivation we have used Lemma 8 and 9.
Note that such Lemmas can be applied only to the first g moments since the columns of U 4 span the Krylov
subspace Kq(A1E,A1B) of order .

Lemma 8 If Ug is an orthonormal matrix Ug € C™9, Ug Uq = | € R%4, and v is any vector in the column
span of the matrix Ug, v € columnspan(Uq)
then UgUq v=v.

Proof. If v e columnspan(Ug) then there exists a vector g such that v = Ugqg. Substituting UquT V=
UgUq Uqg =Uqg = b.

Lemma 9 If Uy is an orthonormal matrix Uq € C™9, UgUq =1 € R%9, and v is any vector such that
A~1v € columnspan(Uy),
then (Ug AUg) Uqv=UgjA 1v.
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Proof. If A~v € columnspan(U) then there exists a vector g such that A~1v = Uqg. Substituting

(Ug Adg) TUgv = (UjAUg) TUJAA Y (9.60)
= (UgAq) (U Alg)g (9.61)
=g (9.62)
= UqUqg (9.63)
= UgA ™" (9.64)

Finally we observethat PRIMA can be formulated to include the same type of multi-point moment match-
ing capabilities following the procedureillustrated in Section 8.2.4.
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Chapter 10

Background: comparing existing model
order reduction methods

As seen in the previousin this introductory chapters, there exist many model order reduction procedures.
When selecting a procedure for a particular application one should consider four main characteristics:

the computational cost required to build a model of a given accuracy (or order) from an originaly
huge and dense dynamical linear system. This characteristic is crucial when producing the reduced
order model. Typically one can afford only a complexity linear in the size of the original model.

the accuracy achieved by the reduced order model for a given order. This characteristic is important
when using the reduced order model. Smaller models for a given accuracy can result in faster runtimes
when using the model in acircuit simulator.

the numerical robustness of the reduction procedure. This is important when trying to increase the
size of the reduced model to increase the accuracy. Reduction procedures that are not numerically
robust can only produce models of small accuracy regardless of the size of the produced model.

the ability to preserve passivity of the original model. Thisis an essentia property when using the
reduced model in atime domain simulator. Failing to preserve passivity can easily result in numerical
instability in the simulator.

We summarize in Table 10 the properties of the most important model order reduction agorithms pre-
sented in this Chapter.

Table 10.1: Comparison of some Model Order Reduction methods.

Cost for reducing  Accuracy for Numerical  Preserving
fromorderntoq givenorderq robustness  passivity
Eigenmodes (7.3) | O(n®) poor yes no
TBR (7.4) o(n3) amost optimal yes no
Point match (7.5) | O(gnlog(n)) match g points no no
Pade-AWE (7.6) | O(gnlog(n)) match 2g moments  no no
Arnoldi (8.2.2) O(gnlog(n)) match g moments  yes no
PVL (8.2.3) O(gnlog(n)) match 2g moments  yes no
PRIMA (9.4) O(q nlog(n)) match g moments  yes yes
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10.1 The “two steps procedure”

We can observe from table 10 that the only algorithms that can be used to handle the large and dense
dynamical linear systems produced by typica interconnect structures on modern electronic circuits are the
Krylov subspace projection framework methods: the reduction via Arnoldi in Section 8.2.2, PRIMA in Sec-
tion 9.4 and PVL in Section 8.2.3. The Truncated Balance Realization (TBR) method presented in Section 7.4
would be quite more effectivein terms of accuracy for agiven order of the produced model. However its cubic
complexity makesit useful only for original models with order not larger than few hundreds.

A common approach in practical applicationsis then to use a“ two steps procedure” .

1. Typically onewould apply afirst reduction using a Krylov subspace method (e.g. PRIMA) and reduce
the original system of size around 500,000 to an intermediate system of size as large as a TBR can
handle.

2. The one would complete the reduction with TBR which is more efficient in terms of final size for a
given order.

Anadternative approachisto directly solvethelarge Lyapunov equationsviaaKrylov subspace method [81,
115, 63, 64, 116] in order to reduce the TBR cubic complexity.

10.2 The main contributions of this thesis in model order reduction

The most important observation when looking at Table 10isthat preservation of passivity isstill an critical
issuein the field of model order reduction. The problem has been partially address by the algorithm PRIMA.
However PRIMA requires the passive system to be a very specific form in order to preserve passivity. It has
been shown how to setup the original system in such specia form only for problemsincluding conductors. In
Chapter 11 we will develop a method to produce dynamical systems that satisfy the passivity conditions for
model order reduction using PRIMA for structures including dielectrics [36, 34].

Furthermore, PRIMA is only applicable to dynamical linear systems with constant descriptor matrices E
and A. In many modern applicationswe need to be ableto handle “distributed” systems, that are described by
frequency dependent matrices E(s) and A(s). No reduction techniqueis available for such systems capable
of preserving passivity. In Chapter 12 we will develop such a needed reduction procedure[33].

Finally, “the second step” of the previously mentioned “two steps procedure” involves using an algorithm
that although accurate, in general may not preserve passivity. This problemis currently addressed in practice
by checking if the model generated by TBR is passive and if it is not passive a model of higher order is
generated until a passive model is “hopefully” generated. In Chapter 13 we develop instead a technique
similar to TBR that preserves passivity [108, 109]. Our new technigque has the same optimal properties of
TBR in terms of accuracy for a given order, Furthermore, differently from PRIMA, our agorithm does not
require the the original passive system to bein any special form.
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Chapter 11

Preserving passivity when including
dielectrics

The work in this chapter has been done in collaboration with Prof. Jacob White, Massachusetts I nstitute
of Technology, and it hasfirst appearedin [36, 34].

Dielectric materials are present in aimost all modern electronic circuits: from Printed Circuit Boards
(PCBs), to packages, Multi-Chips Modules (MCMs), and Integrated Circuits. Dielectrics can significantly
affect both the performance and the functionality of electronic circuits. For instance, they can change inter-
connect delays, as well as the positions of frequency response resonances. Ignoring dielectrics can therefore
potentially lead to very inaccurate results both in timing analysis tools and in signal integrity tools.

Integral equation methods have proved to be very effective tools for analyzing on-chip and off-chip in-
terconnect structures, and there are several approaches for including dielectric interfaces in integral formu-
lations. For problems which can be viewed as flat interfaces of infinite extent, such as multilayer printed
circuit boards, the dielectric interface conditions can be satisfied by an appropriate choice of Green's func-
tion [26, 3, 90, 150, 15]. For general shape or finite-size dielectric bodies, it is possible to “replace” the
dielectrics with equivalent fictitious electric and/or magnetic surface currents [50, 135]. General dielectric
shapes can also be handled by a Volume Integral Equation (VIE) approach, in which case the polarization cur-
rents are introduced in the volume of the dielectrics, and charges are introduced on their surfaces [122, 125].
Several comparisons of the Volume Integral Equation method against the Surface Integral Equation (SIE)
method [126, 124], against the Finite Difference Time Domain (FDTD) method [29], and against the Finite
Element Method (FEM) [76] have proven extensively its accuracy and viability. Common conclusions of
these comparisonsis that in general the Integral Equation Methods (Green Functions, VIE and SIE) are pre-
ferred to FDTD and FEM, for systems not located inside metal shielding enclosures. For such systems, the
Green Function and the SIE method introduce a smaller number of unknowns than the VIE method. In this
chapter, however, we show how, combining a VIE approach with a full mesh analysis formulation, both for
the conductors and for the dielectrics, one can obtain a well conditioned system. Therefore, fast iterative
solver convergence rates are possible. Furthermore, dielectrics in PCBs, packages and MCMs systems ap-
pear typicaly in the form of one or more thin parallelepiped layers. When performing Signal Integrity (SI)
or Electromagnetic Interference (EMI) analysis on such applications, the VIE approach might be a viable
approach, since one could use an FFT based “fast method”, such as Conjugate Gradient FFT (CGFFT) [124]
or Precorrected-FFT [110]. The Precorrected-FFT grid can be chosen to coincide with a regular volume
discretization grid used in the dielectric parallelepiped layer. In this way, one can avoid significant extra
precorrection computations.

As the last decade has made clear, detailed electromagnetic analysis is a vastly more effective tool if it
can be used to automatically generate small and accurate circuit-level models of the interconnect via Model
Order Reduction (MOR) techniques[46, 73, 13, 53, 74, 99, 43, 130, 97, 128, 12, 16]. For instance, the power
and ground distribution system of a package or of an integrated circuit can be pre-analyzed using a MOR
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technique independently from the rest of the non-linear circuitry. The reduced order model resulting from the
analysis, can then be re-coupled with the rest of the circuitry in a non-linear time domain circuit simulator.
However, numerical stability problems can arise in the time domain simulator when non-passive models are
generated from originally passive interconnect structures.

Some MOR al gorithms have been recently devel oped to address such critical issue[13, 53, 74, 99, 43, 97,
16] under some conditions on the original large linear system. Such conditions are easily verified by many
existing formulations used to analyze “ conductors-only” interconnect structures. However, when dielectrics
are included such as in [94], matrices are generated that do not satisfy to the passivity conditions. To our
knowledge, no formulation is yet available to guarantee passivity for interconnect structures that include
dielectrics. In this chapter we show that a VIE method combined with a full mesh-based formulation both
for conductors and dielectrics leads to, at least in the low frequency regime, alinear dynamical system with
positive semi-definite matrices [36]. This positive-definite result is important because it makes possible the
straight-forward application of the Krylov-subspace based guaranteed passive model-order (MOR) [97].

11.1 Handling dielectrics with a Volume Integral Equation method

One way to include dielectrics with a Volume Mixed Potential Integral Equation is to write Maxwell
eguations as

Je(r ) -
cé c) + Jm% [/ K(re,re") Je(re') dre’ +/ K(rc,rd')Jd(rd')drd’ =—-Vo (11.2)
c
Ja(ra)
Jw(ds( d8 [/ K(rg,re") Je(re")dre’ —l—/ K(rg,rg")Ja(rqa’ )dl’d = —Vdy (11.2)
4TE€ / K rcs;rcs) pC(rcS drcs +/ K rCS7rdS) pd(rds)drds :(])C(rcs) (113)
4n£ / K(rds, es) pe(res) dreg +/ K( rds,rds)pd(rds)drdS = {g(rds) (11.4)

where V; and Vy are the union of the conductor and dielectric volumes respectively, r and rq are vectors
indicating points in V¢ and Vy respectively. [ is the magnetic permeability, €, is the permittivity, € is the
dielectric relative permittivity, o is the conductivity of the metal, and o is the angular frequency of the
conductor excitation. Jc is the current density in the conductors. J4 = jo(e —€,) E isthe polarization current
density in the interior of the dielectrics (as shownin Fig. 11.1), and E isthe electric field.
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Figure11.1: Volume Mixed Potential Integral Equation where dielectrics are accounted for using polarization
currents Jy.

Thekernel K(-,-) for afull-wave formulation is a frequency dependent function

el OVETr 1|

K(ry,r) = W

(11.5)
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When the relevant length scales are much smaller than a wavelength, the above kernel can be approximated
with the frequency independent function
1

K(I’l,rg) = |r1—r2|' (11.6)

The scalar potentials ¢ and ¢q4, can be related to the surface charge p. and pg, on both the conductor and
dielectric surfaces as shown in (11.3)-(11.4), where S¢ is the union of the conductor surfaces, Sy is the union
of the dielectric surfaces, r¢s is avector indicating a point in S, and rs is avector indicating a point in Sy.
Within each conductor, and within each homogeneous block of dielectric,

V-J(re) =0 (11.7)
V-J4(rg) =0 (11.8)

for al points rc and rq in the interior of V¢ and Vy respectively. In addition, the current normal to the
conductor and dielectric surfacesis responsible for the accumulation of surface charge,

-Je(res) = jope(res) (11.9)
Jd(ras) = jopd(rds) (11.10)

> =

where fi is the unit normal to S; and & at the points rs and rg respectively.

The main unknowns, J¢, Jq4, pc, @d pg can be approximated by a weighted sum of a finite set of basis
functions. One classical choice for the basis functionsis to cover the surface of each conductor and of each
dielectric with panels, each of which hold aconstant charge density. To model current flow, theinteriorsof all
conductorsand dielectrics are divided into a 3-D grid of filaments. Fig. 11.6 shows an example of 3D volume
discretization of a dielectric parallelepiped. Each filament carries a constant current. Other basis functions
choices[35, 37, 39, 38] are possible for the interior of the conductors as shown in Chapters 4 and 5.

A Galerkin method [54] can be used to transform the Mixed Potentials Integral Equations (11.1)-(11.4)
into an agebraic form

[0 o 00 le Ve
Risb+s { 0 Pl 00 o || Va 111D
00 Qd d

wherelg, lg, gc and qq are vectorsof basis function weightsfor the conductor currents, dielectric polarization

currents, conductor chargesand diel ectric chargesrespectively. V¢, Vg, 0c and ¢4 are the vectors generated by
inner products of the basis functions with the potential gradient and with the potentia itself. The resistance
matrix R, the inductance matrix L and the coefficients of potential matrix P are al derived directly from the
Galerkin condition [54], and their physical interpretationisillustrated in Fig. 11.2,

_ [R O

R = 0 O]’ (11.12)
[ Lec  Led ]

L = , 11.13
| Lac Lad ( )
[ Pec P

P — . 11.14
| Pac  Pud ] ( )

L and P arefrequency dependent when using afull-wave kernel asin (11.5), and frequency independent when
using a quasi-static kernel asin (11.6). Matrix Pol in (11.11) is a diagonal matrix carrying the polarization
coefficients |

i
A (8 - 8o)

wherel; and A; are the length and the cross-sectional area of dielectric filament i respectively.

Polij = (11.15)



112 CHAPTER 11. PRESERVING PASSIVITY WHEN INCLUDING DIELECTRICS

B’ NS

dielectrics

Figure 11.2: Physical meaning of the discretization matricesin the Volume Mixed Potential Integral Equation
method.

11.2 Comparing an enforced-potentials with a mesh formulation

When considering equations (11.1)-(11.10), severa alternative approaches are possible to treat intercon-
nect structures including dielectrics. As noted in [66] and elsewhere, boundary artifacts make it impossible
to simultaneously satisfy equations (11.1)-(11.4), V2¢ = 0 and V - J = 0. Typical formulations either enforce
(11.1)-(11.4) together with V2¢ = 0, or they enforce (11.1)-(11.4) and V - J = 0. In this chapter, we will refer
to first formulation as “enforced-potentials formulation”. Imposing the latter formulation on surface and on
interior of both conductorsand dielectrics (11.7)-(11.10), makesiit possible to use a mesh analysis approach,
hencein this chapter we will refer to the latter formulation as * current-conservation mesh formulation”.

As a summary, a complete mesh formulation for structures including both conductors and dielectrics,
after the Galerkin transformation can be written smply as:

MZgM' I =V, (11.16)
ms

where |, are the unknown mesh currents, Vyy, is the vector of known mesh voltage sources, non zero only on
the rows associated with the external circuit terminals. Zqq isthe Galerkin impedance matrix

0 O
1
Zeg = RtsL+g [ 0 Pol ] 0 (11.17)
0 ip
M isavery sparse mesh analysis matrix,
M= [MfchdeCMpd], (11.18)

where submatrices M. and My are the KVL's mesh matrices for the conductors filaments and panels as
described in [66]. In a very similar way to [66], we can construct also M ¢y and Mpq, the KVL's mesh
matrices for the dielectric filaments and panels. In fact, as for the conductors, dielectric panel charges can
be treated as displacement currents flowing on circuit branches to the node at infinity. A set of independent
meshes for the three dimensional discretization of the block of dielectric can be found using a minimum
spanning tree. Fig. 11.3 shows some of of the conductor and dielectric KVL meshes.

11.2.1 Comparing condition numbers

We compare here the enforced potentials and the current conservation mesh formulations on a simple
example. Two wires are considered in a typical PCB transmission line configuration as shown in Fig. 11.6.
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Figure 11.3: In this picture we show a two conductors transmission line with a dielectric layer between the
conductors. Both conductor and dielectric volumes are discretize. For visualization purposes the dielectric
filaments are shown with cross-sections thinner than their actual values. Red circles indicate some of the
KVL meshes uses to set up the linear system of eguations shown above. Matrix M is a sparse matrix. Each
raws represents one of such meshes.

Thetwo wires are shorted at one end, and driven at the other end. A dielectric layer with relative permittivity
g = 4 is present between the two wires, as shownin Fig. 11.6.

In Fig. 11.4 we show the frequency response of the line, with and without the dielectric layer. Incidently,
in this picture one can immediately observe the importance of including dielectrics for correct resonance
positions. For the case with the dielectric layer, we compare in the same Fig. 11.4 the solutions obtained by
an enforced-potential s implementation and by a current-conservation mesh implementation. Similar results
can be observed from the two approaches. The small difference can be mostly explained by calculating the
condition numbers of the two implementations.

Fig 11.5 shows the condition number for the two implementations. The enforced-potential s implemen-
tation is poorly conditioned, and it appears very difficult to be preconditioned. A simple and very effective
preconditioner, [M diag(Zeq) MT] ™%, can instead be given [66] for the current-conservation mesh formulation.
The mesh approach is therefore more accurate, and presents faster convergencerates when used in an iterative
solution algorithm.

11.3 Passive model order reduction for structures including dielectrics

In this Section, we will limit ourself to the usage of the quasi-static kernel in (11.6) which produces
frequency independent L and P matricesin (11.13) and (11.14). The technique to handle dielectricsin [94]
uses a similar quasi-static assumption, and seems more advantageous requiring fewer unknowns. However,
not only magnetic coupling between conductive and polarization currents are neglected by that formulation,
but a so the matrices used in that formulation are not in the form required for Krylov-subspace based passive
model-reduction schemes [97]. In this Section, we show instead an easy way to cast our mesh analysis
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Figure 11.4: Frequency response for the transmission line in Fig. 11.6. The enforced-potentials and the
current-conservation mesh-analysis approaches give similar results even if not identical. The enforced-
potentials method is less accurate because of its large condition number. Incidently, this figure also shows
how the presence of dielectrics can significantly change resonances’ positions.

approach into the form in Theorem 6 in Section 9.1.2 suitable for passive reduced order modeling using
algorithm PRIMA in Section 9.4.
Choose as state vector for alinear system representation:

Im

Qes
= 11.20
X st ( )
de
In view of this choice, we can rewrite (11.16) as shown in (11.19), where
QCS jlgc |m
Quas | = l?d 5 (11.21)
de
Or findly in linear system terms:
~dXx ~
La = —Rx(t) +Bu(t) (11.22)
yt) = Cx(t) (11.23)

where matrices L and R are defined as

X MfcMtg]L[MtcMg]” O 0
L = 0 Pl 0 (11.24)
0 0 [Pol]”
A [Mfchd]R[Mfchd] [MpcMpd]P Miq[Pol]
R = T MpcM gd 0 0 (11.25)
[Pol 1™™] 0 0
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Figure 11.5: The enforced-potentials approach generates a system with a very large condition number (con-
tinuous curve), and a good preconditioner is hard to derive. Very good preconditioners are easy to find
instead for the current-conservation mesh approach. For instance the preconditioner (M diag(Z q)MT)~*
gives a very low condition number in the bottom of this figure (curve: - - -).

[MfCMfd] [R+ SL] [MfCMfd]Tlm + [Mpcl\/lpd] P [ 8;2 :| + Mi¢g [PO|] Qav = Vim (11.19)

Vector u(t) contains the excitation voltage sources, Bu(t) = Virs. Vector y(t) contains the observed output
currents, derived through matrix C from the mesh currents | i, in the state vector x(t). Note that for instance
the second equation the system (11.22) can be easily derived from eg. (11.21) pre-multiplying it by matrix
PT.

Definition 11 A matrix A is positive semi-definite if for any vector X,

X*AX > 0. (11.26)

Theorem 9 Matrices L+ L* and R+ R* in (11.24) and (11.25) are positive semi-definite.

Proof. The polarization matrix [Pol] is diagonal with positive coefficients, hence it is positive semi-definite.
When using a Galerkin technique [54], the coefficient of potential matrix P in (11.14) and the inductance
matrix L in (11.13), are both positive semi-definite. The matrix [M tcMiq] L [M¢cMsqg]" isthen aso positive
semi-definite. Since all the three blocks of the block-diagonal matrix L in (11.24) are positive semi-definite,
L is positive semi-definiteand sois L + L*. This concludesthe first part of the proof.

To provethat R+ R* in (11.25) is positive semi-definite cal cul ate:

o 2[MicMtg]R[MicMg]” 0 0
R+RM = 0 00 (11.27)
0 00

The resistance matrix R is Qosjtive semi-definite, hence the submatrix 2[M fCMfd]R[Mfchd]T is positive
semi-definiteand so is R+ R*.
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Observation 1 When modeling the input impedances and the transfer functions of a 3D structure, we apply
input voltages at some ports, and we measure the resulting currents on the same set of ports, hence we are
choosingC = BT in eq (11.22) and (11.23).

Observation 2 The matrix L is symmetric since L and P are symmetric when using a Galerkin discretization
scheme (Section 3.3, Pol is diagonal.

Observation 3 From Theorem9 and from Observations 1-2, one can concludethat the formulationin (11.22)-
(11.25) satisfies to the conditions in Theorem 6 Section 9.1.2 for guaranteed passive Krylov subspace based
model reduction PRIMA in Section 9.4

11.4 Numerical implementation considerations

The most expensive operation in the model reduction algorithm with multipoint expansions is the com-
putation of the quantity [R+ soL] 1L v, where v is some known vector, and sg is any of the chosen fre-
quency expansion points. A first observation is that one does not need to form explicitly matrices L, or R,
nor it is necessary to explicitly invert matrix [R+soL]. In fact, one can evaluate the matrix-vector product
w = Lv using “fast-algorithms” for the subproducts within Lv that involve the coefficients of potentials sub-
matrix P [94, 110] and the inductance submatrix L [68]. Then, one can solve the system [ R+ sol.]z=w using
Krylov subspace iterative methods, combined once again with fast-algorithms for the subproducts involving
matrices P and L. A preconditioner for the matrix [ R+ soL] can be found observing that

[R+sl] =P" [Re+s0l] P (11.29)
where
[0 o]
pP=lo P 0 (11.29)
Lo o [P |
and
[Mfchd]R[Mfchd] Mpc Mpg Mg
) "M 0 0 0
R = _Ml?d 0 0 0 (11.30)
—M? 0 0 0

Hence, for instance, one could use the following preconditioner where matrices R«, M¢¢, and M¢q are al
extremely sparse

) ) MrcMraldiag(L) MicMig]” 0 0 -
[diag(P")] ™" [ Re+s0 0 diag(PT) 0 diag(P) "  (11.31)
0 0 diag(Pol")

As a second observation, one notices that a non-singular R would be necessary in order to be able to
include also the point sp = 0 among the other expansion points. The matrix Rin (11.25) can be written as

R=P"RP (11.32)

It can been shown [65] that Ry is non-singular (and therefore also Ris non-singular) under the condition that
there are no cut-sets of only capacitors. Unfortunately, each node in our dielectric discretization is such a
cut-set when dielectric losses are negligible. Therefore, the point sp = 0 cannot be included in the multipoint
expansion algorithm, and a non-zero low frequency expansion point is used instead. In the next section, we
show that for the examples considered, this expansion point restriction is not interfering with accuracy.
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11.5 Summary of our procedure

We summarize here briefly for the convenience of the reader the entire simulation procedurein its final

form:

1

First, we discretize both the volumes and the surfaces of the conductors and dielectrics. An exampleis
showninFig. 11.13.

. We use astandard Galerkin technique [54] to construct matrices R, L, P,Pol in eq.(11.12) to (11.15).
. A mesh analysis approach is used to construct the sparse KVL's matrices M ¢, Mg, Mpc, and Mpg

in (11.18). Moredetails on how to handle conductorsarein [66]. For the dielectrics, we use aminimum
spanning tree to find a set of independent meshes.

. A Krylov subspace based model reduction algorithm such as[97] is then used to produce reduced order

linear system models. At each step of the algorithm the quantity [IQ+ soIA_]*llA_v, could be computed
using fast matrix vector products and Krylov subspace iterative methods.

. The reduced order model is then used to obtain a plot of the frequency response, or to produce an

equivalent SPICE circuit for atime domain simulation including the non-linear circuitry.

Theoverall complexity of this procedureis O(Nmnlog(n)), where N, isthetotal number of moments matched
by the model reduction algorithm at al frequency expansion points. n is the size of the origina full linear
system model in (11.22)-(11.23), or about the number of basis functions used in the volume and surface
discretization.
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11.6 Examples

11.6.1 A transmission line example

Two PCB wires are considered in this example in atransmission line configuration. Wires are located on
opposite sides of adielectric substrate, and shorted at one end.

x 10

Figure 11.6: Two PCB wires (250pum x 35um x 30cm). A 100um thick dielectric layer (e, = 4) is present
between the two wires. This figure also shows the dielectric volume discretization. The intensity of the
shadingsis associated with current densities near the first quarter wavelength resonance.

Fig 11.7 shows the frequency response of such transmission line structure. In Fig 11.7 we also show the
response of the calculated reduced order model. When building the reduced order model, we used multi-
point expansions matching four moments around each of the following frequencies. s1 = j2n5KHz, s, =
j2n250MHz, and s3 = j2n500MHz. The low frequency expansion point s; = j2rn5KHz captures correctly
the DC behavior as shown in the “zoomed” picture at very low frequenciesin Fig. 11.8.

At the frequencies where the frequency independent kernel in (11.6) yields accurate results, it may also be
reasonabl e to neglect magnetic coupling between conductors and dielectric polarization currents. However
there are cases where even with a non-fullwave kernel one might observe some effects of the magnetic cou-
pling between dielectric polarization currents and conductors. One of such casesisillustrated in Fig. 11.10.
A viaislocated in proximity of the shorted PCB transmission line.

The line is then excited at a frequency close to the first quarter-wavel ength resonance. In this situation
most of the current closesits path through the dielectric layer in the form of polarization currents. If anearby
via corresponds to a quiet victim line, some coupling can be observed between the vertical polarization
currents and the via.
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Figure 11.7: Reduce order modeling of a shorted PCB transmission line. Wires' dimensions are 250um x
35pm x 30cm. A 100umthick dielectric layer (e, = 4) is present between the two wires. The continuous line

is the admittance vs. frequency of the calculated reduced model. The circles are the response of the original
system.
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Figure11.8: “ Zoom” on the DC frequency responsein Fig. 11.7 to verify that the reduced model (continuous
line) captures correctly the DC behavior of the original system (circles).
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Figure 11.9: Aviaislocated in proximity of the shorted PCB transmission line.

Figure 11.10: Mia located near a PCB transmission line. In this picture we do not show the dielectric layer
which is located between the two dark PCB transmission line wires. Shadings correspond to current density
amplitudes. On the left we show the current densities corresponding to the case where magnetic coupling
between polarization currents and conductors is accounted for. On the right we show the same example
but setting Lgc = 0 and Lgg = 0 in (11.13) which corresponds to neglecting magnetic coupling between
polarization currents and conductors.
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long coplanar T-line,

shorted on other side dielectric layer

Figure 11.11: Two wire coplanar transmission line. Wires are 250um wide, 35um thick, and 30cm long. The
two wires are shorted at one end. A dielectric layer with relative permittivity e, = 4 is present below the two
wires. Some of the dielectric volume discretization is also shown. A complete 3D grid is used with filaments
in all directions, but in this picture we only show the dielectric filaments parallel to the conductor wires.

11.6.2 A second example: coplanar transmission line

In a second example we analyze another typical scenario in todays electronic circuits. A two-conductors
coplanar transmission lineisshownin Fig 11.11. Wires have the same dimensionsasin the previousexample.
Their separation is 150um. The same dielectric layer of the previous exampleis this time underneath the two
wires. Fig 11.12 shows the frequency response of the reduced order model compared to the response of the
origina system.

11.6.3 MCM interconnect example

In athird example, we have applied our technique to analyzing two wires of an interconnect bus on an
Multi-Chip Module (MCM), as shown in Fig. 11.13.

A dielectric layer (e; = 4) is present underneath the wires and the chips. In Fig. 11.14 we show the
frequency response of the two interconnects when shorted on one side and driven on the other. We show
the frequency response with and without the dielectric substrate. A significant difference in the resonance
position can be observed. Fig. 11.13 shows the polarization volume currents at the first resonance f = 3GHz.
In Fig. 11.14 we compare the reduced order model to the full model for the case when the dielectric substrate
is present. The reduced order model has been built matching four moments around each of the following
expansion points: s; = j2n100KHz, s; = j2n3GHz, and s3 = j2n6GHz. In order to include also the point
so = 0 among the other expansion points a non-singular R in (11.25) would be necessary. The matrix R
in (11.25) can be written as

R=P"RP (11.33)

It can been shown [65] that a matrix of the form such asin (11.25) is non-singular under the condition that
there are no cut-sets of only capacitors. Unfortunately, each nodein our dielectric discretization is such a cut-
set when dielectric losses are negligible. Therefore, for |ossless dielectricsthe point sg = 0 cannot beincluded
in the multipoint expansion algorithm, and a non-zero low frequency expansion point is used instead. From
our experiments, we have observed that this expansion point restriction is not interfering with accuracy. For
instance in this particular example, the zero frequency behavior of the structure has been accurately captured
as shownin Fig. 11.15, which is a magnified view of the low frequency part of the plot in Fig. 11.14,
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Figure 11.12: Frequency response of the coplanar transmission line over a dielectric layer shown in
Fig. 11.11. The continuous line is the response of the reduced model which compares quite nicely with
the response of the original system shown by the small dots.

11.7 Conclusions on passive model order reduction including dielectrics

In this Chapter we described applying the mesh analysis approach to solving for the discretized currents
and charges in a VIE formulation for structures including dielectrics. We showed that the approach leads
to a system with provably positive semi-definite matrices, making for easy application of Krylov-subspace
based model-reduction PRIMA (Section 9.4) to generate accurate guaranteed passive reduced-order models.
Several printed circuit board examples demonstrated the effectiveness of the strategy.

Arguably, it is tempting to assume that the VIE approach is a step backward, as it involves discretizing
volumes instead of surfaces. However, volume integral equation methods are used for magnetic analysis of
conductor problems, because conductors occupy a vanishingly small region of the problem domain. The
same vanishingly small occupancy argument can be made for dielectrics as well. In addition, since polar-
ization currents are not “outputs’, it might be possible to align them with a regular grid. Such an aign-
ment might improve the performance of fast solvers, such as the Conjugate Gradient FFT (CGFFT) [124]
or Precorrected-FFT [110] methods, an important consideration as such solvers are required when using any
integral formulation on models with complicated geometries.

A more efficient way to model dielectrics is to use special Green functions or to use Surface Integral
Equation (SIE) methods. Both such approaches generate dynamical linear systems with frequency dependent
matrix descriptors [E(s),A(s)] (distributed systems). In the next Chapter 12 we develop an algorithm for
guaranteed passive reduction of such systems.
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Figure 11.13: Two wires part of an MCM interconnect system (figure above). A dielectric layer e, = 4 is

present underneath the wires and the chips. The figure below shows the volume polarization currents inside
the dielectric layer at the 3GHz resonance. For visualization purposes, the axes in this picture are not “ to-

scale” . Wires are 2cm long, 4mm far apart, 250pum wide and 40pm thick.
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Figure 11.14: Admittance vs. frequency for the two wiresin Fig. 11.13.
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Figure 11.15: Magnified view of the low frequency part of the plot in Fig. 11.14, to verify that the reduced
model (continuousline) captures correctly the DC behavior of the original system (circles).
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Chapter 12

Preserving passivity when reducing
distributed systems

The work in this Chapter has been done in collaboration with Dr. Joel Phillips during an internship at
Cadence Berkeley Labs, Berkeley, CA and it has first appeared in [33].

“Lumped” RLC circuits, can be typically represented by matrices that are independent of frequency.
For such lumped systems, positive-realness preserving procedures such as those based on congruence trans-
forms [97] and presented in Section 9.4 are sufficient to guarantee that the reduced models of passive full
systems are passive as well. However, when accounting for high frequency effects, “ distributed” systems
represented by frequency dependent matrices are typically encountered. For example, frequency dependent
matrices are generated by integral-equation based field solvers that employ full-wave kernels, special Green
functionsfor lossy dielectrics/substrates, or frequency dependent basis functions [37].

There are several approachesto distributed model reduction that essentially convert the model reduction
problem to an interpolation or data-fitting problem [25, 28] (and Section 7.5), where it is irrelevant whether
the original systems is distributed or lumped. In our experience al of the datafitting like approaches are
limited in some aspect, and to the best of our knowledge, there is no approach that can simultaneously
guarantee good model accuracy, numerically stable and computationally practical generation of models of
arbitrary order, generation of models that are “well-behaved” when embedded into a simulation tool with
models of other physical elements. Krylov-based model reduction schemes for lumped systems[97] (and in
Section 9.4), on the other hand, routinely satisfy all these conditions, so we desire to extend their capabilities
to distributed systems.

As input, our algorithm takes a time-invariant state-space-like frequency-domain model whose matrix
descriptors may be a function of frequency. As output, it produces a time-invariant state-space model with
frequency independent matrix descriptors and whose transfer function is a rational approximant of the origi-
nal (infinite-order, possibly irrational) transfer function. The algorithm requires only matrix-implicit opera-
tions such as matrix-vector products, hence it is suitable for incorporation into modern fast integral equation
solvers.

12.1 Distributed systems in descriptor form

Assume the origina distributed system (e.g. an interconnect network) has been described, for instance
by the discretization step of an integral equation method, in terms of a frequency dependent matrix Z(s).
Z(s) describes the couplings between all the discretization basis functions and may be very large in the
applications of interest. Many integral equation methods, when applied to distributed systems, produce Z(s)
as a linear combination of matrices. One example is Z(s) = R(s) + sL(s), where R(s) and L(s) can still
be in general frequency dependent. Incidentally this particular form for Z(s) may be advantageous for our
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approach, athough in general not necessary. We assume input and output information is of interest at some
“ports’ of the network for which the model is to be generated. The frequency-domain description of the
system can be written as

[R(S) +SL(8)]im(S) = Bvp(9), ip(s) = BTim(9), (12.1)

where vp(s) € CP and ip(s) € CP are Laplace-domain representations of voltages and currents at the p de-
fined ports of interest, im(s) € C" aretheinternal currents, and B € R™P isamatrix relating ports to internal
currents. In this case u = vp represents the system inputs (voltages), y = i, the system outputs (currents),
and X = i, the internal states (also in this case currents). The transfer function from inputs to outputs is
H(s) = BT[R(S) +SL(9)]71B, ip(s) = H(s)vp(s), and one view of model reduction is that it seeks an ap-
proximation to the transfer function H (s). For instance, they could represent the resistance and partial induc-
tance matrices of a set of piece-wise constant basis functions (see Section 3.3.1 used to discretize conductor
volumesin a Mixed Potentia Integral Equation approach (MPIE) with a frequency dependent kernel. Such
a case is found for instance using the full-wave kernel in the Partial Element Equivalent Circuits (PEEC)
approach [121]. They could represent the matrices generated in method-of-momentsintegral equation codes
when using Green function approaches to handle dielectrics or lossy substrates [24], in either a full-wave
or guasi-static setting. The matrices R(s) and L(s) could also represent the resistance and partial induc-
tance matrices of frequency dependent NON-piecewise constant basis functions used to discretize the MPIE
formulation. The conduction modes basis functions presented in Chapter 4 are such an example.

In the form of Equation (7.2) the analogies to lumped systems are obvious : lumped systems can always
be put into the form (7.2) in away such that R(s) and L(s) are constant independent of s.

12.2 The optimal global interpolation approach

To illustrate some of the problems encountered in model reduction for distributed systems, consider the
agorithm presented in [107]. The central approach of the algorithm is a Taylor expansion of the system
matrix descriptor Z(s) =~ ZEZOstk, using polynomials as interpolants. A standard Krylov method is then
applied to a system constructed from the Taylor expansion. This approach does not generate well-behaved
models because the Taylor approximation is not globally well-behaved. In fact, al polynomials diverge in
the s— oo limit. Hence, although good accuracy can be achieve in a given frequency band of interest, global
properties such as positive-real ness cannot be guaranteed. Empirically, the resulting reduced models are often
found to have unstable poles, the models are not passive, and thus the algorithm is of little practical value.

In our approach, we will seek to combine approximation of the Z(s) internal matrix descriptors with a
Krylov method asin [107]. However, our method differsin the following fundamental aspect.

12.2.1 The key idea

Almost all systems for which one would wish to extract reduced models are non-ideal (non-ideality is

why they must be modeled in detail) and so contain asmall amount of loss. These systems are strictly passive
and can typically be described by strictly positive real system matrices.
The key idea of our algorithm is based on the observation that if a system descriptor is strictly positive-
real to begin with, a globally and uniformly convergent interpolant will eventually (for a large enough
order of the interpolant) be positive-real as well. (This will be seen in the proof of Theorem 10.) Fur-
thermore, a well-chosen global interpolant will be positive-real for low enough ordersto be practical. Local
approximations based on Taylor and Padé typically do not have these properties.

Thereis one more point, subtle yet of great importance, that we wish to underline before proceeding with
the main algorithm. In our agorithm, as in others [97], we require that, not only the transfer function H(s)
of the given large system be strictly positive-real, but also that its internal system matrix descriptor Z(s) be
strictly positive red (i.e. that the state-space description be internally positive-real). However, as discussed
in Section 9.3 in aphysical system, H(s) must also be causal. Hence, as for the the positive real ness property,
we shall require that not only the transfer function H (s) of the given large system be strictly positive-real and
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causal but also that its internal system matrix descriptor Z(s) be strictly positive real and causal (i.e. that
the state-space description be internally positive-real and causal). In this case we can restrict our search for
approximations of Z(s) to the set of stable, positive-real interpolants. For non-causal Z(s), either accuracy or
stability/passivity would have to be eventually sacrificed.

Causal
Strictly Passive

Linear
n=-port

Figure 12.1: Assumptions.

12.2.2 Proposed algorithm
We propose an eight step procedure, which we term Global Rational Interpolation, Passive (GRIP):

1. Obtain/estimate/given a set of g points at which the transfer function at the network portsH(s) € C P*P
isto be matched,

2. Compute the basisUq € C"* for the projection operation (see Section 8.1).

3. Project theinternal system matricesR(s),L(s) € C™*" to obtainsmaller R(s), L (s) € C?*% asinFig. 8.2).
Note that thisis a conceptual operation; the reduced matrices are still frequency-dependent, so the sys-
temis still of potentially infinite order.

4. Perform a global and uniform interpolation of the (projected) internal system matrices Ifi(s),I:(s) (see
Section 12.3).

5. Check the passivity (see [5]), and accuracy of the matrix interpolants. If not passive, or if matrix
interpolants are not accurate, go to Step 4 and increase the order N of the global interpolant.

6. Check the accuracy of the reduced model transfer function H(s). If not accurate, go to Step 1 and add
additional matching points g.

7. Redlize as state-space system.
8. Perform a second-stage guaranteed-passive optimal reduction step, if desired [108].

Steps 1,2,3, and 6 are standard in lumped-system model reduction. Various approaches are possible, and
many are described in the literature. Asthey are not the main focus here, they will not be discussed further.
Step 5 can be performed solving the Lur’ e equation in the Positive-Real Lemma[5], for which computational
procedures are available in the literature [5]. Step 7 is dependent on how Step 4 is performed, but is always
possible if Steps 4-6 are feasible.

It can be noticed that our algorithm is posed in such a way that if it terminates, accuracy, stability, and
passivity are guaranteed. However, we have not yet shown that it is possible to construct specific instantia-
tions that will terminate. Such task is equivalent to finding for the key Step 4 a suitable interpolant that is
guaranteed to converge globally and uniformly. To this purpose, in the next Section, one possible choice will
be described.
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Matrix sizes | System order

Start from original system described by |~ 500,000 infinite
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1) Projection {(squash matrix sizes with |~ 20 infinite
congruence transformation which
preserves positive-realness)

2) Interpolation (capture matrix ~20 ~100
frequency dependency with uniformly
convergent basis functions)

3) Realization of a dynamical linear ~100 ~100
system
4) Further reduction (e.g. see passive ~10 ~10

truncated balance)

Figure 12.2: The“ Grip”.

12.3 A Laguerre-basis implementation

12.3.1 Choosing the global uniform interpolant

Severa approaches are possible to the global interpolation problem. One possibility is to use algorithms
developed for general-purpose interpolation or data-fitting [28] that guarantee passivity by construction.
These algorithms are very computationally demanding. For many applications of interest, a simpler aterna-
tiveisavailable. First, it is advantageous (although not necessary) to find some decomposition of matrix Z(s)
into for instance some matrices R(s) and L(s) for which the individual matrix entries do not have sharply
discontinuous behavior in the frequency parameter s. Many integral-equation-based electromagnetic field
solversfor distributed systems already produce such a decomposition. In order to use our method, particular
attention will need to be dedicated to making sure that such solvers generate strictly positive-real and causal
system matrices.

Second, the frequency dependency of projected matrices R(s) and L(s) in Fig.8.2 can then be captured

k
for instance using the set of basis functions[149], Ex(s) = (ﬁ) , where A is apositive real number. In this
way we can write:

RS = Y RE(), L9= LEO. (122)
k=0 k=0

The basis created by the functions Ek(s), sometimes called the Laguerre basis, is a member of a larger
family [96] of basis, al of which consist of sets of stable rational functions orthonormal over the imaginary
axiss= jo. An interesting contrast with the Taylor series approach is that the Ex(s) are, in a sense, band-
limited. For |®| > A, the Ex(s) have monotonic magnitude, and for |®| < A, they are nearly equi-ripple, much
like Chebyshev polynomials. Thisimplies that with suitable choice of A, the approximations to R(s),L(s)
will be well behaved outside the approximation interval, and convergence will be fast within it.

TheLaguerrebasisis particularly interesting because, under the bilinear transformation, s=A(1—2)/(1+
2), the series expansion in terms of the basis functions Ex(s) is mapped to a Fourier series of complex ex-
ponentials, since Ex(s) = 2, where z= &°, ¢ € [0,2r). The problem of rationally approximating the matrix
functions F'i(s) , I:(s) isreduced to the problem of approximating afunction on thecircleviaaFourier series, or
equivalently computing a Discrete Fourier Transform (DFT), asthe entries of F'i(s) , I:(s) may be approximated
term-wise.
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12.3.2 Global uniform convergence

If the entries of R(s), L (s) are smooth when mapped to the circle, then the partial sums

1N1

ave - LY RA L 5 3L (123
k=0

1
N

converge uniformly to R(s),L(s). If R(s),(s) are not smooth, but are continuous, it is still possible to obtain
uniformly convergent approximates by summing the Fourier series in the sense of Cesaro [7]. Practically
speaking, this means replacing the summations (12.3) by

RN: _1 Nlek {1— —} X [N _ 1 Nzll_k {1— 5} X (12.4)

Equivalently, we may say that as successive approximates, we take the arithmetic means of the partial sums
RN)(s),L(N)(s), rather than the partial sums themselves. Summation in this manner has the property of
suppressing the Gibbs effect, and al so ensuring uniform convergence on a broader class of functions.

Lemma 10 If the entries of RN (s),LN)(s) are continuous when mapped to the circle, RNC)(s), L(NC) ()
converge uniformly to RN (s), LN (s) asN — oo [7].

Shortly we will need the following definitions:
Definition 12 (Strong-n condition) IT5 is Strongly-n if IT5(s) —nl > 0 for anyn > 0.
where TT5(s) = Z(s) + 2*(s) was defined by eg. (9.8) in Section 9.1.

Definition 13 (Weak-n condition) I, isWeakly-n if for anye > O, thereisann >0, < e st. IT5(s)+nl >
0.

From Lemma 10 we obtain amajor result of this chapter:

Theorem 10 Given a system description Z(s) = R(s) + sL(s) where matrices R(s) and L(s) are causal,
strictly positivereal, and continuouson theimaginary axis, thereexists aninteger N and coefficients Rk )

for the partial sumsin (12.4) such that the matrix rational function Z(s) = RN (s) +sL(NO(s) |saposmve
real rational interpolant of Z(s) whose error can be bounded from above by any chosen positive constant.

(N )

Proof. Using Definition 5 in Section 9.1, property (9.6) follows by construction as the E i satisfy (9.6).
Property (9.7) also follows by construction, since by inspection the E have poles only in the left half-plane.
Thanksto Theorem 4, in order to complete this proof it is now sufficient to show condition (9.12).

Case 1: Tz is Strongly-n. From Lemma 10, if R(s) and L(s) are continuous when mapped to the circle,
RNC)(5),LNO)(s) converge uniformly and so does Z(s) = RNC)(s) + sSLNC)(s). Thus vn > 0, 3N st.
lIZ(jo) — Z(jo)|]2 <M/4, Yo € R. Hence

1113 (jo) — Tz (jo)||2 < 2||Z(jo) - Z(jo)|]2 < n/2, Vo € R. (12.5)
since
I3 (jo) > Tz (jo) — Mz (jo) -z (jo)|l2 >n-n/2, (12.6)

then® 15 > 11/2 and IT5 is Strongly-n, which implies (9.12) (see [145]). Thus Z is strictly positive-real.
Case 2: I15 is[strictly] positive-real but not Strongly-n. Choose any n > 0 and Map Z—Z+nl. Zisnow
Strongly-n. Go to Case 1. 2

1In this we needed to use the result that perturbations of a Hermitian matrix (I15) result in perturbations of the eigen-
values bounded by the 2-norm of the perturbation.

2The upshot of all thisisthat the Strongly-n condition is slightly stronger than strict positive-realness and may not be
satisfied for al strictly passive systems. However, by introducing an additional error of O(1) (i.e., roughly doubling the
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Theorem 10 proves that an order of interpolation N large enough does exist and therefore that the al-
gorithm in Section (12.2.2) terminates. A practical algorithm would require a small N. The order of the
interpolant is related to the smoothness of the function being approximated. Hence, although we could use
this algorithm to approximate H(s) or Z(s) directly, that would require evaluation of an awful ot of matching
points around resonances, and most likely a very large order of the interpolant. A small N is instead needed
when the algorithm is used on some internal decomposed matrices R(s) and L(s) which are almost always
continuous within a given band of interest. Out-of-band non-smoothness (for example, for delay functions,
which create essential singularities at «) can be insured by filtering operations which must be designed to
preserve passivity and causality of the original matrices.

12.3.3 Computing the DFT coefficients

The DFT coefficients in the sums (12.3) can be efficiently calculated for instance using a Fast Fourier
Transform (FFT) agorithm. Hence the steps for one possible global approximation procedure are

1. For adesired interpolation order N, choose the size M of the FFT as some power of two: M =2" > N.

2. Caculate the frequency points sk on the imaginary axis corresponding to the M equally spaced FFT
points
z = exp(j2nk/M), k= 1,...,M on the unit circle using the hilinear transform: sy = A(1— z) (1+ z),
where A = 2rfp is a parameter to be chosen around the center of the frequency band of interest for the
System response.

3. Usetheprojectionin Fig.8.2 to evaluate each individual projected matrix R(sc) and L(s¢) at the selected
frequency pointssy, k=1,...,M.

4. Usean FFT algorithm to calculate the M coefficients R, and Ly in (12.3) from the sequences R(s,) and
(s, k=1,...,M.

5. Apply to each of the M FFT coefficients the Cesaro’s transformation in (12.4) and obtain the coeffi-
cients R and L.

Note that, since the R(s) and L(s) matrices usually satisfy conjugate symmetry relations, R(s), L(s) need
to be evaluated at only half the points on the circle. Also, oncethe M Cesaro’s FFT coefficients are available
one can construct at no additional cost several interpolants of increasing order N < M/2 simply truncating
the sumsin (12.4) to thefirst N coefficients.

12.3.4 Realization

In this section we describe how to perform Step 7 in the general algorithm 12.2.2, realization as a state-
space model. Having performed the global rational approximation on the projected matrix functions R(s) and
L(s), the system (7.2) is now:

1Nt 1-7\ 1N . &

where R, and Ly contain already the Cesaro’s correction (12.4). Collecting the terms corresponding to the
same powers of zwe obtain

i FZim— (1+2)Bvp =0, (12.8)
k=0

interpolation error bound) through the n-shifting procedure we may guarantee strict positive-realness of the final model.
An alternative is to not perform the -shifting, in which case we may prove that Z is Weakly-n, which alows Z to have
an excess energy gain of O(n). Since we may driven — 0, neither deviation is of practical consequence in systems with
loss modeled over afinite bandwidth.
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where
# [Ro+AlLo] k=0
Fo=1{ & [Re+Rer+AL-Alq] 1<k<N-1 (12.9)
w [Rv-1— AN k=N

define an augment state Define an augmented state
x=[ NNl ANl AL 4l il 7. (12.10)
and produce afinite dimension discrete linear system, Eq. (12.8) becomes
ZEgX — Agx— (1+2)Bvp = 0. (12.11)

where onetrivial choicefor Eq and Aq is

0 | .. 0 O

0 0 .. 0 O

Eq = L
0 0 0 |

v Fnoa Fp R

—1 0 0 0

0 -l 0 0

Ay = —
0 0 -1 0

0 0 0 ko

One can observe that some of the coefficients of Ly and Ry are not uniquely determined and many choices
are possible. A choice that will provide ablock bi-diagona A matrix in the final linear system realizationis

0 | 0 0
0 0 0 0
By =
0 0 0 |
N FN+FNe1 e N+ N+ R
-1 0 0 0
0 —I 0 0
Ar = | .. 0
0 0 —I 0
—Fn —(FN—I-FN,]_) —(FN—l-...Fz) Fo

Substituting z= (A —s) /(A + s) we obtain the continuous and final system realization

ip = Cx
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where
Ec = Ed+Ad:
| | 0 0
0 | 0 0
0 0 | |
2FN Z(FN—I—FN,l) Z(FN—I—...—l—Fz) FN—I-...—I—F]_—FO
A MEg—Ag) =
| 0 0
o 1 0 0
Ac Ao ,
0 0 .. | -1
0 0 .. 0 —(FN+..+F1+Fo)
Be ~2.[0 0 0 0 o BT,
Ce B[00 0O 0 1],
and _ B
& [Ro+ALo] k=0,
Fe=S m[Rc+Re1+ALc—Alq] 1<k<N-1, (12.13)
& [Ruc1 —ALn-d] k=N.
The same matrices in terms of the DFT coefficients are
I I 0
0 | 0
Ec =
0 0 I
ERv-1—AlN-1] i [2Ru-1+ Ru2 —An-2] H[2Ry_1 + ...+ 2Ry — 2ALo]
I -1 .. 0 0
o 1 .. 0 0
Ac = M| oo .
0 0 .. | —1
0 0 .. 0 —ARu-1+..+Ry
B. = -2x[0 0 0 0 .. 0 B]
Cc = B[00 00 0 1]

The reduced models generated by the above approach may be larger than desired for final simulation. In
thiscaseit is desirableto perform a*“ second-stage” model reduction step using an optimal or near-optimal re-
duction approach, such as atruncated balanced realization that guarantees passivity by construction presented
in Chapter 13 and in [108].

12.4 Examples

12.4.1 Effect of lossy substrate on line impedance

The geometry in this example consists of two wires over alossy substrate. The two wire volumes are dis-
cretized into short and thin filaments using a set of piece-wise constant basis functions. A standard Galerkin
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Figure 12.3: 2d lines setup

technique is used to calculate the resistance and partial inductance matrices R(s) and L(s). A frequency de-
pendent Green function is used in the kernel of the Galerkin integration to account for the effects of the
lossy substrate. Hence, the resulting matrices are frequency dependent. The system, before model reduction,
appears as in (7.2). The descriptor matrices have been projected to a reduced space of size g = 4 obtained
by solving the original full system at frequencies f = 0, 0.4GHz, 1GHz, 2.4GHz which correspond to the
pointson theunit circle: z= 1, exp(—jr/4), —j, exp(—j3rn/4). Ascenter frequency for our band of interest
we have chosen A = 2r10°. In this example we have chosen M = 64 points for the FFT size. Fig. 12.13.b
showsthereal part of the DFT coefficientsfor the inductance matrices. Coefficients 32, ... ,63 are very small
indicating the original system matrix is causal. We have then truncated the DFT series to N=6 coefficients,

70

Figure 12.4: Real and imaginary part of the original inductance matrix (circles) evaluated on the unit circle
and compared to its DFT series (continuous lines) truncated at N=6 coefficients out of M=64 total.

producing afinal model of order 28. Fig. 12.4 comparestherea and imaginary part of the original inductance
with their truncated DFT series representations. Fig. 12.5 compares the frequency response of the original
full system with the frequency response of the final realized linear state space model. Fig. 12.6 shows that
all the poles of the realized model are in the half-plane Re(s) < 0, hence stable. In order to check the per-
formance of our reduction procedure in terms of passivity preservation, we show in Fig. 12.7 the minimum
eigenvalue of the interna matrix Zem, + Zgy, VS. frequency at different stages of the algorithm

Zem (5) = R(s) +sL(s) (12.14)

The truncation process introduces some positive and negative error with respect to the minimum eigenvalue
of the system. The projection process instead can only increase the minimum eigenval ue, hence preserving
the degree of passivity in the system. Using the Positive-Real Lemma [5], we confirmed that the generated
system is passive.



134 CHAPTER 12. PRESERVING PASSIVITY WHEN REDUCING DISTRIBUTED SYSTEMS

x 10*
5F T B
—— generated model size = 28

O full distributed system le)

45

Resistance [Ohms]
w
o IS
T T

Re(2)
w
T

R=
N
o

T

150 o ]
l

10° 10’ 10° 10° 10"

frequency [Hz]

x107°

55

@ »
5 IS 3
T T T

Im(Z) / w Inductance [H]

L=
w
T

25F

—— generated model size = 28
O full distributed system

151

| | | | I
10’ 10°
frequency [Hz]

Figure 12.5: Real part and imaginary part divided by o of the frequency response for the lossy substrate
example,



124. EXAMPLES 135

T
£

6F B
at 4

i

5
2 4
= +
+ 1 % +

0 + o+ + + -+

+

+ * +
-2 ki + o
+

+
4k o
skt of

+
L . . . . L . . . .
-9 -8 -7 -6 -5 -4 -3 -2 -1 0

Cl
x 10

Figure 12.6: All the poles of the frequency response of the realized model are in the half-plane Re(s) < 0,
hence stable.

4 Passivity check: min( real( eig( Zem +Zem')))
x 10 r r
75 S P L Y
7.5
751
75
7.5
75F
0O full distributed system
+ using truncation alone
7.4999 - | —— using projection and truncation
L M| L PR | L M| L PR |
10° 10 10° 10° 10%

frequency [Hz]

Figure 12.7: Minimum eigenvalue of Zem, + Zgy, . The system is passive if the minimum eigenvalue is posi-
tive. The minimum eigenvalue after the projection is larger or equal to the minimum eigenval ue before the
projection, hence the projection has preserved the degree of passivity.
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12.4.2 Full-Wave PEEC kernel

In this example we consider two parallel wires 4um wide, 1um thick and 750 um long. The two wires
are separated by 3cm. The wire volumes are discretized into short and thin filaments using a set of piece-
wise constant basis functions. A Galerkin techniqueis used to calculate the resistance and partial inductance
matrices R(s) and L(s). Since the separation between the two wires is not small compared to the minimum
wavelength of interest, a frequency dependent full-wave Green Function needs to be employed in the kernel
of the Galerkin integration. Hence, the resistance and inductance matrices are frequency dependent. The
system, before model reduction, appearsasin (7.2). The descriptor matrices have been projected to areduced
space of size q = 4 obtained by solving the full system at frequencies f =0, 1.3GHz, 3.3GHz 8GHz
which correspond to the points on the unit circle: z=1, exp(—jn/4), —]j, exp(—j3rn/4). As center
frequency we have chosen A = 2 x 3.3GHz Fig. 12.8 shows the DFT coefficients for both the resistance
and the inductance matrices. In this example we have chosen M = 128 points for the FFT size. We have
then truncated the DFT series to N=23 coefficients, producing a final model of order 96. Fig. 12.9, compare
the real part of the original inductance with its truncated DFT series representations. Fig. 12.10 compares
the frequency response of the original full system with the frequency response of the fina realized linear
state space model. Fig. 12.11 shows that all the poles of the realized model are in the half-plane Re(s) < 0,
hencethe system is stable. In order to check the performance of our reduction procedurein terms of passivity
preservation, we show in Fig. 12.12 the minimum eigenval ue of theinternal matrix Z em + Zgy, Vs. frequency
at different stages of the algorithm. Once again Zem, (S) = R(S) + sL(s). The truncation process introduces
some positive and negative error with respect to the minimum eigenvalue of the system. The projection
process instead can only increase the minimum eigenvalue, hence preserving the degree of passivity in the
system. Using the Positive-Real Lemma[4], we confirmed that the generated system is passive.



124. EXAMPLES 137

100 b

10° B

10+ b

10*15 L _

0 20 40 60 80 100 120

, 4
107 |

10 H 3

107 ¢ E

-10

10" L]

1072 L

10 L

0 20 40 60 80 100 120

Figure 12.8: DFT coefficients of the resistance and inductance matrix for the fullwave example.



138 CHAPTER 12. PRESERVING PASSIVITY WHEN REDUCING DISTRIBUTED SYSTEMS

Figure 12.9: Real part of the original inductance matrix (circles) evaluated on the unit circle and compared
toits DFT series (continuous lines) truncated at N=23 coefficients out of M=128 total.
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12.4.3 A non-causal example

Since R(s) and L(s) are frequency domain representations, when we calculate their FFT interpolants we
obtain something related to their time domain impulse response (actually the impulse response of a discrete-
time system obtained by sampling the continuous-time system at rate A). Since the FFT produces M coef-
ficients that repeat periodically, the k = M/2,... .M — 1 coefficients are related to negative-time part of the
time domain impulse response of R(s) and L(s). In Fig. 12.13.awe show the FFT coefficients of acommon
non-causal example mentioned in Section 9.3: Zgn(io) = Ro + Rac\/w used as a model for the “resis-
tance” of interconnect in the skin-effect regime. We can easily notice in such Figure that the coefficients
k=M/2,...,M — 1 related to non-causa coefficients of the time domain response are non-zero. If a model
order reduction is attempted on such an originally non-causal system, one will obtain non-stable models.
Alternatively one could deliberately ignore the non-causal coefficients and set them to zero before beginning
the reduction. However in this case stable but highly inaccurate models will be produced.

In our approach we require therefore that the origina system descriptor matrices R(s) and L(s) be causal.
This means checking that the non-causal k=M/2,...;M — 1 coefficients of the FFT be zero except for some
aliasing phenomena. Fig. 12.13.b shows the real part of the DFT coefficients for the L(s) in example 12.4.1.
One can easily verify that such original system matrix descriptor is actually a causal one.

12.5 Conclusions on passive model order reduction for distributed
systems

In this Chapter we have presented a class of algorithms for guaranteed passive model order reduction
of strictly passive and causal linear systems with frequency dependent matrices (distributed systems). Our
approach is based on the key idea that if a system is strictly positive-real to begin with, a globally and
uniformly convergent interpolant will eventually (for a large enough order of the interpolant) be positive-
real aswell. Laguerre basis are a set of well-behaved uniformly convergent interpolation functions whose
coefficients can be conveniently calculated using the FFT agorithm. An implementation using a Laguerre
basis as interpolant is given and examples are presented. While the Laguerre basis reduces the infinite order
of the original distributed system to a finite order, a standard Krylov subspace congruence transformation
can still be employed to reduce the size of the matrices. The algorithm is aso perfectly compatible with fast
matrix-vector product algorithms.
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-3

real( Ldft (K))

Figure 12.13: a) FFT coefficients for the non-causal example Z g (im) = Ro + Racy/|0| used as a model
for the skin-effect “ resistance” . b) FFT coefficients of the inductance matrix for the lossy substrate example.
Note that non-causal coefficients 32 — 63 are in &) very large and in b) very small.
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Chapter 13

Preserving passivity in Truncated
Balance Realizations

The work in this Chapter has been done in collaboration with Dr. Joel Phillips (Cadence Berkeley Labs)
and with Prof. L. Miguel Silveira (Cadence Euro Labs and Technical University of Lisbon, Portugal) during
aninternship at Cadence Berkeley Labs, Berkeley, CA and subsequent collaboration. Thiswork hasfirst been
published in [108, 109].

The model order reduction techniques based on the Krylov subspace projection framework and presented
in Chapter 8 are very suitable for analysis of large-scale systems, since they only regquire matrix-vector op-
erations, and therefore can exploit aimost linear complexity fastsolvers [94, 68, 152]. For the same final
accuracy, more compact optimal norm approximants are generated by the Truncated balanced realization
agorithms (TBR) [93] (Section 7.4) and Hankel model order reduction algorithms [51]. However the com-
putations required by TBR and Hankel reduction techniques have O(n®) complexity when performed directly
(nisthe order of the system to be reduced). Thereforethe TBR methods are of more interest when combined
with iterative Krylov-subspace procedures. One formulation of this method is to directly solve the large
Lyapunov equations via a Krylov subspace method [81, 115, 63, 64, 116]. The reduced models are obtained
directly from the reduced Lyapunov equation. Another strategy is to use the two steps procedure [69, 88] as
illustrated in Section 10.1. Onefirst uses the less efficient but computationally feasible Krylov-subspacetech-
nigue to reduce the system to afew hundreds and then one can employ the more computationally demanding
TBR to obtain afinal very compact model.

None of the above literature however addresses the issue of preserving passivity when using TBR type
methods. A passivity-preserving initial reduction is used in [69, 132], but then a standard TBR method
followsthe initial reduction. The second TBR step may destroy the passivity of theinitial model.

A second issue is that passivity preserving Krylov reductions such as PRIMA ([97] Section 9.4), can
handle only systems such as RL C circulits, that can generate positive semidefinite internal descriptor matrices.
That is because such methods rely on congruence transformations to preserve positive-semi-definiteness of
such internal descriptors. However, whether or not a state-space model represents a passive system is a
property of the input-output transfer function, not a property of the internal representation. Some passive
systems may have descriptor matrices that are not non-positive semi-definite. Some examples include the
systems that come from rational approximation of tabular data]27], the magnetic charge formulation of the
inductance problem[89], and general linear circuits, in particular those with gyrators, formulated in the sparse
tableau form. Thisissue even appearsin RLC circuits: the positive-definiteness of the matrices in the MNA
formulation depends on the choices of signs (the circuit responseis of courseinvariant to thischoice). Finally,
in many cases positive positive realness of the input output transfer function may not even be the correct
property characterizing the passivity of the system. For instance, if the state-space model represents scattering
(S) parameters of a passive system, the system is passive if the norm of the S-parameter matrix is bounded
by unity. Such systems cannot be reduced by congruence with any passivity guarantees.
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p
Algorithm 2 Positive-Real TBR (PR-TBR)

1. SolveEgns. (9.24)-(9.26) in Section 9.1.3 for X and Eqgns. (9.27)-(9.29) for
Xo.

2. Proceed with steps 3-8 in Algorithm 1 in Section 7.4, substituting X for We
and X, for W,.

In the systems and control literature one can find many results (e.g. [146, 147, 4]) and reduction al-
gorithms (e.g., [52]) with properties potentially relevant to passivity preserving model reduction. Such tech-
niques so far were not well knowninthe circuit simulation and design automation communities. By collecting
al of those control system techniques, and by applying, and extending them in the context of large-scale in-
tegrated circuit analysis and modeling, we hope to provide a first step in their wide adoption by the circuit
and design automation community.

In this chapter we discuss TBR-like model reduction algorithms that can preserve system passivity, have
computable error bounds, and, unlike other algorithms such as PRIMA, pose no constraints on the internal
structure of the state-space model. We describe variants that preserve both positive-real ness (useful for sys-
temsthat represent Y or Z parameters) and bounded-real ness (useful for systems that represent S parameters).
These algorithms can be applied directly to agiven state-space description [129], or can be used as the second
stage of a Krylov-subspace based procedure[81, 63, 69].

13.1 Guaranteed passive balanced truncations

We will show in Section 13.5 that the TBR procedurein Algorithm 1 in Section 7.4 does not necessarily
produce passive models. In making assessments about passivity, we require atool that can assess the positive-
realness of a state-space model in a global manner. One such tool for systems representing immittance
matricesis the positive-real lemma|[4] presented in Section 9.1.3.

A passivity-preserving reduction procedure follows by noting that the Lur’ e equations can be solved for
the quantities X, Xo which may then be used as the basis for a TBR procedure. We may find a coordinate
system in which X; = X, = =, with = again diagonal. In this coordinate system, the matrices A, B,C may
be partitioned and truncated, just as for the standard TBR procedure, to give the reduced model defined
by (A,B,C,D). We present this as Algorithm 2 and call it PR-TBR, as it preserves positive-realness of the
transfer function. Several approachesthat turn out to give essentially similar results have appeared previously
in different contexts[52, 101, 23].

Theorem 11 Algorithm 2 applied to systems with positive-real transfer functions produces reduced models
with positive-real transfer functions.

Proof. From the form of the partitioning, (7.16) and (7.17), likewise partitioning either K or Ko, it is clear
that the reduced system, in the PR-balanced coordinates, satisfies

Allzl + ZlAIj_ = —Klkir (13.1)
€ - B = K], (13.2)
JJI =D+D". (13.3)

Therefore the reduced system satisfies the Lur’ e equations with positive semi-definite X1 (£ > 0asX > 0).
By the positive-real lemma, the reduced system is positive-real. We emphasize that Theorem 11 holdsregard-
less of theinternal form of the state-space system. Again, thisis not true for congruence based procedures.
To obtain equivalent TBR procedures that guarantee afinal transfer function that is bounded-real, useful
when working with transfer functions representing S-parameters, we can use the bounded real equations
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p
Algorithm 3 Bounded-Real TBR (BR-TBR)

1. Solve Egns. (9.38)-(9.40) in Section 9.2.1 for Y and Egns. (9.41)-(9.43) for
YO.

2. Proceed with steps 3-8 in Algorithm 1 in Section 7.4, substituting Y for We
and Y, for Wp.

P
Algorithm 4 Hybrid TBR
1. Perform Algorithm 1in Section 7.4

2. Using the reduced model matrices A, B, C, solve Eqns. (9.24)-(9.26) for X.
(or Egns. (9.38)-(9.40)).

3. if Egns. (9.24)-(9.26) (or Egns. (9.38)-(9.40)) are solvableand X ¢ > 0, then
terminate and return A, B,C.
else discard TBR-reduced model and proceed with Algorithm 2 (or 3).

in Section 9.2.1. The Algorithm 3 can then be introduced to perform truncated balanced realization while
guaranteeing the boundedness of the reduced transfer function 1.

13.2 A hybrid approach

In many cases, while not guaranteed by construction, it is often the case that the TBR approximants
produced by Algorithm 1 in Section 7.4 turn out to be positive-real. Therefore we propose Algorithm 4,
which performs the TBR procedure, solves the positive-real (or bounded-real) equations on the reduced
model to check its passivity, and if it turns out not to be passive, discard it and proceeds to Algorithm 2 (or
Algorithm 3). Thereis an advantagein this procedure as often the TBR approximates are more accurate for a
given order than PR-TBR. Because of the cubic scaling of cost, it is relatively cheap, compared to the cost of
the TBR reduction, to check a reduced model for passivity since the reduced system is presumably of lower
order. As often the TBR models are passive, the net effect of the composite algorithm is to approximately
doublethe cost in the worst case, versus usually getting better models at smaller cost (PR-TBR “costs’ more
than TBR) in the more-common average case.

Algorithm 4, which appropriately combines all of the previously presented algorithms, can be used as
generic flow for generating accurate guaranteed passive reduced-order models of systemswith arbitrary struc-
ture.

13.3 Physical interpretation of the PR/BR-TBR procedures

In Section 7.4.1 we discussed how the TBR procedure, and eigenvalues of associated Grammians, could
be interpreted in terms of the relative importance of system modes to the system input and output norms.
It turns out that the PR/BR-TBR techniques have a similar interpretation, but one that is more closely tied
to a circuit-theoretic notion of energy. To make this connection, we draw upon concepts from the theory of
passive dynamical systems, discussion of which can be found in [101, 146, 147].

In order to provide a physical interpretation for the PR/BR-TBR agorithm let us introduce the concept
of a supply function sfu(t),y(t)]. A supply function describes the rate at which power is supplied by the
environment into the system, and typically is defined such that s[u(t),y(t)] > 0 implies a positive amount

1The bound does not have to be unity; it can be any positive constant.
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of energy input, while s[u(t),y(t)] < 0 means energy is extracted from the system back to the environment.
When the system inputs and outputs are currents or voltages, i.e. when the system transfer function represents
impedance or admittance matrices, we may use the supply function sfu(t), y(t)] = u(t) Ty(t). When the system
transfer function represents scattering parameters, we may use the supply function sfu(t), y(t)] = u(t) Tu(t) —
y(t)Ty(t). Regardiess of the particular form of supply function we can further define the following two
quantities:

Va(X0) = Sup{— /Ows[u(t),y(t)]dt, x(O):xo} (13.4)

0
Vreq(%0) inf { / su(t),y®ldt,  u(t) controllingtox(0) = xo} : (135)

—oo

whereVay(Xo) istheavailable storage energy, or maximum energy that can be extracted from the system over
any possibletrajectory of the state from aninitial state X at time 0. Vyeq(Xo) can beinterpreted as the required
supply, or the minimum amount of energy that must be provided by the environment to the system in order
to control the system to state xp at time O over any possible trgjectory. It can be shown ([146, 147]) that for
passive and controllable systems, Vay(Xo) is always a positive number not larger than Vyeq(Xo)

0 <Vav(X0) < Vieg(Xo). (13.6)

Furthermore, it can be shown ([146, 147]) that the solutions X, and X; to the positive real Lur’e equa-
tions (9.27)-(9.29) and their dua (9.24)-(9.26) respectively, obtained from the procedure in Section 13.4
have a physical interpretation for passive immittance systems in terms of the energy quantities V a(Xp) and

Vieq (Xo),

Xy XoXo = Va(Xo) (13.7)
XgX071X0 = Vreq(X0)~ (13.8)

Using a similar argument to the classical TBR interpretation, small eigenvalues of X, are associated with
modes for which the maximum energy we can extract, Vay(Xo), is small. They are therefore not likely to
be important “ energy-wise” for the system response. Small eigenvalues of X are associated with modes for
which the minimum amount of energy Veq(Xo) We have to supply in order to reach them is large. Henceit is
relatively difficult to drive the system into those states and they are not likely to be important “energy-wise”
for the system response.

Asinthe classical TBR, it can be noticed that some modes, although energy-wise hardly accessible, are
energy-wise important and we can extract back from them large amounts of energy. Vice-versa, there can be
some modes for which, athough we cannot extract large amounts of energy, they require a small amount of
energy to reach. Thus, in a similar way as classical TBR, PR-TBR balances the importance of past energy
inputs and future energy outputs by transforming to a coordinate system in which X, and X; are equa and
diagonal, and in which the invariant quantities that are the eigenvalues of the product of X, and X; are easily
calculated. The algorithm will keep in the final reduced model only modes that are

e “energy-wise” easily “controllable’, that is they do not need much energy input to be reached
e and “energy-wise” easily “observable’, that is, it is possible to extract alot of energy from them.

It is also interesting to note ([52, 101, 146]) that the solutions X, and X of the positive real Lur’ e equa-
tions (9.27)-(9.29) and their dual (9.24)-(9.26), arerelated and not unique. Specifically, there existsaminimal
solution Xo min and a maximal solution Xq max for (9.27)-(9.29), a minimal solution X¢ vin and a maximal so-
lution X¢,max for (9.24)-(9.26), such that

0 < Xomin = Xgpax < Xo = X571 < Xo max = Xin (13.9)
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A procedureis givenin [109] that produces the minimal solutions used in (13.7)-(13.8) respectively

Xo = Xomin=Xgmax: (13.10)
Xe = Xemin=Xommax: (13.11)
(13.12)

The same physical interpretation presented above for positive real systems representing impedance or
admittance can be given to bounded real systems representing scattering parameters by defining asin [101]

X Yoxo = V(o) (13.13)
Y% = Vieg(). (13.14)

where Y, and Y. are the minimal solutions of the bounded real Lur’e equations (9.41)-(9.43) and their
dual (9.38)-(9.40), respectively. A procedureis given in [109] to calculate such minimal solutions.

13.4 Computational considerations

The complexity of the algorithms presented for passivity-preserving balancing transformation is cubic
in the number of state variables, due to the use of direct, dense linear algebra for eigenvector computations
and matrix-matrix products. Thus, standard TBR and the passive-TBR variants cannot be directly applied
to extremely large systems such as large collections of interconnect because of the high cubic computational
complexity. However, this cost is acceptable if the algorithms are being applied to systems that are moderate
insize, asisusualy the case with systemsthat result from a prior reduction step (see Section 10.1). Therefore
we wish to re-iterate that in the case of large systems, one would use the TBR agorithmsas a“ second step”
of a“two-step” reduction procedure. During thefirst step one would use the less computationally demanding
(but less efficient) Krylov subspace guaranteed passive reduction techniques such as PRIMA to reduce the
originally very large system to order around few hundred. At such point one can easily use without much
computational effort passive-TBR to reduce the system to order around 10 to 20. This “two-step” procedure
produces a much better compression (i.e. better accuracy for the same final order) than using PRIMA to
reducein one single step the original very large system to the final order around 10 to 20.

13.5 Results
13.5.1 AnRLC line

For our first example we use a 40-segment uniform RLC line that is L-dominated. The values of the
line were chosen to be R= 25, C = L = 0.39894. For the purpose of comparison we computed 25" order
models using both TBR and PR-TBR. Figure 13.1-a) shows the low-frequency behavior of the exact line
impedance as well as that obtained using the two models. For this particular case it turns out that PR-
TBR performs much better than regular TBR in terms of the model error. More important, however is the
result shown in Figure 13.1-b) where we plot the minimal eigenvalue of the symmetric part of the transfer
function as a function of frequency. As can be seen from the plot, the minimal eigenvalue for the TBR
model can go below zero at some frequencies which implies that the model is non-passive and may produce
non-physical responses when used in time-domain simulations. In fact, on this example, almost none of the
models produced by TBR were passive. Only very high order models exhibiting an almost exact match to
the transfer function over the entire frequency axis were passive. In contrast, all the models produced by the
PR-TBR method were found to be passive, as expected.

13.5.2 A bounded-real example from rational function fitting

In the next example we consider the bounded-real variant of the TBR procedure (BR-TBR). First, a
rational fitting method was used to fit a high-order model to tabulated 2-port S-parameter data originating
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Figure 13.1: Left: Magnitude of Y12 for LC line. Right: Minimum eigenvalue of symmetric part of reduced
model transfer function. Note that the minimum eigenvalue the TBR model drops below zero for some fre-
guencies, indicating non-passivity. [ Figure by Joel Phillips.

from a full-wave EM field solver. The fitting algorithm, which has provision for automatic estimation of
model order, was tuned to a conservative setting, and generated an order-42 initial model that was nearly an
exact fit to the datain the given frequency range. The resulting 42-state model was much larger than desired
for final simulation, so the BR-TBR procedure was used to reduce the model to six states. The results are
shownin Figure 13.2. The reduced model had norm bounded by unity, indicating that it represented a passive
element. Several models of orders six to eight were also generated by both TBR and congruence transform
strategies, but al had H.. norms ranging from 1.05 to 1.9, i.e. they were not passive. Such techniques are
therefore unusable for this type of systems.

13.6 Conclusion on passive truncated balance realizations

In this Chapter we presented a family of algorithms that can be used to compute guaranteed passive,
reduced-order models of controllable accuracy for state-space systems with arbitrary internal structure.

The algorithms presented are similar to the well-known truncated balanced realization (TBR) techniques
and share some of their advantages, such as computable error bounds [109]. However, unlike standard TBR
techniques, the algorithms presented have been shown to produce provably passive reduced-order models. In
addition, unlike other techniques known to also produce passive reduction, the algorithms presented pose no
constraints on the internal structure of the state-space. They are thus equally well applicable to systems that
represent for instance Y or Z parameters as well as systems that represent Sparameters. An hybrid algorithm
was also presented where a TBR model is first computed, then checked for passivity and the passive-TBR
agorithmisonly used if that check fails. Our hybrid algorithmis more reliable than simply slightly changing
the order of the produced model which can often produce passive systems, although not always. In addition
we also examined a DC-accurate technique that can be used in conjunction with the algorithms presented in
order to produce models that have accurate steady-state responses.

We have experimented with our techniquesin a number of settings. They can be used as stand-alone pro-
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Figure 13.2: Magnitude of rational function fit and reduced model for S-parameters tabulated by full-wave
field solver. Solid line shows initial data and order-42 rational fit (complete overlap). Dashed line shows
order-6 reduced model obtained via BR-TBR. [ Figures by Luis Miguel Slveira and Joel Phillips]

cedures or as part of second step reductions for systems with a large number of unknowns, perhaps replacing
the usual TBR procedure. In our experiments with our technique all models were found to be accurate and
passive. All previously known techniquesfailed to produce acceptable models in some of the examples used.
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Chapter 14

Background: existing tools for
EMC-aware synthesis

Automatic layout tools accounting for crosstalk, substrate noise and parasitics have been developed for
digital IC’'s and even for analog 1C’s [85] and RF/Microwave IC’'s [21]. Some routing tools accounting for
conducted interferences at the Printed Circuit Board level exist [137]. In this Chapter, several expert systems,
rules checkers and an auto-router are presented. A rule checker is a piece of software that reads component
data-sheets and board layout informations from automated board layout tools, looking for violations of basic
EMC design rules [58]. An expert system is an interactive computer-based tool that uses both facts and
heuristics to solve difficult decision problems based on knowledge acquired from an expert [8]. An auto-
router isatool that routes automatically wires on a PCB based on given constraints.

HardSys. “HardSys’, one of the first expert systems, has been proposed in [83] and evaluated in [84].
HardSys treats entire systems: electronics, shielding, etc. It deals with radiation coupling to electronics.
Fieldsare considered scalar, asaworst case analysis. Freguency domain representation is used in the database
for the storage of field magnitude. Ambient fields, path shielding effectiveness and component susceptibility
are classified qualitatively. The underlying assumption is that certain radiation levels could potentially give
problems but no quantification is attempted.

A tool for EMC of power supplies. Thistool is described in [148] and it is meant for switching power
supply design providing EMC prediction. It incorporates alayout editor, an auto-router, a component library
builder, and an EMI simulator which creates models for SPICE.

ATHENA. ATHENA isalayout assistant tool devel oped within the environment of MENTOR GRAPHICS
layout editor. ATHENA is presented in [92]. It has been developed in France by SEXTANT. It accounts for
transmission line effects and crosstalk, but not for radiation. It can give simulated waveforms for selected
wires.

EMiIcheck. “EMIcheck” is arule checker presented by Hubing in [59]. EMIcheck has been developed at
University of Missouri-Rolla and by Quad Design Technologies. Recently, EMIcheck assumed an expert
system structure [58]. EMIcheck evaluates a given PCB layout providing to the user alist of violated rules.
Mostly, it is adesign tool for users not familiar with electro-magnetic compatibility problems. First, a clas-
sification of each net and of each pin of the componentsis performed. Then, informations are obtained from
data sheet files of the components and from the PCB layout file generated by other tools. The classification
is il qualitative and it considers: radiation potentials, susceptibility potentials, power bus voltage, and if a
signal is balanced and if it goes out of the board. EMC rules are checked. It incorporates a good set of rules.
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However they are are not based on cal culated/simul ated/measured radiation levels or on noise effects on the
circuit. Rulesinclude: long nets (radiation and susceptibility potential), crosstalk, placement of components
over the appropriate power plane, no unbalanced signal crossing gapsin their returning plane, no planes with
thin necks. In parallel to the work of the rule checker, critical circuit geometries are individuated. Numerical
simulation tools are then used to estimate radiated fields.

HERO. HERO isaHierarchical auto-router developed at University of Paderbornin Germany by L engauer
and others [137]. Siemens has aso collaborated to the project. Thisis a PCB router considering also con-
ducted EMC constraints. The tool assumes a complete placement of the components is given. It considers
only reflection (due to impedance mismatch between transmission lines and loads) and crosstalk. The rout-
ing is divided in two phases: first a “hierarchical” globa routing is performed using linear programming
techniques. In this phase reflection is taken into account controlling the maximum length of the nets. Then,
a “sequential” detailed routing is performed considering also crosstalk. Blocks and nets are ordered. The
routing proceeds net by net with a modified maze-running. In [127] anew layer-assignment and net-ordering
phase is introduced after the global routing and before the detailed routing. A 50 percent performance im-
provement is achieved in this way. Completion rate is only 93 percent in the example presented. Only two
EMC rules are implemented, but they are based on previous intensive simulations and measurements. This
seems a very good approach applicable in the future also to radiation phenomena.
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Chapter 15

Geometrically parameterized model
order reduction

The work in this Chapter has been done in collaboration with Prof. Jacob White, Massachusetts I nstitute
of Technology, and it hasfirst appeared in [32, 31].

Developers of routing tools for mixed signa applications could make productive use of more accurate
performance models for interconnect, but the cost of extracting even a modestly accurate model for a candi-
date route is far beyond the computational budget of the inner loop of arouter. If it were possible to extract
geometrically parameterized, but inexpensiveto evaluate, modelsfor theinterconnect performance, then such
models could be used for detailed interconnect synthesisin performancecritical digital or analog applications.

The idea of generating parameterized reduced-order interconnect models is not new, recent approaches
have been developed that focus on statistical performance evaluation [82, 55] and clock skew minimiza-
tion [114]. However, our target application, interconnect synthesis, requires parameterized modelsvalid over
awide geometric range. Generating such parameterized modelsis made difficult by the fact that even though
the electrical behavior of interconnect can be modeled by a linear time-invariant dynamical system, that
system typically depends nonlinearly on geometric parameters.

Onerecently devel oped technique for generating geometrically parameterized models of physical systems
assumed alinear dependence on the parameter, and was applied to reducing adiscretized linear partia differ-
ential equation [113]. The approach used closely paralleled the techniques used for dynamical system model
reduction, an unsurprising fact given that if the parameter dependence is linear, the generated parameter-
ized system of equationsis structurally identical to a L aplace transform description of alinear time-invariant
dynamical system, though the frequency variable isin the place of the geometric parameter.

The observation that geometric parameters and frequency variables are interchangeable, at least when the
geometric variation is linear, suggests that the parameterized reduction problem could be formulated so as
to make use of extensions to the projection-subspace based moment matching methods that have proved so
effectivein interconnect modeling [49, 46, 73, 53, 43, 97, 128, 12, 16]. Inthis Chapter we devel op approaches
for generating parameterized interconnect models exploiting just such a connection. In Section 15.1 we
present a general problem formulation for an arbitrary number of parameters, and in Section 15.2 we present
an extension to the multiple parameter moment-matching model reduction work in [144]. In Sections 15.3
we demonstrate the effectiveness of the method on a wire-spacing parameterized multi-line bus example,
and consider both delay and cross-talk effects. In Section 15.4 we use the generalized multi-parameter model
reduction approach to re-examine the multi-line bus example, but now allow both wire width and wire spacing
to be parameters. Finally, conclusions are given in Section 15.6.
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15.1 A general problem formulation

When modeling long interconnect wires, the long wires are usually modeled using a distribution of re-
sistors and capacitors, and sometimes even inductors. Even if there is only one geometric parameter of
interest, such interconnect examples still generate a multiparameter reduction problem, with frequency being
the second parameter.

In order to derive an approach for the multiparameter problem, consider the following parameterized state
space system model:

E(sy,...,s)x = Bu (15.1)
y = Cx (15.2)

where s1,...,5, are p parameters, x is the state of the system, E(sy,...,sy) € C™" is the system descriptor
matrix, B isamatrix relating the inputs u to the state x, and C is a matrix relating the state to the outputsyy.

In general the descriptor matrix E(sy, ..., Sy) could have a complicated and non-linear dependency on the
parameters sy,...,Su. As afirst step of our approach we capture such dependency by means of a power series
in the parameters sy,...,Su

E(St,.--,S) = Eo+23E| +ZshskEhk+ Y shsSjEngj + - (15.3)
hk,j

One of the easiest ways to produce such a power series representation isto truncate a p-variables Taylor series
expansion:

2
E(s1,-..,S0) =E(51,-. ., % +Z ( ) { 85 (51, % )} +% (%) ( S|S<k> {sqs(a;aa((sl,...@) +... (15.4)
where sq,...,5, are the expansion points. In a practical implementation, one could for instance choose
the expansion points to coincide with the “nominal values’ for each of the parameters. Also, in practical
implementations one could be more interested in working explicitly with variables that represent relative
variations As;/§ of the actual parameters around the expansion points, rather then working with absolute
variations As;. Finaly, as an aternative to using a p-variables Taylor series expansion, it is also possible to
generate the power series representation using instead polynomial interpolation to a set of data points.
Given the power series representation in (15.3), a reduced order model can then be generated by using a
congruence transformation on the power series representation

V* E0V+st EV 4D SV EnkY + D, hi&SjV EnkjV + ..
hk hk

V*Bu (15.5)

y = CVX (15.6)

whereV € C"*9, and the size q of the reduced order system matricesis typically much smaller than the size
n of the original system matrices.

In order to calculate the column span of the projection matrix V, it is convenient to use the power se-
ries (15.3) to re-write system (15.1) as

[I — (X s(—EgHE + Y sus(—Eg HEnk+ Y. shssj(—Eg HEnkj +-..) | x=Eg'Bu (15.7)
i h,k hk,j
so that
-1
X = [I - (zs(—Egl)Ei + Y shs(—EgHEnk+ Y, snScSi (—Eg 1) En +> E;'Bu
i h,k hk,j
inf m
= 2 23(—E61)Ei +ZShSK(—E071)Eh7k+ 2 ShS|<Sj(—E61)Eh7k,j +... Engu
m=0| i hk hk,j
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15.2 P Parameter Model Order Reduction

One simple way to construct the columns of the projection matrix V for the reduced order model in (15.5)
isto identify anew set parameters §; and matrices A, E;

A = —-Eo
([ Ei i=1,...,u
E - Enk h:l,...,u;k:l,...,u'
Enkj h=1... ,wk=1..,uj=1,...,u
[ -
(s i=1,...,1
. Shsk h=1...,uk=1,...,u
S = S$ssj h=1,...,wk=1...,uj=1...,u
[ -

so that one can re-write the parameterized system in (15.1) as alinearly parameterized model

[&E1+---+5Ep—AXx = Bu (15.8)
y = Cx (15.9)
In the special case where the power seriesis constructed using a Taylor series expansion
A = —E@&,...,%) (15.10)
[s—g—g(s—l,...,s—p)] i=1...1
E = [g@agf—BZ(ﬁ,...,%)] h=1.. ., wk=1, .u (15.11)
[ -
((8) =L
S = (—AST%)(—AS-‘(S&) h=1...,k=1,...,4 (15.12)
[ -

In this simplified setting the reduced model is now
[SVEV +---+ §VEV —V'AVIR = V*Bu (15.13)
y = CVX (15.19)

and once again, in order to cal culate the column span of the projection matrix V it is convenient to write the
system (15.8) as

[l = (&M1+---+5Mp)]x = Bmu
y = Cx
where
Mi = A for i=1,2,...,p
Bu = -A'B
and finally

X

[ —(&M1+---+8Mp)] 'Buu

oo

= Y [&EM1+---+5Mp"By u

m=0
oo M—(kg+-+kp) m-kp m

=Y 3 Y YRD M MpByu &I g
m=0 k=0 kp_1=0 kp=0
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Lemma 11 The coefficients of the series R | (M, ..., Mp) can be calculated using:

0 ifk¢{0,1,....m} i=2,...,p
ﬁm,m,kp(Ml,...,Mp): 0 i]1:k2+---+kp§Z{O,1,...,m} (15.15)
I ifm=0

and for all other cases

R k(M1 Mp) = MiFZ %y My, Mp) + (15.16)
MRy (M., Mp) +...
+MpR Y 1My, Mp)

Proof. This can be shown by induction on m. For m= 0 we can easily verify that

(&M + - +5Mp° =1. (15.17)
Now assume for m— 1 that
(m=1)—(ks+--+kp)  (M-1)—kp m—1
8 M+ +8Mp ™1 = 3 3 Y RN My M) YT g (15.18)

ko=0 kp-1=0 kp=0
in order to show that the property holds for m we can then simply observe that

[BiM1+--- +§Mp|™ =
(m=1)—(kg+--+kp)  (M-1)—ky m—1 o
§My + - +§Mp] 3 Y YR (M1 Mp)] gm-t-lettholde  do_

.....

k=0 kp_1=0 kp=0
Multiplying and collecting the terms with the same powers of §;,...5,

(m=1)—(Ks+--+kp)  (M—1)—kp m-1
ko—0 kp-1=0 k=0

< —1 m=1)—(ka+--+kp) kp—1
+"'+SPMPF|<T,...,kp71 g 2 P gzkz N ] _

(Mm=1)=(Kg+++kp)  (M=1)~kp m-1

............

k=0 Kp1=0 ky=0

which proves that the statement holds for m.
For a single input system (By = by = —A~1b € C™1) The columns of V can be constructed to span the

Krylov subspace
colspan(V) = span{bw,Mibm,Mzbw,...,Mgbm, Mfby, (M1M2 + MoM1)by, ...,
.. ,(MlMp—l- Mle)bm, M%bM; (M2M3 + M2M3)b|\/|, - },

or equivalently
mg m—(kpt-tky)  m-kp m
colspan(V) = span<¢ | J U U UFKT,W,kp(Ml,...,Mp)bM . (15.19)
m=0 ky=0 kp_1=0 kp=0

The following lemmas are useful to proof the main moment matching theorem for parameterized model
order reduction.
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Lemma 12
A [(V*AV)—lv*Elv,...,(V*AV)—lv*Epv] (VA) Vb= VR | A AT A (1520)

Proof. A proof is given in this Chapter by induction on the order m of the coefficient. First let us prove
the statement form=0. F ko [(VFAV) WV EV, ..., (VFAV) "WV EV] (VFAV) IV b =1 (V*AV) v h.
Since A~1b ¢ colspan(V), from Lemma9 we have

(V'AV) W b=VATb=V'R | [AE,.. ATEJA D

This concludes the proof for m=0. Now assume that the statement is correct for order m— 1 and let us show
that thisimpliesit is correct for order m. From the recursive definition formula (15.16),

R ko [(VAV) VRV, . (VIAV) TV EV] (VFAV) TV b =
= (V*AV)—lv*Elvﬁkz;}kp((V*AV)—lv*Elv, s (VA TWVIEVY) 4
+ (V*AV)’1V*I§pV|fk2’_’_fkp71((V*AV)’lV*Elv, s (VA TWVREV) T (VRAY) Vb =
using the inductive hypothesis on order m— 1 for each of the termsin the summation we have
= [(VA)VENVVIR Y (ATE. L ATTE) 4 (VIAY) TVIEVWIRG T (ATEy, L ATNEp)] A=
using Lemma 8 on each of the terms of the summation,
= [(V'AV)"WV'E F”‘___} (A—lél,...,A—lép)+. (v AV) WERIY (A—lél,...,A—lép)} A=

.......... 1(/3‘1@17 A Ao =

A_l [ElFl(r;q’i_:l:kp(A_lélv'"7A_1Ep) +Eka2 kp (A_1E17...7A_1Ep):| A_lb:
= T,...,kp [A1E;,...,AE ]JA b € colspan(V)
we can use Lemma9 and obtain
(VAV) WV (BRI (A A o+ BRI Y (ATE, . AT | At =

This concludes the proof of Lemma12.

Theorem 12 [Moment Matching Theorem] The first moments up to order mgq of the transfer function for
the reduced order model (15.13) constructed using the g columns projection matrix V € C™9 in (15.19)
match the first moments up to order mq of the transfer function of the original system (15.8).

Proof. The transfer function of the system in (15.8) for asingleinput case (B = b € C "*1) is given by

H = Cl—(&Mi+--+5Mp)] *A
oo m—(k3+-~-+kp) m—kp m
_ —(ko+++-+Kp) ko K
= CY > -2 2 (R, (M1, Mp)A ) & § (ko p)sz .8
m=0 ko= kp 1=0 kp=0

Similarly the transfer function of the systemin (15.13) is given by

~ ~ ~ ~ ~ -1 ~
A oV [| CEVA)WIEN §p(v*AV)—1v*EpV)] (—V*AV)V*b

oo M—(kg+- +kp) m—kp

cvz 2 Yy AT i (VA VR,

kp 1=0 kp=0

VAV TWVEENV) (VEAY) TV b] grllettholde o
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Figure 15.1: Sketch of the modeled 16 parallel wires interconnect bus.

Using first Lemma 12, and then Lemma 8, each moment of the reduced model transfer functionis
CRY i [(VAV) TV EN, . (VAV) "WV EV] (VIAV)™VW'b = CW'R] | (A'Ey,...,ATTEp)ATD
= CFM (A, AR In

2,-++3Kp

For amulti-input system the columnsof V can then be constructed to span the Krylov subspaces produced
by al the columns [by]; of Bu:

colspan(V) =
— (kp+...k:
:span{ Uy UpZo? 3>...uL’;_OF,?;

m—(kp+...k:
o1, Unio Ulero™ " Do Ibulj }

15.3 Example: a bus model parameterized in the wires’ spacing

One design consideration for interconnect busses is the trade-off between:
e wider spacing to reduce propagation delays and crosstalk
e narrower spacing to reduce area and therefore cost.

In this example we have used a multi-parameter model order reduction approach to construct a low-order
model of an interconnect bus, parameterized by the wire spacing. The model can be efficiently constructed
“on the fly” during the design and can account for the topology of the surrounding interconnect already
present in the design. Once produced, the model can be simply evaluated for different values of the main
parameter, the wire spacing, in order to determine propagation delay, crosstalk or even detail ed step responses.

Our example problem is the bus in Fig. 15.1 which consists of N = 16 parallel wires, with thickness
h = 1.2um, and width w = 1um. The tota length of each wireis| = 1mm. Above and below our bus we
assumed a random collection of interconnect at several layout levels ranging from a distance of 1um to Sum.
We have subdivided each wire into 20 egual sections delimited by n = 21 nodes. Each section has been
modeled with a resistor. Each node has a “ grounded capacitor” representing the interaction with upper and
lower interconnect levels. In addition, each node has two coupling capacitors to the adjacent wires on the
bus as shown in Fig. 15.2. The value of the capacitors was determined using simple parallel plate formulas.
Standard frequency domain nodal analysis leads to a system of equations of the form

S <Cg + %) v+Gv = By (15.21)
Vot = Cv, (15.22)
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Figure 15.2: Discretization of the bus wires and coupling capacitorsincluded in the model.

where sis the Laplace Transform variable, d is the spacing between wires, G isthe n x n nodal conductance
matrix, The n x n matrix Cq is the diagonal nodal matrix associated with the grounded capacitors, and Cs
is the sparse nodal matrix associated with the adjacent coupling capacitors. B isthe n x t matrix relating t
input voltages viy to the n internal node potentials v, C is at x n matrix relating node potentials v to the t
output voltages vo. We would like to underline that our model is limited to capturing the behavior of the
interconnect, whichislinear for almost all practical applications. Our models can then be used in conjunction
with any device model, from the most simple linear device model to the most sophisticated spice device
model. It is not the purpose of this Chapter to discuss model for devices, however, just in order to “simul ate”

our interconnect model, for simplicity we will drive our wires with ideal linear devices having impedance
ra = 1/dq. In general when gq is small compared to the wire conductance, all the capacitorsin the different
sections of each wire appear as lumped, and the detailed model presented here is not necessary. A more
interesting case is observed when instead g4 is large. In such case the wires charge up slowly from the input
side of the bus and continue to charge up along the length of the bus. I1n order to observe this moreinteresting

effect we chose gq = g where g is the conductance of each of the 20 sections in each wire. All the wires are
left open on the other side.

15.3.1 Crosstalk from one input to all outputs

When determining the crosstalk generated on all the outputs by a transition on a single input, the input
matrix becomes a vector,

B=b = [0...0940...0], (15.23)

and the output matrix is
..010...
...010...
C= _ (15.24)
.01

The system in (15.21) has the following parameterized descriptor matrix
1 1

wherewe chooseto work with parameter 1/d instead of parameter d. For frequency swe choose as expansion
point $; = S= 0. For the separation we choose s; = 1/dg = 1/1um.

E <s,%> = G+S{Cg+d—1ocs} +S(A(j)> [d—locs} (15.26)

do




162 CHAPTER 15. GEOMETRICALLY PARAMETERIZED MODEL ORDER REDUCTION

1
0.8
0.6t
0.4f
0.2t

G 0.2 0.4 0.6 0.8 1 % 02 0.4 06 0.8 1

time [sec] u time [sec] o

a) b)

Figure 15.3: Responses at the end of wire 4 when a step is applied at the beginning of the same wire.
Continuous lines are the response of the original system (order 336). Small crosses are the response of
the reduced model, order 3 on the left, and order 6 on the right. The model was constructed using a nominal
wire spacing dp = 1um and responses are shown here evaluating it at spacings (fromthe lowest curvesto the
highest) d = do + Ad = 0.5um, 1um, 10pm.

Either by identifying terms directly on eg. (15.26) or by using the formulas in (15.10)-(15.12), one can
recognize asystem asin (15.8) defining

A = -G

E, = +1Cs
1 = G &
~ 1

E, = —

2 docs

S = s

,g)z
Il

wn

VR
>

Selgn
N
N~

Theoriginal system for this example has order 336 (16 wires x 21 nodes each). We performed amodel order
reduction procedure as described in Section 15.2 and obtained a small model capturing the transfer functions
from one input to al outputs.

[SE+5E,— AR = bu (15.27)
y = €% (15.28)
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where
A = VAV =-_Vv'GV
E1 = VEV=V {cg+dics]v
0
2 * = * 1
E, = VEV=V {—Cs}v
do
b = Vb
c CV.

The projection matrix V can be constructed such that
colspan(V) = span{by, M1bm, Maby, M2by, (MiM2 +MaMs)by, M2by, ...},
where
bu = —Alb=G
M = A =-G? {cg + d—locs]

My = A71E2 =-G1 |:iC5:|
do

The Arnoldi algorithm [53] can be used to orthonormalize the columns of V' during the matrix construction.

The step response at the end of the wire excited in Fig 15.3 is shown in Fig 15.3.a comparing the step
responses of the original system (continuous lines) and a reduced model of order three (small crosses) when
the spacing distance assumes the values d = do + Ad = 0.5um, 1um, 10um. The model was constructed using
a nominal spacing dop = 1um, hence the error is smaller near d ~ dg = 1ym. Fig. 15.3.b shows the same
comparison with a reduced model of order six. One can notice that the reduced model can be easily and
accurately used to evaluate the step response and propagation delay for any value of parameter d around
do plugging into the reduced model (15.27). From the reduced model (15.27) we have readily available
not only step responses on the same wire, but also crosstalk step responses from one wire to al the other
wires. Fig. 15.4.a shows for instance step responses from the input of wire 4 to the output of wires 4, 5,
6 and 7. In this figure we compare again the response of the original system order 336 (continues curves)
with the response of areduced model order 10 (small crosses) constructed at nominal spacing d o = 1um, but
evaluated in this particular figure at spacing d = 0.5um. Note that the model produced by our procedure is
parameterized in the wire spacing, hence any of such crosstalk responses can be evaluated at any spacing.
For instance we show in Fig. 15.4.b the response at the output of wire 5 when a step waveform is applied at
the input of wire 4 for different spacing values, d = dg + Ad = 0.5um, 1um, 10um.

15.3.2 Exploiting the adjoint method for crosstalk from all inputs to one output

It is possible to construct with the same amount of calculation a model that provides the susceptibility of
one output to al inputs. In order to do this we can use an adjoint method and start from an original system
which swaps positions of C and B and transposes all system matrices. Note that since we are considering a
single output C € C*" and CT € C™1! isavector.

- (&M +5&M))]V = CTV (15.29)
Vo = BRY, (15.30)
In this case the columns of the projection operator V will span the Krylov subspace
colspan(V') =span{ C',M{CT, MICT mImICT,
(M{MJ +MIMD)CT, MIMICT, ..}
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Figure 15.4: On the left: responses at the end of wires (from highest to lowest curve) 4, 5, 6 and 7 when a
step is applied at the beginning of wire 4. Continuous lines are the response of the original system (order
336). Small crosses are the response of the reduced model (order 10). The model was constructed using a
nominal wire spacing dop = 1um and responses are shown here evaluating it at spacing d = 0.5um. On the
right: crosstalk responses at the end of wire 5 when a step is applied at the beginning of wire 4, for different
values of spacing (from highest to lowest curve) d = dg + Ad = 0.5um, 1um, 10um.

or in general

my m
colspan(V') = span{ U (U ka(MI,Mg)cT> } . (15.31)

m=0 \k=0

In Fig. 15.5 we show the responses at the end of wire 4 when a step is applied at the beginning of wires4, 5,
6 and 7. The model was constructed using a nominal wire spacing do = 1um. Responsesin Fig. 15.5.aare
for d = 0.25um. Responsesin Fig. 15.5.b arefor d = 2um.

15.4 Example: bus model parameterized in both wire width and sep-
aration

Often when designing an interconnect bus, onewould liketo quickly eval uate design trade-offsoriginating
not only from different wire spacings, but also for different wire widths. Wider wires have lower resistances
but use more area and have higher capacitance. The higher capacitance to ground however helps improving
crosstalk immunity. We show here a procedure that produces small models that can be easily evaluated with
respect to propagation delays and crosstalk performance for different values of the two parameters: wire
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Figure 15.5: Responsesat the end of wire 4 when a step is applied at the beginning of wires 4, 5, 6 and 7 (from
highest to lowest curve). Continuous lines are the response of the original system (order 336). Small crosses
are the response of the reduced model (order 10). The model was constructed using do = 1um. Responses on
theleft are for d = 0.25um, and on the right for d = 2um.

spacing d, and wirewidth W. Asin the case of wire spacing, we constructed models for a given nominal wire
width Wp, and then we parameterized in terms of perturbations AW. Considering the same bus example with
N parallel wires described in Section 15.3, we can write the equations for the origina large parameterized
linear system

s <WC§ + %) vV+WG'v = Buvi
Vou = Cv
The system has the following parameterized descriptor matrix
1 Lok .
Efs, H’W = s\NCg+saCs+WG, (15.32)

where Cy = Cq/W, G’ = G/W, and Cg and G are as described in Section 15.3. With respect to the expansion
pointss; =S =0, S =1/dg, S3=Wp,

E (s,%) :\NoG’+s[V\/oCé+ d—locs] + (%) WoG'] +s<%> WoCy] +s( 1% > {d—locs] (15.33)
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Either by identifying terms directly on eg. (15.33) or by using the formulas in (15.10)-(15.12), one can

recognize a system asin (15.8) defining

Following the procedure in Section 15.2 the produced reduced order model is

where
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E-h) >

Mo [T
w N

E'Ib

C

A = WG

~ _ p i

E1 = Wng+d0Cs

E, = WG

Es = WG,

- 1

BEs = d—OCs

& = s

5 - AW
W

()
B Wo

=

[l
n
/N
>
Slrlan
N——

v
>

g)l
J;I'Ib
|

< X
|

@)

x>
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= V'EV=V* {V\/ocgJ + iCs] \Y;
= V'EV =V WG]V
= V'EV=V" [WC}]V

= V'EqV =V* ch}
do
V*B
CV.

(15.34)
(15.35)

The projection matrix V can be constructed for instance for a single input case (B = b € C ™*1) as shown

in (15.19) where

—A b= (WG) b
A71E; = —(WG) l{ WoCq+ + cs]
AL, = ) WG]
AEs = 1[\/\/00gJ
A1E = —WG) 1%@}
do

The Arnoldi algorithm [53] can be used to orthonormalize the columns of V' during the matrix construction.
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In Fig. 15.6 we compare the step and crosstalk responses of the original system to the reduced and pa-
rameterized mode! obtained using a Krylov subspace of order g = 5. This corresponds to choosingmg = 1
in (15.19), or in other wordsit correspondsto constructing a reduced model that matches the original model
up to one moment (or derivative) for each parameter. The model was constructed using a nominal spacing
1/dg = 1/1um and nominal wire width Wp = 1um. The key point is that this parameterized model can be
rapidly evaluated for any value of spacing and wirewidth, for instancefor afast and accurate trade-off design
optimization procedure.
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0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
time [sec] x 10 time [sec] x 10

a) b)

original order = 336. reduced to order = 5

0 0.2 0. 4 0.6 0.8 1 0 .
time [sec] x 102 time [sec] x 10

0 d)

Figure 15.6: Original system (continuous curves) versus 5t order reduced model (small crosses) using both
spacing and width parameters. The nominal wire spacing was dg = 1um and the nominal wire width was
W = 1uym. Responses at the end of wire 4 due to a step at the beginning of the same wire are show in a) for
different widths (from highest to lowest curve) W = .25pum, 2um, 4um, 8um and for spacing d = .25um. In b)
we show the same responses but for spacing d = 2um. In c) we show the crosstalk response at the end of
wire 5 due to a step at the beginning of wire 4. Curves correspond to widths (from highest curve to lowest)
W = .25um, 2um, 4um, 8um and spacing is d = .25um. In d) we show the same crosstalk responses but for

spacing d = 2um.
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15.5 Computational complexity

Lemma 13 If p is the total number of parameters and mq is the largest order of derivative that will be
matched with respect to any parameter, then the order q of the parameterized reduced systemis

_ pm
4=0| —— (15.36)
my 3

Proof. The number fm, of coefficients of order m, for a system with p parameters, can be obtained by
induction

1 ifm=0,
fnp = { ZI[():l fm_1k ifm>0 (25.37)
or equivalently,
_ _(m+p-1\_ [ m+p-1)\_ (m+p-1!
fm,P - fpfl,m+l = < m ) = ( p—1 > = m (15-38)

Using then the asymptotic approximation [2] for the GammaFunctionT'(z) = (z—1)!, one obtains

I(m+ p) e (m+p)™Pz
fmp = ~ . 15.39
™= Hmt OT(p) V2R i3 e (1539

Observing that for most practical problems m << p, we have

pm
fmp =0 < v > - (15.40)
The order g of the produced parameterized reduced system is then
il Mg
q= 2 fmp=0(Myfmq) =0 P — |- (15.41)
m=0 nhnh 2

One way to improve accuracy is to increase mg. Unfortunately, with large mq the order of the produced
model might quickly become impractical. When mq = 1, the order of the produced mode! scales linearly
with the number of parameters and a large number of parameters can be handled. In some applications the
accuracy given by matching a single derivative per parameter can be good enough. In particular, we recall
that many of the examples presented in this Chapter are obtained using mq = 1 and show good accuracy.
Using my = 2 improves the accuracy but generates a larger system. For example, with mq = 2 the order of
the produced parameterized model is

p(p+1) p>+3p+2
2 2

which implies that a 66" order model will be generated from a problem with p = 10 parameters. For larger
values of my, impractically large models will be generated even for a small number of parameters p.

Interms of computational cost, it isimportant to make a distinction between the cost of ”constructing” the
model and the cost of "evaluating” the model. The models constructed by our procedure are extremely small
compared to the original systems, therefore their evaluation cost is also small compared to the construction
cost. In particular, when constructing the model, most of the cost is in constructing each of the g columns of
matrix V. In particular, generating vectors F Moy in eg. (15.19), is the most expensive operation, given that it
involves onelinear system solve and several matrix-vector multiplications. In order to make the cost of model
computation practical one can use Krylov subspace iterative methods combined with “fast-methods” [94, 68,
110, 136, 71] for the required matrix-vector products. Exploiting such well developed techniques we need
to perform O(n) operations for each column of V. Hence the total construction cost is O(gn), where q is
typically not larger than few hundreds, and n can be as large as hundreds of thousands. When evaluating the
model one needs only solve asmall matrix of size g, therefore the evaluation cost is very low.

q=fop+fip+fop=1+p+ (15.42)
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15.6 Conclusions on parameterized model order reduction

In this Chapter we described an approach for generating geometrically - parameterized integrated-circuit
interconnect models that are efficient enough for use in interconnect synthesis. The model generation ap-
proach presented is automatic, and is based on series expansion of the parameter dependence followed by
multi-parameter model-reduction. The effectiveness of the techniques described were tested using a multi-
line bus example. Multiparameter model reduction was used to generate, from a formula based capacitance
and resistance extraction algorithm, high order models for the dependence of delay and cross-talk on line sep-
aration and conductor width. The experimental resultsclearly demonstrated the reduction strategies generated
model s that were accurate over a wide range of geometric variation.

It should be noted, however, that there are closed-form analytical models which relate geometric param-
eters to self and coupling capacitances, and the model reduction approaches presented herein are unlikely
to be as efficient. However, the methods presented here are potentially more accurate, and certainly more
automatic and more flexible.
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Chapter 16

Future work in synthesis

16.1 Further development of parameterized model order reduction
algorithms

There are many potential issues that can lead to new contributions in the field of parameterized model
order reduction described in the previous Chapter 15. The multi-parameter method was tested using only
resistor-capacitor interconnect models, and accuracy issues may arise when inductance is included. We aso
did not investigate using multi-point moment-matching, which could be a better choice given the range of
the parametersis often known a-priori. In addition, the multi-parameter reduction method can become quite
expensive when alarge accuracy is required and the model has alarge number of parameters, so the method
would not generate a very efficient model if each wire pair spacing in a 16 wire bus was treated individually.
Finally, there are some interesting error bounds in [113], and these results could be applied to automatically
select the reduction order.

16.2 Sizing of on-package and on-chip decoupling capacitors

We now address EMI emissions due to the switching activity of digita chips in Systems-on-PCB, or
EMI due to the switching activity of digital IP blocksin Systems-on-Chip. As described in Section 1.4, our
methodology propagates EM C constraints down along the branches of the system hierarchy until leaves are
encountered. In this case, aleaf can be represented by the insertion of one or more decoupling capacitors
around some digital switching blocks. According to our top-down synthesis with bottom-up verification
scheme, we need:

e away to estimate the size of such capacitors for the bottom-up phase. To address this task we present
here:

— atechniqueto build asmall but effective circuit model for the switching block,
— and atechniqueto build a small but effective circuit model for the global Vdd and Gnd system.

Given the two models, sizing the capacitorsis just a matter of solving afew circuit equations.
e \We aso need away to verify the effectiveness of the chosen capacitors for the bottom-up phase. For

this task we can simply use our simulation tool described in Part |.

16.2.1 Model of the internal switching activity of the blocks.

In order to model the switching blocks, we need
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e to estimate the current spikes produced on the global VVdd/Gnd system by the switching events.

¢ We also need to estimate the amount of capacitance between Vdd and Gnd already present inside the
switching block.

Thefinal goal isavery smple model as shownin Fig. 16.1

Vdd

itot (1)

Gnd

Figure 16.1: Smple model of a switching digital circuit block. The current source models the spikes of
currents, and it is characterized by the spectrum of such conducted emissions. The capacitors models the
amount of decoupling capacitance already present inside the block.

Estimation of the current sources

Simulating with Spice the entire chip would not be feasible because of the millions of gateson adie. In
order to get the current on the VVdd and ground pins, one could for example realize that a power estimation
tool calculating the “instant power consumption” piqt (t) of acircuit, provides the desired current waveform
result itet (t) in the assumption that the supply voltage Vyq is dmost constant

. t
ltot (t) = pt\;t—() (161)
dd
We propose here an aternative, and probably more accurate simulation technique. We are implementing
a method which was originally designed and presented in [91, 22] to model substrate noise on integrated
circuits.

1. Spice simulations are first used to pre-characterize the current spikes on the supply system for each
type and for each size of gates present in the chip. Note that there are no more than hundreds of types
and sizes of gates on a chip. Hence this operation is reasonably fast, and it gives a table with al the
current waveformsi(t) produced by each type and size of gate.

2. Thedigital circuit is then simulated by an event driven simulator. Such a simulator works at the gate
level, not at the transistor level such as for example Spice. Thisisacommon method for digital circuit
timing verification.

e Each gateis pre-characterized by its propagation delay d;.

e A queue of eventsisinitialized at the clock signal. Each element in a queue will contain a gate
and the time when that gate is supposed to begin its switching action.

e Every time agate j is extracted from the queue, new events corresponding to the gate fun-outs
areinserted in the queue at a new time position tpay:

tnew = tpresent + dj (16.2)

wheretpresent 1S the present simulation time
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The output of the event driven simulator, for our purposes, is the queue itself, indicating what gate is
switching and at what exact time it switches during the clock period. The event simulation does not
need to solve any circuit equation, hence it is extremely fast. For example, even millions of gates can
be simulated for many clock cyclesin no time.

3. The fina current waveform on the Vdd and ground system can be calculated ssmply adding all the
contributions from all the switching gates, according to the information in the event queue. Thisis
basically a convolution operation:

ot (t) = Y1 (t— 1)) (16.3)
J

where t; isthetime gate j begins switching, and i j(t) is the current waveform on the supply obtained
from the table for the type and size of gate in consideration.

The result of this procedure is the high frequency current waveform present on the supply system. In
order to have a significant information on the typical chip operation mode, we need to run the event driven
simulator for hundreds or thousands of clock cycles, varying the inputs of the circuit. Such operation, as
mentioned aboveis still very fast, having about linear computational complexity both in the size of the circuit
and in the number of simulated clock cycles. Finaly, we can apply a Fast Fourier Transform on the time
domain current waveform to obtain the desired spectrum.

Further developments

The technique just described has the disadvantage of calculating the current for a very specific evolution
of the input vectors. 1t would be of utmost importance to develop instead a technique to cal culate an upper
bound for the current spectrum at each clock harmonic for all possible input vector evolutions.

Estimation of the internal capacitance

Capacitance between Vdd and ground can substantially reduce the conducted emissions we are consid-
ering in this section. Some capacitance is aready present inside the chip as parasitics of the transistors.
Consider for example the simple CMOS inverter in Fig. 16.2. During the clock periodsin which such gateis

J%L

Gnd

Figure 16.2: Smple CMOSinverter showing parasitic capacitancesthat can supply charge to adjacent gates
when the inverter is not switching.

not switching, Gate-to-Source capacitances Cgys, and Drain-to-Source parasitic capacitances Cys can provide
some charge storage capability from Vdd to ground. Hence, nearby switching gates can use such charge,
reducing the high frequency currents on the global Vdd and ground system. Some discussion with signal
integrity experts during a brief experiencein the HP Research Labs in California, together with some prelim-
inary simulations, show that the effect of such capacitance on large chips with reduced switching activity can
be considerable.
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One simple way to estimate this “parasitic” decoupling capacitanceis as follows:

e Usealayout parasitic extractor to calculate the capacitance C; for each type and each size of the gates
present on the chip.

e Usethe results of the event driven simulation in the previous section to estimate the switching activity
oj of each gatein the circuit.

e Estimate the average capacitance available using

Cot = D,(1-)C; (16.4)

J

16.2.2 Model of the Vdd and ground system

The entire Vdd and ground system needs to be included in this model. In particular we want to capture
any resonance the Vdd and ground system might have. Hence, we apply to al interconnectsin the Vdd and
ground system the same full wave PEEC-type discretization we used in Chapter 3 for our EMI simulator. We
obtain a huge equivalent circuit network of type shown in Fig. 3.6. Thiscircuit network can be expressed as
a huge passive linear system. We apply to such system the Multipoint Expansion Reduced Order Modeling
technique described in Part 11, obtaining a much smaller linear system with the same poles and resonances
of the original one. This passive linear system can be expressed as a simple circuit which can be connected
to the model developed before for the excitation sources (Fig. 16.1) giving the final simple circuit model in
Fig. 16.3. Building the Vdd and ground reduced order model takes as much time as a system simulation. But

Decoupling cap

1
T

Figure 16.3: Smple circuit models for sizing of decoupling capacitors. On the left we capture the current
spectrum and internal capacitance of a digital switching block. On the right, we capture frequency dependent
impedance and resonances of the Vdd and ground network with a reduce order model containing the dominant

poles of the network.

we can observe that once the mode is built, it can be used for the sizing of all decoupling capacitors on the
board (or on the chip).

16.2.3 An alternative approach: exploiting parameterized model order reduction

Asan alternative one can think of using the parameterized model produced by the a gorithmsin Chapter 15
in conjunction with afunction optimizer in order to size decoupling capacitors.
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Part IV

Conclusions
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The pervasive development of Systems-on-Package and Systems-on-Chip in future high frequency elec-
tronic system scenario will require design styles based on the assembling of components “encapsulated” and
pre-characterized with respect to all levels of abstraction, from the functional to the physical. Inthisthesiswe
have addressed the physical problem, considering all sorts of electromagnetic interference phenomena, from
the quasi-static electric field cross-talk, or magnetic inductive coupling, all to way to the full-wave propagat-
ing electromagnetic fields. Specifically, we have developed techniques for enabling analysis, modeling and
synthesis of high frequency interconnect:

¢ Analysis tools should be able to handle extremely large collection of interconnect. Fast solvers exist
with an affordable computational complexity O(nlog(n)), wherenisthe number of discretization basis
functionsfor the Mixed Potential Integral Equation (MPIE). However, when using the standard piece-
wise constant basis functions to discretize wires into short and thin filaments, the thousands of closely
interacting thin filaments min each wire cross-section cannot exploit the fast solver acceleration, and
need to be resolved directly resulting in a deleterious computational complexity O(m?). In order to
overcome such problem, in thisthesis we have devel oped two new sets of higher order basis functions.
Our basis functions are constructed using the same Helmholtz equation that the current is supposed to
satisfy inside each conductor. The conduction modes basis functions are obtained by solving analyt-
ically such equation in rectangular of circular cross-sections. The proximity template basis functions
are obtained by solving instead numerically the same equation for any shape of wire cross-section.
In both our sets, our implementation results show that twenty times fewer basis functions are needed
to produce the same solution accuracy obtained with the piecewise constant basis. Hence our basis
functions reduce runtime and memory requirements by factors of 400.

e Modeling tools should be able to produce model s of very large collections of interconnect that are both
as accurate as an electromagnetic field solver, and at the same time small enough to be used effectively
in a higher level circuit simulator in conjunction with other models. When used in a time domain
circuit simulator, it is very important that such interconnect models are numerically well-behaved.
Specifically, we need to guarantee that the produced interconnect models are passive, otherwise en-
ergy can be generated from nothing, and the simulation may easily become numerically unstable. A
recently established procedureto produce small interconnect modelsis to use afield solver to generate
alarge dynamical system description, then reduce such system to an intermediate size system using
not-optimal but computationally efficient Krylov-subspace projection framework methods. Finally one
can use an optimal but computationally demanding Truncated Balance technique to squeeze the inter-
mediate model to the final small model. Algorithms to guarantee passivity of the reduced model are
available only for the first step, and only for the case on a collection of conductors in a quasi-static
assumption. In this thesis we have developed algorithms to guarantee passivity at the first reduction
step for structures that include also dielectrics. Furthermore, we have devel oped algorithmsto guaran-
tee passivity at the first reduction step for distributed systems, i.e. systems with frequency dependent
matrix descriptorsE(s), A(s). Such systems are typically encountered when integrated circuit substrate
are present and are treated using special Green functions, or when system dimensions are not small
compared to wavelength and are treated with full-wave analysis, or finally when higher order basis
functions are used for the discretization of the MPIE as our *“conduction modes”. We have also devel-
oped a model order reduction technique for the “second reduction step”. Our agorithm has the same
optimal compression properties of Truncated Balance but in addition our procedure can guarantee the
passivity of the reduced interconnect models.

e Synthesis tools for interconnect could be enabled by the availability of parameterized models that
can describe with the accuracy of an electromagnetic field solver performance changes as a function
of geometrical parameter changes (such as wire widths and separations), and in addition are small
enough to be used within an optimization loop. In this thesis we have developed such a geometrically
parameterized model reduction technique. The model generation approach presented is automatic,
and is based on series expansion of the parameter dependence followed by multi-parameter model-
reduction. The effectiveness of the techniques described were tested using a multi-line bus example.
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The experimental results clearly demonstrated the reduction strategies generated models that were
accurate over awide range of geometric variation.



179

Bibliography

(1]

(2]

(3]

[4]

(5]

(6]

[7]
(8]

[9]

(10]

(11]

[12]

(13]

. V.SI. Mirtual Socket Interface Alliance, Interface Sandardsfor Design Re-use of Virtual Components.
http://www.vsi.org/ .

M. Abramowitz and I. A. Stegun. Handbook of mathematical functions with formulas, graphs, and
mathematical tables. Washington: U.S. Govt. Print. Off., 1972.

M. I. Aksun and R. Mittra. Derivation of closed-form green’sfunctionsfor a general microstrip geom-
etry. IEEE Trans. on Microwave Theory and Techniques, 40(11):2055-62, November 1992,

B. D. Anderson and S. Vongpanitlerd. Network Analysis and Synthesis. Prentice-Hall, Englewood
Cliffs, New Jersey, 1973.

W. F. Arnold and A. J. Laub. Generalized eigenproblem algorithms and software for a gebraic Riccati
equations. Proc. IEEE, 72:1746-1754, 1984.

Rao SM. Wilton DR. Glisson AW. Rao sm. wilton dr. glisson aw. |1EEE Trans. on Antennas and
Propagation, AP-30(3):409-18, May 1982.

G. Bachmann, L. Narici, and E. Beckenstein. Fourier and wavelet analysis. Springer-Verlag, 2000.

Adedgji B. Badiru. Expert Systems Applications in Engineering and Manufacturing. Prentice-Hall,
Englewood Cliffs, NJ, 1992.

Z.Ba and R. W. Freund. Eigenvalue-based characterization and test for positive realness of scalar
transfer functions. |EEE Trans. Computer-Aided Design, 45(12):2396-402, December 2000.

Zhaojun Bai, Peter Feldmann, and Roland W. Freund. How to make theoretically passive reduced-
order models passive in practice. Technical Report Numerical Analysis Manuscript No.97-3-10, Bell
Laboratories, Lucent Technologies, Murray Hill, New Jersey, October 1997.

Zhaojun Bai, Peter Feldmann, and Roland W. Freund. Stable and passive reduced order models
based on partial pade approximation via the lanczos process. Technical Report Numerical Analysis
Manuscript No.97-3-10, Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey, October
1997.

J. E. Bracken, D. K. Sun, and Z. Cendes. Characterization of electromagnetic devices via reduced-
order models. Computer Methodsin Applied Mechanicsand Engineering, 169(3-4):311-330, February
1999.

J. Eric Bracken. Algorithms for passive modeling of linear interconnect networks. Technical report,
ECE, CMU, 1996.

[14] A. C. Cangellaris and M. Celik. Order reduction of high-speed interconnect electrical models: The

issue of passivity. In Proceedings of the 1998 IEEE Symposium on 1C/Package Design Integration,
pages 132-137, 1998.



180

(15]

(16]

(17]

(18]

(19]

[20]

(21]

[22]

(23]

[24]
[25]

[26]

[27]

(28]

BIBLIOGRAPHY

A. C. Cangellarisand V. Okhmatovsky. New closed-form electromagnetic green’s functionsin layered
media. In |[EEE MTT-SInternational Microwave Symposium, pages 1065-8, June 2000.

A. C. Cangellarisand L. Zhao. Passive reduced-order modeling of el ectromagnetic systems. Computer
Methods in Applied Mechanics and Engineering, 169(3-4):345-358, February 1999.

L. P. Carloni, K. L. McMillan, A. Saldanha, and A. L. Sangiovanni-Vincentelli. A methodology for
correct-by-costruction latency insensitive design. In International Conference on Computer Aided-
Design, November 1999.

M. Celik and A. C. Cangellaris. Efficient transient simulation of lossy packaging interconnects using
moment-matching techniques. |EEE Transactions on Components, Packaging, and Manufacturing
Technology, 19(1):64-73, February 1996.

M. Celik and A. C. Cangellaris. Simulation of multiconductor transmission lines using krylov subspace
order-reduction techniques. |EEE Trans. Computer-Aided Design, 16(5):485-496, May 1997.

H. Chang, E. Charbon, E. Malavasi, A. Sangiovanni-Vincentelli, and alt. A top-down constrain-driven
design methodology for anal og integrated circuits. Kluwer academic publ., Boston/L ondon/Dordrecht,
1997.

E. Charbon, G. Holmlund, B. Bonecker, and A. Sanviovanni-Vincentelli. A performance-driven router
for RF and microwave analog circuit design. In |[EEE 1995 Custom Integrated Circuits Conference,
1995.

E. Charbon, P. Miliozzi, L. P. Carloni, A. Ferrari, and A. L. Sangiovanni-Vincentelli. Modeling mod-
eling digital substrate noise injection in mixed-signal 1Cs. |EEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, 18, March 1999.

X. Chenand J. T. Wen. Positive real hess preserving model reductionwith h.. norm error bounds. |EEE
Transactions on Circuits and Systems |: Fundamental Theory and Applications, 42(1):23-29, January
1995.

W. C. Chew. Waves and fields in inhomogeneous media. |EEE Press, New York, 1995.

Eli Chiprout and Michael S. Nakhla. Analysis of interconnect networks using complex frequency
hopping (CFH). |EEE Trans. Computer-Aided Design, 14(2):186-200, February 1995.

Y. L. Chow, J. J. Yang, D. G. Fang, and G. E. Howard. A closed-form spatial green’s function for the
thick microstrip substrate. |EEE Trans. on Microwave Theory and Techniques, 39(3):588-592, March
1991.

C. Codho, J. R. Phillips, and L. M. Silveira. On generating compact, passive models of frequency-
described systems. In Symposium on Integrated Circuits and Systems, Porto Alegre, RS, Brazil,
September 2002.

CarlosP. Coelho, Joel R. Phillips, and L. Miguel Silveira. A convex programming approach to positive
real rational approximation. In Proc. of IEEE/ACM International Conference on Computer Aided-
Design, pages 245-251, San Jose, CA, November 2001.

[29] J. S. Colburn, M. A. Jensen, and Y. Rahmat-Samii. Comparison of MOM and FDTD for radiation

(30]

and scattering involving dielectric objects. In Proc. of the IEEE Antennas and Propagation Society
International Symposium, pages 1802-5, 1994.

K. M. Coperich, A. E. Ruehli, and A. Cangellaris. Enhanced skin effect for partial -element equivalent-
circuit (PEEC) models. |EEE Trans. on Microwave Theory and Techniques, 48(9):1435-42, September
2000.



BIBLIOGRAPHY 181

(31]

(32]

(33]

[34]

(35]

[36]

[37]

(38]

[39]

[40]

(41]

[42]

[43]

[44]

[45]

L. Daniel, C. S. Ong, S. C. Low, K. H. Lee, and J. K. White. A multiparameter moment match-
ing model reduction approach for generating geometrically parameterized interconnect performance
models. |EEE Trans. on Computer-Aided Design of Integrated Circuits and Systems. Accepted for
publication.

L. Daniel, C. S.Ong, S. C. Low, K. H. Lee, and J. K. White. Geometrically parameterized interconnect
performance modelsfor interconnect synthesis. In International Symposiumin Physical Design, pages
202-207, San Diego, CA, USA, April 2002.

L. Daniel and J. R. Phillips. Model order reduction for strictly passive and causal distributed systems.
In Proc. of the [IEEE/ACM Design Automation Conference, New Orleans, LA, June 2002.

L. Daniel, A. Sangiovanni-Vincentelli, and J. K. White. Techniques for including dielectrics when
extracting passive low-order models of high speed interconnect. |EEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems. in process of being submitted for publication.

L. Daniel, A. Sangiovanni-Vincentelli, and J. K. White. Interconnect electromagnetic modeling using
conduction modes as global basis functions. In IEEE Topical Meeting on Electrical Performance of
Electronic Packaging, pages 203-206, Phoenix, AZ, October 2000.

L. Daniel, A. Sangiovanni-Vincentelli, and J. K. White. Techniquesfor including dielectrics when ex-
tracting passive low-order models of high speed interconnect. In Proc. of the IEEE/ACM International
Conference on Computer-Aided Design, San Jose, CA, November 2001.

L. Daniel, A. Sangiovanni-Vincentelli, and J. K. White. Using conduction modes basis functions for
efficient electromagnetic analysis of on-chip and off-chip interconnect. In Proc. of the IEEE/ACM
Design Automation Conference, Las Vegas, June 2001.

L. Daniel, A. Sangiovanni-Vincentelli, and J. K. White. Proximity templates for modeling of skin and
proximity effects on packages and high frequency interconnect. In Proc. of the IEEE/ACM Interna-
tional Conference on Computer-Aided Design, San Jose, CA, November 2002.

L. Danidl, J. K. White, and Alberto Sangiovanni-Vincentelli. Conduction mode basis functions for
capturing skin and proximity effectsin an integral equation electromagnetic field solver. |EEE Trans.
on Computer-Aided Design of Integrated Circuits and Systems. submitted for publicationin 2001.

E. M. Dedley. Surface impedance near edges and cornersin three-dimensional media. IEEE Trans. on
Magnetics, 2:712-714, 1990.

James W. Demmel. Applied Numerical Linear Algebra. SIAM Society for Industrial and Applied
Mathematics, Philadelphia, 1997.

I. M. Elfadel and David D. Ling. Zeros and passivity of Arnoldi-reduced-order modelsfor interconnect
networks. In 34" ACM/IEEE Design Automation Conference, pages 28-33, Anaheim, California, June
1997.

I. M. Elfadel and David. L. Ling. A block rational arnoldi algorithm for multipoint passive model-order
reduction of multiport RLC networks. In Proc. of IEEE/ACM International Conference on Computer
Aided-Design, pages 66-71, San Jose, California, November 1997.

D. Fairbairn and D. Anderson. The vs dliance: the journey from vision to production. electronic
design. Penton Publishing, 46:86-92, January 1998.

P. Feldmann and R. W. Freund. Efficient linear circuit analysis by Padé approximation viathe Lanczos
process. |EEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 14:639-
649, 1995.



182

[46]

[47]

(48]

[49]

(50]

(51]

(52]
(53]

(54]

[55]

(56]

(57]

(58]

(59]

(60]

(61]

[62]
(63]

(64]

BIBLIOGRAPHY

Peter Feldmann and Roland W. Freund. Reduced-order modeling of large linear subcircuits via a
block Lanczos algorithm. In 32" ACM/IEEE Design Automation Conference, pages 474-479, San
Francisco, CA, June 1995.

R. W. Freund and P. Feldmann. Reduced-order modeling of large linear passive multi-terminal cir-
cuits using matrix-pade approximation. In Proc. of IEEE/ACM International Conference on Computer
Aided-Design, pages 456-460, San Jose, CA, 1997.

Roland W. Freund and Peter Feldmann. Reduced-order modeling of large linear passive multi-terminal
circuits using matrix-padé approximation. In DATE'98 - Design, Automation and Test in Europe,
Exhibition and Conference, pages 530-537, Paris, France, February 1998.

K. Gdlivan, E. Grimme, and P. Van Dooren. Asymptotic Waveform Evaluation viaa L anczos M ethod.
Applied Mathematics Letters, 7(5):75-80, 1994.

A. W. Glisson. Anintegra equation for electromagnetic scattering from homogeneous dielectric bod-
ies. |IEEE Trans. on Antennas and Propagation, AP-32(2):173-175, February 1984.

Keith Glover. All optimal Hankel-norm approximations of linear multivariable systems and their L =°-
error bounds. International Journal on Control, 39(6):1115-1193, June 1984.

M. Green. Balanced stochastic realizations. Linear Algebra Apps., 98:211-247, 1988.

Eric Grimme. Krylov Projection Methods for Model Reduction. PhD thesis, Coordinated-Science
Laboratory, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, 1997.

R. F. Harrington. Field Computation by Moment Methods. MacMillan, New York, 1968.

P. Heydari and M. Pedram. Model reduction of variable-geometry interconnects using variational
spectrally-weighted balanced truncation. In Proc. of IEEE/ACM International Conference on Comt
puter Aided-Design, San Jose, CA, November 2001.

Chung-Wen Ho, Albert E. Ruehli, and Pierce A. Brennan. The modified nodal approach to network
analysis. |[EEE Transactions on Circuits and Systems, 22(6):504-509, June 1975.

Roger A. Horn and Charles R. Johnson. Topics in Matrix Analysis. Cambridge University Press,
Cambridge, 1991.

T. Hubing, J. Drewniak, T. Van Doren, and N. Kashyap. An expert system approachto EMC modeling.
In In the Proc. of the IEEE International Symposiumin Electromagnetic Compatibility, 1996.

T. Hubing, P. Grover, T. Van Doren, J. Drewniak, and L. Hill. An agorithm for automated printed
circuit board layout and routing evaluation. In In the Proc. of the IEEE International Symposiumin
Electromagnetic Compatibility, 1993.

M. Hunt and J. A. Rowson. Blocking in a system on a chip. |EEE Spectrum, 33:35-41, November
1996.

V. lonescu, C. Oara, and M. Weiss. General matrix-pencil techniques for the solution of algebraric
Riccati equations: aunified approach. | EEE Transactions on Automatic Control, 42:1085-1097, 1997.

J. D. Jackson. Classical Electrodynamics. John Wiley, New York, 1975.

I. M. Jaimoukha and E. M. Kasenadlly. Krylov subspsace methods for solving large Lyapunov equa-
tions. SSAM Journal on Numerical Analysis, 31:227-251, 1994.

I. M. Jaimoukha and E. M. Kasenally. Oblique projection methods for large scale model reduction.
SAM J. Matrix Anal. Appl., 16:602—-627, 1995.



BIBLIOGRAPHY 183

(65]

(66]

(67]

(68]

(69]

[70]

[71]

[72]

(73]

[74]

[79]

[76]

[77]
(78]

[79]

(80]

M. Kamon. Fast parasitic extraction and simulation of three-dimensional interconnect via quasistatic
analysis. PhD Thesis, Massachusetts I nstitute of Technology, Cambridge, MA, 1998.

M. Kamon, N. Marques, L. M. Silveira, and J. K. White. Automatic generation of accurate circuit
models. IEEE Trans. on Components, Packaging, and Manufact. Tech., August 1998.

M. Kamon, N. Marques, and J. K. White. FastPep: afast parasitic extraction program for complex
three-dimensional geometries. In Proc. of the IEEE/ACM International Conference on Computer-
Aided Design, pages 456-460, San Jose, CA, November 1997.

M. Kamon, M. J. Tsuk, and J. K. White. FASTHENRY: A multipole-accelerated 3-D inductance
extraction program. |EEE Trans. on Microwave Theory and Techniques, 42(9):1750-8, September
1994,

Mattan Kamon, Frank Wang, and Jacob K. White. Generating nearly optimally compact models from
Krylov-subspace based reduced-order models. |EEE Transactions on Circuits and Systems|1: Analog
and Digital Sgnal Processing, 47(4):239-248, April 2000.

W.H. Kao, Zhang Qian-Ling, Tang Ting-Ao, and Yu Huihua. A new block-based design methodology
and cad toolset for mixed signal ASIC design. In 2nd International Conference on AS C Proceedings,
1996.

S. Kapur and D. Long. Large scale capacitance calculations. In Proc. of the IEEE/ACM Design
Automation Conference, pages 744-9, L os Angeles, June 2000.

A. E. Kenndlly, F. A. Laws, and P. H. Pierce. Experimental researches on skin effect in conductors.
Trans. A.l.E.E., 34-11:1749-85, September 1915.

K. J. Kerns, I. L. Wemple, and A. T. Yang. Stable and efficient reduction of substrate model networks
using congruence transforms. In Proc. of IEEE/ACM International Conference on Computer Aided-
Design, pages 207 — 214, San Jose, CA, November 1995.

K.J. Kerns, I. L. Wemple, and A. T. Yang. Preservation of passivity during RLC network reductionvia
split congruence transformations. In 34" ACM/IEEE Design Automation Conference, pages 34-39,
Anaheim, California, June 1997.

D. Kirkpatrick and A. L. Sangiovanni-Vincentelli. Techniquesfor crosstalk avoidance in the design of
high-performancedigital systems. In Proc. of the IEEE/ACM International Conference on Computer-
Aided Design, San Jose, CA, November 1994.

B. M. Kolundzijaand V. V. Petrovic. Comparison of MoM/SIE, MoM/V|E and FEM based on topo-
logical analysis of two canonical problems. In Proc. of the IEEE Antennas and Propagation Society
International Symposium, pages 2747, 1998.

E. S. Kuhand R. A. Rohrer. Theory of Linear Active Networks. Holden-Day, San Francisco, 1967.

A. J. Laub, M. T. Heath, C. C. Paige, and R. C. Ward. Computation of system balancing transfor-
mations and other applications of simultaneous diagonalization algorithms. |EEE Transactions on
Automatic Control, 32:115-122, 1987.

Jing-Rebecca Li. Model Reduction of Large Linear Systems via Low Rank System Gramians. PhD
thesis, Massachusetts I nstitute of Technology, Cambridge, MA, September 2000.

Jing-RebeccalLi, F. Wang, and J. K. White. An efficient lyapunov equation-based approach for gener-
ating reduced-order models of interconnect. In 36" ACM/IEEE Design Automation Conference, pages
1-6, New Orleans, Louisiana, June 1999.



184

(81]

(82]

(83]

(84]

(85]

(86]

(87]

(88]

(89]

[90]

[91]

[92]

(93]

(94]

[95]

BIBLIOGRAPHY

Jing-Rebeccal.i, F. Wang, and J. K. White. Efficient model reduction of interconnect via approximate
system grammians. In Proc. of IEEE/ACM International Conference on Computer Aided-Design,
pages 380-383, SAN JOSE, CA, November 1999.

Y Liu, Lawrence T. Pileggi, and Andrzej J. Strojwas. Model order-reduction of RCL interconnect
including variational analysis. In Proc. of the ACM/IEEE Design Automation Conference, pages 201-
206, New Orleans, Louisiana, June 1999.

J. LoVetri, S. Abu-Hakima, A. Podgorski, and G. Costache. Hardsys: Applying expert system tech-
niques to electromagnetic hardening. In In the Proc. of the |EEE International Symposiumin Electro-
magnetic Compatibility, pages 23-25, May 1989.

J. LoVetri and A. Podgorski. Evaluation of hardsys. asimple emi expert system. In In the Proc. of the
|EEE International Symposiumin Electromagnetic Compatibility, 1990.

E. Maavasi, E. Charbon, and A. Sangiovanni-Vincentelli. Automation of ic layout with analog con-
strains. |EEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, 1996.

N. Marques, M. Kamon, J. K. White, and L. M. Silveira. A mixed nodal-mesh formulation for efficient
extraction and passive reduced-order modeling of 3D interconnects. In Proc. of the IEEE/ACM Design
Automation Conference, pages 297-302, San Francisco, CA, June 1998.

Nuno Marques, Mattan Kamon, Jacob K. White, and L. Miguel Silveira. An efficient algorithm for
fast parasitic extraction and passive order reduction of 3d interconnect models. In DATE' 98 - Design,
Automation and Test in Europe, Exhibition and Conference, pages 538-548, Paris, France, February
1998.

Nuno Marques, Mattan Kamon, Jacob K. White, and L. Miguel Silveira. A mixed nodal-mesh for-
mulation for efficient extraction and passive reduced-order modeling of 3d interconnects. In 35t
ACM/IEEE Design Automation Conference, pages 297-302, San Francisco, CA, USA, June 1998.

Y. Massoud and J. K. White. Improving the generality of the fictitious magnetic charge approach to
computing inductances in the presence of permeable materials. In Proceedings of the 2002 Design
Automation Conference, pages 552-555, June 2002.

K. A. Michalski and J. R. Mosig. Multilayered media green’s functions in integral equation formula-
tions. IEEE Trans. on Antennas and Propagation, 45(3):508-519, March 1997.

P. Miliozz, L. Carloni, E. Charbon, and A. Sangiovanni-Vincentelli. SubWave: a methodology for
modeling digital substrate noise injection in mixed-signal ICs. In Custom Integrated Circuit Confer-
ence, pages 385-388, 1996.

H. Mission, S. Charruau, J. C. Moulondo, and A. Touboul. Designing emc-free multilayered substrates
within the mentor graphics cad system. In 1993 International Symposiumin Microelectronics, pages
597-604, 1993.

Bruce Moore. Principal Component Analysis in Linear Systems: Controllability, Observability, and
Model Reduction. |EEE Transactions on Automatic Control, AC-26(1):17-32, February 1981.

K. Naborsand J. K. White. FastCap: amultipole accel erated 3-d capacitance extraction program. |IEEE
Trans. on Computer-Aided Design of Integrated Circuits and Systems, 10(11):1447-59, November
1991.

Tuyen V. Nguyen, Jing Li, and Zhaojun Bai. Dispersive coupled transmission line simulation using an
adaptive block lanczos algorithm. In Proc. of the International Custom Integrated Circuits Conference,
pages 457-460, 1996.



BIBLIOGRAPHY 185

[96]

B. Ninness and F. Gustafsson. A unifying construction of orthonormal bases for system identification.
| EEE Transactions on Automatic Control, 42:515-521, 1997.

[97] A. Odabasioglu, M. Celik, and L. T. Pileggi. PRIMA: passive reduced-order interconnect macromod-

eling algorithm. 1EEE Trans. Computer-Aided Design, 17(8):645-654, August 1998.

[98] A. Odabasioglu, M. Celik, and L. T Pileggi. Practical considerations for passive reduction of RLC

circuits. In Proc. of [EEE/ACM International Conference on Computer Aided-Design, pages 214-219,
San Jose, CA, November 1999.

[99] Altan Odabasioglu, Mustafa Celik, and Lawrence Pileggi. Prima: Passive reduced-order intercon-

nect macromodeling algorithm. In Proc. of IEEE/ACM International Conference on Computer Aided-
Design, pages 58-65, San Jose, California, November 1997.

[100] Altan Odabasioglu, Mustafa Celik, and Lawrence Pileggi. Prima: Passive reduced-order interconnect

[101]

[102]

[103]
[104]

[105]

[106]

(107]

[108]

[109]

[110]

[111]

macromodeling algorithm. Technical report, Carnegie-Mellon University, Pittsburgh, PA, 1997.

P. C. Opdenacker and E. A. Jonckheere. A contraction mapping preserving bal anced reduction scheme
and itsinfinity norm error bounds. | EEE Transaction on Circuits and Systems, 35(2):184-189, Febru-
ary 1988.

S. Pasha, A. C. Cangdllaris, J. L. Prince, and M. Celik. Passive model order reduction of multiconduc-
tor interconnects. In IEEE 7th Topical Meeting on Electrical Performance of Electronic Packaging,
pages 291-294, 1998.

C. Paul. Introduction to electromagnetic compatibility. Wiley, New York, 1992.

J. R. Phillips. Model reduction of time-varying linear systems using approximate multipoint krylov-
subspace projectors. In Proc. of IEEE/ACM International Conference on Computer Aided-Design,
pages 96-102, Santa Clara, California, November 1998.

J. R. Phillips. Automated extraction of nonlinear circuit macromodels. In Proceedings of the Custom
Integrated Circuit Conference, pages 451-454, Orlando, FL, May 2000.

J. R. Phillips. Projection frameworks for model reduction of weakly nonlinear systems. In 371
ACM/IEEE Design Automation Conference, pages 184189, 2000.

J. R. Phillips, E. Chiprout, and D. D. Ling. Efficient full-wave electromagnetic analysis via model-
order reduction of fast integral transforms. 1n 33"4 ACM/IEEE Design Automation Conference, pages
377-382, Las Vegas, Nevada, June 1996.

J. R. Phillips, L. Daniel, and M. Silveira. Guaranteed passive balancing transformations for model
order reduction. In Proc. of the IEEE/ACM Design Automation Conference, New Orleans, LA, June
2002.

J. R. Phillips, L. Daniel, and M. Silveira. Guaranteed passive balancing transformations for model
order reduction. 1EEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, 2003.
Accepted for publication.

J.R. Phillipsand J. K. White. A Precorrected-FFT method for el ectrostatic analysis of complicated 3-D
structures. |EEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, 16(10):1059-
1072, October 1997.

Lawrence T. Pillage and Ronald A. Rohrer. Asymptotic Waveform Evaluation for Timing Analysis.
| EEE Transactions on Computer-Aided Design, 9(4):352-366, April 1990.



186

[112]

[113]

[114]

[115]

[116]

(117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

BIBLIOGRAPHY

Lawrence T. Pillage and Ronald A. Rohrer. Asymptotic Waveform Evaluation for Timing Analysis.
|EEE Trans. Computer-Aided Design, 9(4):352-366, April 1990.

C. Prud’homme, D. Rovas, K. Veroy, Y. Maday, A.T. Patera, and G. Turinici. Reliable real-time
solution of parametrized partia differential equations. Reduced-basis output bounds methods. Journal
of Fluids Engineering, 2002.

S. Pullela, N. Menezes, and L.T. Pileggi. Moment-sensitivity-based wire sizing for skew reductionin
on-chip clock nets. |IEEE Trans. Computer-Aided Design, 16(2):210-215, February 1997.

P. Rabiei and M. Pedram. Model order reduction of large circuits using balanced truncation. In Asia
and South Pacific Design Automation Conference, pages 237-240, Hong Kong, Hong Kong, January
1999.

P. Rabiel and M. Pedram. Model reduction of variable-geometry interconnects using variational
spectrally-weighted balanced truncation. In Proc. of IEEE/ACM International Conference on Comt
puter Aided-Design, pages 586-591, San Jose, CA, USA, November 2001.

O. M. Ramahi and B. Archambeault. Adaptive absorbing boundary conditionsin finite-differencetime
domain applications for emc simulations. |EEE Trans. on Electromagnetic Compatibility, 37(4):580-
3, November 1995.

S. Ramo, J. R. Whinnery, and T. Van Duzer. Fields and Waves in communication electronics. Wiley,
1994,

M. Rewienski and J. K. White. A trgjectory piecewise-linear approach to model order reduction and
fast simulation of nonlinear circuits and micromachined devices. In Proc. of IEEE/ACM International
Conference on Computer Aided-Design, pages 2527, San Jose, CA, USA, November 2001.

J. Roychowdhury. Reduced order modeling of linear time-varying systems. In Proc. of IEEE/ACM In-
ternational Conference on Computer Aided-Design, pages 92-96, Santa Clara, California, November
1998.

A. E. Ruehli. Equivalent circuit models for three dimensional multiconductor systems. |EEE Trans.
on Microwave Theory and Techniques, 22:216-221, March 1974.

A. E. Ruehli and H. Heeb. Circuit model sfor three-dimensional geometriesincluding dielectrics. |EEE
Trans. on Microwave Theory and Techniques, 40:1507-1516, July 1992.

M. G. Safonov and R. Y. Chiang. A Schur method for balanced truncation model reduction. |EEE
Transactions on Automatic Control, 34:729-733, 1989.

B. G. Salman and A. McCowen. A comparative study of the computation of near-field scattering from
resonant dielectric/pec scatterers. |EEE Trans. on Magnetics, 32(3):866-9, May 1996.

T. K. Sarkar and E. Arvas. Anintegral equation approach to the analysis of finite microstrip antennas:
Volume/surface formulation. |EEE Trans. on Antennas and Propagation, 38(3):305-312, March 1990.

T. K. Sarkar, S. M. Rao, and A. R. Djordjevic. Electromagnetic scattering and radiation from finite
microstrip structures. |EEE Trans. on Microwave Theory and Techniques, 38(11):1568-75, November
1990.

H. Schmidt, D. Theune, R. Thiele, and T. Lengauer. EM C-Driven midway routing on PCBs. InInthe
Proc. of the IEEE International Symposiumin Electromagnetic Compatibility, 1995.

L. M. Silveira, M. Kamon, |. Elfadel, and J. K. White. Coordinate-transformed arnoldi algorithm for
generating guarantee stable reduced-order models of RLC. Computer Methods in Applied Mechanics
and Engineering, 169(3-4):377-89, February 1999.



BIBLIOGRAPHY 187

[129]

[130]

[131]

[132]

[133]

(134]

[135]

[136]

(137]

[138]

[139]

[140]

[141]

[142]

L. Miguel Silveira, Ibrahim M. Elfadel, Jacob K. White, Monirama Chilukura, and Kenneth S. Kun-
dert. Efficient Frequency-Domain Modeling and Circuit Simulation of Transmission Lines. |IEEE
Transactions on Components, Packaging, and Manufacturing Technology — Part B: Advanced Packag-
ing, 17(4):505-513, November 1994,

L. Miguel Silveira, Mattan Kamon, and Jacob K. White. Algorithmsfor Coupled Transient Simulation
of Circuits and Complicated 3-D Packaging. IEEE Transactions on Components, Packaging, and
Manufacturing Technology, Part B: Advanced Packaging, 18(1):92-98, February 1995.

L. Miguel Silveira, Mattan Kamon, and Jacob K. White. Efficent reduced-order modeling of
frequency-dependent coupling inductances associated with 3-d interconnect structures. In Proceed-
ings of the European Design and Test Conference, Paris, France, March 1995,

L. Miguel Silveira, Nuno Marques, Mattan Kamon, and Jacob K. White. Improving the efficiency
of parasitic extraction and simulation of 3d interconnect models. In ICECS 99 - |EEE International
Conference on Electronics, Circuits and Systems, pages 1729-1736, Pafos, Cyprus, September 1999.

P. Silvester. Modal network theory of skin effect in flat conductors. Proc. |EEE, 54(9):1147-1151,
September 1966.

Michel F. Sultan and Andreas C. Cangellaris. System level approach for automotive electromagnetic
compatibility. In In the Proc. of the IEEE International Symposiumin Electromagnetic Compatibility,
1987.

D. R. Swatek and loan R. Ciric. Single source integral equation for wave scattering by multiply-
connected dielectric cylinders. |EEE Trans. on Magnetics, 32(3):878-881, May 1996.

J. Tausch and J. K. White. A multiscale method for fast capacitance extraction. In Proc. of the
|EEE/ACM Design Automation Conference, pages 537-42, New Orleans, LA, June 1999.

D. Theune, R. Thiele, W. John, and T. Lengauer. Robust methods for EM C-Driven routing. |EEE
Trans. on Electromagnetic Compatibility, 1994.

M. J. Tsuk and J. A. Kong. A hybrid method for the calculation of the resistance and inductance of
transmission lines with arbitrary cross section. |EEE Trans. on Microwave Theory and Techniques,
39(8):1338-1347, August 1991.

E. Tuncer, B. T. Lee, M. S. Idam, , and D. P. Neikirk. Quasi-static conductor loss calculations in
transmission lines using a new conformal mapping technique. |EEE Trans. on Microwave Theory and
Techniques, 42:1807-1815, September 1994.

E. Tuncer, B. T. Lee, and D. P. Neikirk. Interconnect series impedance determination using a surface
ribbon method. | EEE Topical Meeting on Electrical Performance of Electronic Packaging, pages 249
252, November 1994.

E. Tuncer and D. P. Neikirk. Efficient calculation of surface impedance for rectangular conductors.
Electronic Letters, 29(24):2127-2128, November 1993.

J. Wang, J. Tausch, and J. K. White. A wide frequency range surfaceintegral formulation for 3-D RLC
extraction. In Proc. of the IEEE/ACM International Conference on Computer-Aided Design, pages
453-7, San Jose, CA, 1999.

[143] W. T. Weeks, L. L. Wu, M. F. McAllister, and A. Singh. Resistive and inductive skin effect in rectan-

gular conductors. IBM J. Res. Develop., 23(6):652—-660, November 1979.



188 BIBLIOGRAPHY

[144] D. S. Welle, E. Michielssen, Eric Grimme, and K. Gallivan. A method for generating rational inter-
polant reduced order models of two-parameter linear systems. Applied Mathematics Letters, 12:93-
102, 1999.

[145] J. T. Wen. Time domain and frequency domain conditions for strict positive realness. |EEE Transac-
tions on Automatic Control, 33:988-992, 1988.

[146] J. C. Willems. Least squares stationary optimal control and the algebraic riccati equation. |EEE
Transaction on Automatic Control, 16(6):621-634, 1971.

[147] J. C. Willems. Dissipative dynamical systems. Arch. Rational Mechanics and Analysis, 45:321-393,
1972.

[148] M. Wu, C. Tse, and P. Chang. An integrated CAD tool for switching power supply design with
electromagnetic interference prediction. In 11th Annual Applied Power Electronics Conf. end Expo.,
pages 340-46, 1996.

[149] N. E. Wu and G. Gu. Discrete Fourier transform and h.. approximation. |EEE Transactions on Auto-
matic Control, 35(9):1044-1046, September 1990.

[150] J. Zhao, W. W. M. Dai, S. Kapur, and D. E. Long. Efficient three-dimensional extraction based on static
and full-wave layered green’s functions. In Proc. of the IEEE/ACM Design Automation Conference,
pages 224229, 1998.

[151] Z. Zhu, J. Huang, B. Song, and J. K. White. Improving the robustness of a surface integral formu-
lation for wideband impedance extraction of 3d structures. In Proc. of the IEEE/ACM International
Conference on Computer-Aided Design, pages 5927, San Jose, CA, 2001.

[152] Z. Zhu, J. Huang, B. Song, and J. K. White. Algorithmsin fastimp: afast and wideband impedance
extraction program for complicated 3-d geometries. In Proc. of the IEEE/ACM Design Automation
Conference, Los Angeles, CA, June 2003.



