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Abstract
Potential flow solvers for three dimensional aerodynamic analysis are commonly used in
industrial applications. The limitation on the number of discretization elements and the
user expertise and effort required to specify the wake location are two significant drawbacks
preventing the even more widespread use of these codes. These drawbacks are addressed
by the hands off, accelerated, unsteady, panel method with vortex particle wakes which is
described.

In the thesis, an unsteady vortex particle representation of the domain vorticity is cou-
pled to several boundary element method potential flow formulations. Source-doublet,
doublet-Neumannmembrane (doublet lattice), and source-Neumann boundary integral equa-
tion formulations are implemented. A precorrected-FFT accelerated Krylov subspace iter-
ative solution technique is implemented to efficiently solve the boundary element method
linear system of equations. Similarly, a Fast Multipole Tree algorithm is used to acceler-
ate the vortex particle interactions. Additional simplification of the panel method setup is
achieved through the introduction of a body piercing wake discretization for lifting bodies
with thickness.

Linear basis functions on flat panel surface triangulations are implemented in the accel-
erated potential flow framework. The advantages of linear order basis functions outweigh
the increased complexity of the implementation when compared with traditional constant
collocation approaches. Panel integration approaches for the curved panel, double layer self
term are presented. A quadratic curved panel, quadratic basis function, Green’s theorem
direct potential flow solver is presented.
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Chapter 1

Introduction

The solution of unsteady fluid dynamic flow around morphing bodies remains a challenge

for computational scientists. Several algorithms for handling this class of flows have been

proposed [1, 2, 3, 4, 5, 6, 7]; however, excessive computation time and power required

for moderate to high Reynolds Number flows as well as long setup times for complex

geometries limits the widespread use of the methods for practical design and analysis.

In this thesis a potential flow solver for simulating unsteady potential flows is presented.

Although unsteady potential flow approaches have been proposed in the past [35, 19, 21, 13,

14], the current method has a collection of distinct advantages for the solution of unsteady

flow around morphing bodies:

• Wake Body Intersections: A formulation which allows for body-piercing wakes is

presented, thereby relaxing the strict requirements of body conforming wakes.

• Particle Wake Representation: The approach makes use of a time dependent Vortex

Particle Method (VPM)[54, 57, 88] to represent domain vorticity rather than a dipole wake

sheet [21].

• Hands-off simulation of complex geometries: Due to the combined use of a vortex

particle wake representation and the implementation of body piercing wakes, hands off

simulation of potential flow around complex geometries is possible.

• Fast Acceleration Approaches: The precorrected-FFT algorithm (p-FFT)[84], and the

Fast Multipole Tree Method (FMT) [110, 70] are used to reduce the solution computational

complexity to O(N log(N)) (where N represents the number of unknowns in the system).

17



• Steady State Wake Location: The method has advantages for steady applications. In

particular, it does not require a wake geometry to be prescribed by the user.

• High order basis functions: New integration methods for the curved panel dipole are

presented. In addition, a method for computing the single layer self term integral over

curved surfaces similar to previous work in the field is implemented.

1.1 Panel Methods: A Brief History

Aerodynamics Panel Methods were first investigated in the late 1950s. Since their initial

development, they have been instrumental in the design, optimization and analysis of air-

craft and aerodynamic bodies [15, 16, 107, 18, 22, 23]. A brief outline of some salient

history of panel methods is presented:

1.1.1 BIEs in the Pre-1960s

Prior to the use of digital computers, basic analytical solutions to the potential flow Bound-

ary Integral Equations were employed [24, 25, 26]. The principle of linear superposition

of fundamental solutions such as point sources, and point doublets was used regularly to

solve potential problems[10]. The field of panel methods was born in 1958, when Smith

and Pierce from Douglas Aircraft Company used a discrete form of the boundary integral

equations to solve for the potential flow around bodies of revolution [29].

1.1.2 1960s - 1980s

With the success of the initial panel methods, the Smith group received support to con-

tinue development of panel methods for both two and three dimensional flow [78]. They

pioneered the panel method solution to the lifting body problem in 2-Dimensions [13] and

in 3-Dimensions [12]. The development continued to include higher order discretizations

of the BEM approach in 2-Dimensions[11]. The Douglas group panel methods were al-

most exclusively of Neumann type, using either source or vorticity distributions over the

surface [10]. In the 1970s, the Green’s Theorem perturbation potential based Dirichlet

18



problem was introduced by Morino [31]. There were also several variations of different

complexity of the surface singularity boundary element method/membrane lattice approach

[30, 121, 123].

The early panel methods were limited by computer memory and processing power.

Some alleviation of computational complexity was achieved by using multipole expansions

in place of analytical expressions for panel integral expressions for farfield evaluations;

however, the methods still required the solution of a dense linear system.

1.1.3 1980s - 1990s

During the 1980s, several low order three dimensional panel methods were developed

[34, 35, 107]. In addition to the low order methods (low order here referring to the constant

basis function approximation of the solution), several high order implementations were also

developed. These high order methods were developed for the benefits of increased solution

accuracy as well as for satisfying the solution continuity requirements imposed by super-

sonic flow applications. A combined Boeing and NASA effort resulted in PANAIR/A502,

a quadratic basis, flat-sub-element high order panel method [116, 36]. Additionally, HISSS

[37] a panel method based on PANAIR was developed. In the late 1980s PMARC [106]

was developed at NASA-Ames Research Center and was later released as a controlled

access computer program. Although the 1980s brought with them great advances in com-

putational power, limitations on computational time and memory still prevented large-scale

panel method solutions. Solutions with several thousand panels were routinely performed

on large computers; however, due to the coarseness of surface discretizations, limitations

on the practical use of panel methods existed. In addition to developments in three dimen-

sional solvers, two dimensional panel methods were being developed and used heavily for

inverse airfoil design [38, 27, 39, 28]. Furthermore, the use of boundary layer coupling was

investigated for incorporating viscous effects[38, 39].

In the 1980s several algorithmic developments were also made which have had a signif-

icant impact on the development of panel methods. These developments included iterative

solution methods, most notably for this thesis the development of Krylov subspace iterative
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solvers [100, 42, 43]. In addition to iterative solvers, several sparsification and acceleration

routines were also developed in order to facilitate the rapid computation of matrix vector

products of the dense BEM linear systems. The first category of fast methods involved

multipole expansion approximations of the farfield influences [110, 70, 86]. The second

category of methods relied on rapidly approximating farfield interactions using a Cartesian

background mesh[102, 50, 68].

1.1.4 1990s - present

By the 1990s panel methods had largely given way to higher fidelity Navier-Stokes and

Euler solvers [105, 51]. Although Eulerian reference frame domain solvers were being

heavily investigated, several Lagrangian based approaches were developed. The Vortex

Particle Method was refined and further investigated for the simulation of largely vortical

flow [54, 59, 56, 57, 60, 67]. The section which follows describes some of the history and

development of vortex particle methods. Despite the promise of Navier-Stokes solvers,

accurate viscous drag prediction remained an elusive task. In the 1990s several researchers

started to consider the problem of 3-Dimensional Integral Boundary Layer Methods[40, 41]

with some success.

The Fast Multipole Method [110] was used and further developed in practical boundary

element method solvers for many diverse disciplines [44, 49, 46]. In the early 1990s, the

precorrected-FFT algorithm [84] was developed. The precorrected-FFT approach provided

a kernel independent framework for the acceleration of BEM and N-body problems[45, 83].

In the 1990s and 2000s several panel method codes continued the advancement of higher

order approximations to the boundary integral equations[115, 117, 118, 119, 120, 123, 124,

125, 111], however, due to the complexity involved with higher order methods and the lack

of robust and efficient integration techniques for higher order approaches, their adoption in

the BEM community is limited in comparison with the popular constant collocation type

approaches.
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1.2 Vortex Particle Methods: Background and Previous

Work

Like the panel method, the vortex particle method (VPM) has a rich and long history which

is presented in several references [54, 57, 88]. Only some of the brief points of interest are

outlined in this section. The framework for Vortex Particle Methods originated well before

the digital computer age. In 1930, Rosenhead performed a dynamical vortex calculation

using singular point vortices [53]. The vortex particle method in 3-Dimensions was largely

derived from the 2-Dimensional method. Initial investigations in 3-Dimensions used vortex

filament approximations to account for the domain vorticity [58, 55]. The difficulty with the

vortex filament and sheet methods was the need to store the connectivity information. Beale

andMajda [57] proposed the first vortex blob method in which the vortex blob positions and

strengths were updated in a Lagrangian manner with no connectivity between the blobs.

Several advancements have been made to the vortex particle method since its inception

which can be found in the following works [54, 57, 59].

The use of vortex particles, vortex filaments as well as vortex sheets has been explored

for representation of domain vorticity in many diverse applications [60, 54, 59, 65, 67, 68].

Many current vortex particle methods are used for the simulation of turbulent flows. The

method has been found to be quite useful for the prediction of jet flows [66], turbulent

bluff-body wake flows [59], internal flows [67], etc.

Much like panel methods, the vortex particle approaches require the evaluation of an

N-body interaction problem at each step of the simulation. Since the particles advect in a

Lagrangian manner, their positions change at each timestep, requiring the re-computation

of inter-particle influences. With the development of O(Nlog(N)) algorithms such as the

Fast Multipole Tree [110], and particle in cell [102] methods, the particle based approaches

became viable for the large number of particles required to adequately resolve the flow

physics.
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1.2.1 Combined Panel Method - Vortex Method Approaches

Vorticity representation in panel method aerodynamics has been traditionally limited to

vorticity sheet and vortex filament approaches [113, 107, 10]. Although vortex particles

are used commonly for representing vorticity in unsteady 2-Dimensional aerodynamics

computations [61, 113, 65], the use of vortex particle methods to model lifting body vortex

wake sheets in 3-Dimensional aerodynamic panel methods has been limited to a small

number of researchers [62, 63, 64]. The previous use of the combined 3-Dimensional

panel method and vortex particle approach has been limited to applications in which a

lifting surface or series of lifting surfaces is considered isolated from the body (sails [64]

and wind turbines [62]). Combined panel method and vortex particle approaches require a

sufficiently high density of vortex particles to practically and accurately model the vortex

sheet; therefore, when acceleration methods are not considered, these approaches suffer

from large computational times and low accuracy. The vortex particle approach has also

been coupled to several boundary element potential flow methods in disciplines other than

aerodynamics; however, this coupling often involves approaches for modeling the near wall

viscous effects which are beyond the scope of this thesis [67, 69, 59].

1.3 Challenges with Panel Methods

Despite the comprehensive development of panel methods over the past several decades,

there are several drawbacks to existing methods which hinder their more common use,

namely:

• Stringent requirements for wake discretizations: There are two primary drawbacks

with current wake discretizations.

1. Due to the necessity to impose a potential jump in the wake region, there is a need to

have a body conforming wake surface mesh. This poses significant challenges in the

problem setup and meshing.

2. For unsteady problems, the development and accurate advection of the wake is of-

ten compromised when wing-body simulations are considered. Common problems
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include: intersection of the wake with downstream surfaces, the difficulty in wake-

body intersection meshing, and the time and effort required to compute full unsteady

flows.

By providing a panel method framework which incorporates an automatic wake generation

and advection approach, the difficulties associated with user expertise and user interference

will be reduced.

•Memory and Processor Imposed Limitations: Physical computer memory constraints

as well as unrealistic solution times hinder the applicability of panel methods to practical

problems. This limit on the number of elements prevents the interfacing of panel methods to

traditional CAD and CFD grid generation tools. In addition to the panel count limitations,

specific surface panel types (such as quadrilateral) often prevent the use of CAD and CFD

compatible discretizations. By ensuring a panel method can use the same surface grid

as a CFD tool will reduce the significant preprocessing workload for aircraft designers.

Often, preprocessing such as surface grid generation and geometry description is more

time consuming than solutions.

• Discrete Approximation to the Continuous Problem : Most panel methods in use

consider low order approximations for both the geometric discretization as well as the

solution basis representation. In particular, a common approach is the constant collocation

approximation on flat polygonal elements. Although the approach works well for many

simulations, it is shown in Chapter 3 that the method has several drawbacks. Increased

accuracy and faster convergence rates are a direct consequence of appropriately designed

higher order methods.

1.4 Thesis Outline

In the following chapters of this thesis, solutions to each of the drawbacks of the tradi-

tional panel method are presented. The resulting solution framework which is implemented

provides rapid simulations of potential flow simulations which are accurate, and easy to

compute. Chapter 2 outlines the applicable theory and Boundary Integral Equation formu-

lations considered. In chapter 3, a novel integration approach for high order curved panel
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integrals is presented for the double layer potential (the single layer potential approach is

also demonstrated and closely resembles traditional approaches). In chapter 4 approaches

for handling the wake vorticity are presented. In chapter 5, the details of the implementa-

tion of the panel method is presented. Finally in chapter 6 and chapter 7 validation, results

and conclusions are presented.
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Chapter 2

The Governing Equations

In this chapter the governing fluid dynamics equations are presented.

2.0.1 The Domain

Consider the domain illustrated in Fig. 2-1. A point position, "R(X, Y, Z, t), in space at a

given time, defined in the fixed-in-space global reference frame is:

"Rp = "RG + "rGp, (2.1)

where "RG is the position of the body frame origin, and "rGp is the position of point p relative

to the local body frame. A given point on the body will have a velocity with respect to the

global reference frame given by:

"Vp = "VG + "VGp + ("Ω× "rGp), (2.2)

where "VG represents the velocity of the body frame origin in global coordinates, "Ω is the

angular velocity, and "VGp represents the relative motion of the surface due to deformation

of the body (eg. deflection of a control surface). For clarity, body velocities are denoted by
"V and fluid velocities by "U .
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Figure 2-1: The domain of interest includes all fluid external to the aircraft surface. The
particles trailing the wing section, the vertical tail and horizontal stabilizer represent regions
in which vorticity exists due to the lifting surface trailing shear layer.

2.1 The Governing Flow Equations

In the paragraphs which follow, the governing equations and assumptions are presented.

2.1.1 The Boundary Conditions

At any point on a solid surface in the domain, a no penetrating flux boundary condition

(flow tangency condition) is given by:

n̂ · "U("R, t) = n̂ · ("VG + "VGp + "Ω× "rGp), (2.3)

where, n̂ is the outward unit normal vector on the body at a given point "R on the body

surface. The rate at which the perturbations in velocity decay with distance from a non-

lifting body is:

lim
"R→∞

"U("R, t) ≤ O

(
1

‖"R‖3

)
. (2.4)
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Similarly, for a lifting body, the velocity radiation condition is:

lim
"R→∞

"U("R, t) ≤ O

(
1

‖"R‖2

)
. (2.5)

The slower decay of the velocity in a lifting body simulation is due to the presence of the

trailing vorticity in the wakes.

2.1.2 Velocity Definition

The flow is assumed to be inviscid, incompressible and have constant density. Any vorticity

in the domain is localized on the thin wake regions trailing the lifting surfaces. Otherwise,

the flow is assumed to be irrotational. These assumptions greatly simplify the form of

the governing equations. The fluid velocity, "U("R, t) satisfies the following two farfield

conditions:

∇ · "U(∞, t) = 0, (2.6)

by the continuity requirement, and:

∇× "U(∞, t) = 0, (2.7)

by the farfield velocity decay boundary condition. As a consequence of the above fluid

velocity field properties, the fluid velocity, "U("R, t) at a given point in the domain can be

expressed as the superposition of a scalar potential component, "Uφ("R, t), and a solenoidal

vector potential component, "UΨ("R, t), using a Helmholtz decomposition [77]:

"U("R, t) = "Uφ("R, t) + "UΨ("R, t) = ∇φ +∇× "Ψ. (2.8)

The scalar potential component of the velocity is irrotational and any rotational effects

are captured in the vector potential component. The decomposition of the velocity field

into a scalar potential and a vector potential component is not commonly considered in

most panel method implementations. By performing the decomposition, the traditional

scalar potential boundary element method formulations can still be used; however, with
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the addition of the vector potential, wake vorticity can be modeled directly using vortex

distributions (volumes, sheets or points) rather than indirectly through the use of dipole

sheets.

In terms of the vector and scalar potentials, the boundary condition of equation 2.3 is:

n̂ · (∇φ +∇× "Ψ) = n̂ · ("VG + "VGp + "Ω× "rGp). (2.9)

Note that due to the inviscid flow assumption, only the normal velocity boundary condition

is applied at the body surface.

2.1.3 The Scalar Potential Relationships

The governing continuity equation for a constant density fluid is expressed in differential

form as:

∇ · "U = 0,

Substituting the velocity as defined in equation 2.8 into the continuity equation the resulting

mass conservation equation is:

∇ · (∇φ +∇× "Ψ) = ∇ · (∇φ) = ∇2φ = 0. (2.10)

Which is the Laplace’s equation for the scalar potential.

2.1.4 The Vector Potential Relationships

The Vector Potential - Vorticity Relationship

The vorticity in the domain, "ω("R, t), is defined as the curl of the velocity [8]:

∇× "U = "ω (2.11)

The velocity component due to the Vector Potential, "Ψ, is:

∇× "Ψ = "UΨ (2.12)
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Substituting the vector potential relationship (equation 2.12) into the definition of vorticity

(equation 2.11), and choosing the vector potential to be a solenoidal vector field (∇·"Ψ = 0),

results in:

∇2"Ψ = −"ω, (2.13)

which is a vector Poisson equation relating the vector potential to the vorticity.

The Vorticity Evolution Equation

The vorticity evolution equation is derived from the incompressible Euler equations [8],

∂"U

∂t
+ "U ·∇"U = −∇p

ρ
, (2.14)

where, ρ, is the fluid density, and p is the pressure. Taking the curl of eqn. 2.14, the

resulting equation for the vorticity evolution in the domain is [8],

D"ω

Dt
=

∂"ω

∂t
+ "U ·∇"ω = "ω ·∇"U (2.15)

where the term "ω ·∇"U on the right hand side represents the vorticity stretching (or how the

magnitude and direction of the vorticity changes as it is exposed to velocity gradients in the

flow field). The left hand side of the equation is simply the total derivative of the vorticity

with respect to time.

2.1.5 The Integral Equation Relationships for the Vorticity in the Do-

main

The vector Poisson equation governs the velocity vector potential (see equation 2.13). In

integral form, the vector potential due to the vorticity in the domain is:

"Ψ("r, t) =
1

4π

∫

V

"ω

‖"r − "r′‖dV ′, (2.16)
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where, V is the volume of the domain in which the vorticity, "ω, exists. The vorticity induced

velocity is determined by taking the curl of equation 2.16:

"UΨ = ∇× "Ψ("r, t) = ∇× 1

4π

∫

V

"ω

‖"r − "r′‖dV ′. (2.17)

The resulting expression in equation 2.17 for vortex filaments is the familiar Biot-Savart

law [113, 8]. Similarly, the associated component of the gradient of the velocity term used

for the vorticity stretching in the vorticity evolution equation is determined by taking the

gradient of equation 2.17.

2.2 Boundary Integral Equations for the Potential Flow

Equation

The derivation of the potential flow boundary integral equations is briefly presented in this

section. First, a general derivation is presented, following which is a closer examination of

the integral equation formulations.

2.2.1 Derivation of the Green’s theorem BIE

The following derivation is similar to that presented in [94, 127, 95, 96, 113]. Consider the

potential governed by Laplace’s equation:

∇2φ("r) = 0. (2.18)

A particular fundamental solution (Green’s function) to Laplace’s equation is:

G("r,"r′) =
1

‖"r − "r′‖ . (2.19)
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The following statements are a result of integrating by parts (for "r (= "r′) [25]:

∫

V

[
1

‖"r − "r′‖

]
∇2φ dV ′ =−

∫

V

(
∇

[
1

‖"r − "r′‖

]
·∇φ

)
dV ′+

∫

S

[
1

‖"r − "r′‖

]
n̂"r′ ·∇φ dS ′, (2.20)

and, similarly:

∫

V

φ∇2

[
1

‖"r − "r′‖

]
dV ′ =−

∫

V

(
∇

[
1

‖"r − "r′‖

]
·∇φ

)
dV ′+

∫

S

φ n̂"r′ ·∇
[

1

‖"r − "r′‖

]
dS ′, (2.21)

where, "r′ is the integration variable position on the boundary surface, S represents the

domain boundary surfaces under consideration, and n"r′ represents the boundary surface

normal (directed into the fluid domain) at the integration variable position. Combining

equations 2.20 and 2.21, results in:

∫

V

[(
1

‖"r − "r′‖

)
∇2φ

]
dV ′ =

∫

V

φ∇2

[
1

‖"r − "r′‖

]
dV ′+

∫

SW +SB+S∞+SSphere

[(
1

‖"r − "r′‖

)
∇φ− φ∇

(
1

‖"r − "r′‖

)]
· n̂"r′ dS ′. (2.22)

Figure 2-2 illustrates the boundaries of the fluid domain as well as the spherical exclusion

surrounding the point "r = "r′. The volume integrals in equation 2.22 are identically zero.

Hence the integral equation reduces to a boundary integral equation:

∫

SW +SB+S∞+SSphere

[
φ∇

(
1

‖"r − "r′‖

)
−

(
1

‖"r − "r′‖

)
∇φ

]
· n̂"r′ dS ′ = 0. (2.23)

Integration over the farfield boundary reduces to zero due to the radiation boundary con-

dition. The integration over the surface of the spherical exclusion region simplifies to

[113, 95]:

∫

SSphere

[
φ∇

(
1

‖"r − "r′‖

)
−

(
1

‖"r − "r′‖

)
∇φ

]
· n̂"r′ dS ′ = −4πφ("r). (2.24)
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Figure 2-2: The fluid domain considered in the derivation of the Green’s Theorem BIE

The result is the Greens Theorem boundary integral equation for describing the potential at

an evaluation point "r inside of the fluid domain:

φ("r) =
1

4π

∫

SB

∂φ

∂n"r′

[
1

‖"r − "r′‖

]
dS ′B −

1

4π

∫

SB+SW

φ
∂

∂n"r′

[
1

‖"r − "r′‖

]
dS ′B+W , (2.25)

2.2.2 BIE Formulations

In this work, the following Boundary Integral Equation formulations are considered:

1. The Greens Theorem Formulation: The traditional Greens theorem formulation [113,

95, 127] involves solving for the surface potential on the body boundary by specify-

ing the normal derivative according to the boundary conditions.

2. The Source-Doublet Formulation: The source doublet formulation [31, 113] is a com-

mon panel method formulation consisting of an interior and an exterior domain over

which potentials are defined. The jump in the potential is prescribed using doublets

and the jump in the normal derivative of the potential is prescribed using surface

sources.
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3. The Source-Neumann Formulation: The source-Neumann formulation [13] satisfies

the Neumann boundary condition directly. The potential and velocity in the domain

are computed using source singularities. In traditional source-Neumann formula-

tions, lift cannot be modeled; however, in this thesis a Source-Neumann method is

used with a wake piercing formulation to solve for the flow around lifting bodies.

4. The Doublet-Neumann Formulation: The doublet-Neumann formulation [113] con-

sidered is equivalent to a doublet lattice method. Doublets are placed onto an in-

finitely thin surface and their strengths are adjusted in order to satisfy the Neumann

boundary condition.

In the following paragraphs the above methods are presented.

The Direct Green’s Theorem BIE

The Green’s Theorem boundary integral equation for computing the potential at a point,

("r), in the fluid domain due to a non-lifting body is [95, 127, 113]:

φ("r) =
1

4π

∫

SB

∂φ

∂n"r′
("r′)

1

‖"r − "r′‖dS ′B −
1

4π

∫

SB

φ("r′)
∂

∂n"r′

[
1

‖"r − "r′‖

]
dS ′B, (2.26)

The lifting-body potential flow problem requires the addition of a potential jump in the

trailing wake region to account for the physical vorticity[113]. In equation 2.25 the fol-

lowing Green’s Theorem boundary integral equation expression resulted when a wake was

included in the domain:

φ("r) =
1

4π

∫

SB

∂φ

∂n"r′

[
1

‖"r − "r′‖

]
dS ′B −

1

4π

∫

SB+SW

φ
∂

∂n"r′

[
1

‖"r − "r′‖

]
dS ′B+W . (2.27)

In this case the potential, φ, includes a component due to the body, φB, and a component

due to the wake, φW .

A slightly different expression for the lifting body potential arises from a superposition

principle, in which the potential due to a dipole sheet trailing all lifting surfaces is added to
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the Green’s Theorem representation of the non-lifting potential flow (equation 2.26):

φ("r) =
1

4π

∫

SB

∂φB

∂n"r′
("r′)

1

‖"r − "r′‖dS ′B −
1

4π

∫

SB

φB("r′)
∂

∂n"r′

[
1

‖"r − "r′‖

]
dS ′B + ΦW ,

(2.28)

Where ΦW represents the added domain potential jump influence due to the wake. The

potential φ("r) represents a contribution from both the body and the wake:

φ("r) = φB("r) + ΦW ("r). (2.29)

Notice, in equation 2.28, that the unknown is the body surface potential (φB). The wake

potential, ΦW can be expressed as a function of the prescribed wake potential jump, µW as:

ΦW =
1

4π

∫

SW

µW ("r′)
∂

∂n"r′

[
1

‖"r − "r′‖

]
dS ′W (2.30)

In order to uniquely solve equation 2.28 for the potential, φ("r′), the following steps are

taken:

1. Prescribe a wing trailing edge Kutta condition which relates the unknown wake

strength(s) µW to the surface potential or its derivatives.

2. Specify the normal derivative of the potential at the boundary. Equation 2.3 is used:

n̂ ·∇φB("R, t) = n̂ ·
(

"VG + "VGp + "Ω× "rGp −∇× "Ψ("R, t)−∇ΦW ("r)
)

, (2.31)

In order to solve for the body potential φB("r), the problem must be reduced to one in

which the influence of all of the other potentials comprising the solution become boundary

conditions.

Depending on the wake representation, either of the expressions (equation 2.25 or equa-

tion 2.28) for a lifting body problemmay be used. In this work, the wake is often considered

as a potential influence close to the body (in order to satisfy the Kutta condition) and as a

velocity influence further away from the body (using a vorticity representation).
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The Indirect Source-Doublet BIE

The source-doublet formulation is commonly presented in place of the Green’s theorem

formulation in many aerodynamics texts [113, 20]. The source-doublet approach considers

the two domains which are separated by the surface of the body. The first region is the

domain interior to the aerodynamic body under consideration. The second region which is

considered is the domain exterior to the body boundary surface (which includes the fluid of

interest). Inside of each of these domains a potential can be defined.

Setting up a potential flow inside of the body yields the following interior potential

φi("r) expression for an evaluation point inside of the body:

φi("r) =
1

4π

∫

SB

∂φi

∂n"r′
("r′)

1

‖"r − "r′‖dS ′B−

1

4π

∫

SB

φi("r
′)

∂

∂n"r′

[
1

‖"r − "r′‖

]
dS ′B, (2.32)

Similarly, for an evaluation point in the region exterior to the body (inside the fluid of

interest), the influence of the internal potential is:

0 =
1

4π

∫

SB

∂φi

∂n"r′
("r′)

1

‖"r − "r′‖dS ′B−

1

4π

∫

SB

φi("r
′)

∂

∂n"r′

[
1

‖"r − "r′‖

]
dS ′B, (2.33)

For a point exterior to the body, the potential φ("r) is described by:

φ("r) =
1

4π

∫

SB

∂φ

∂n"r′
("r′)

1

‖"r − "r′‖dS ′B−

1

4π

∫

SB

φ("r′)
∂

∂n"r′

[
1

‖"r − "r′‖

]
dS ′B + ΦW , (2.34)

Adding the interior potential expression (equation 2.33) to the expression in equation 2.34

(while appropriately adjusting the surface normal definition to point into the fluid domain
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(exterior to the body) ), the following integral equation results:

φ("r) =
1

4π

∫

SB

∂ (φ− φi)

∂n"r′
("r′)

1

‖"r − "r′‖dS ′B−

1

4π

∫

SB

(φ("r′)− φi("r
′))

∂

∂n"r′

[
1

‖"r − "r′‖

]
dS ′B + ΦW , (2.35)

By compactly representing the surface singularity distributions, the following equation re-

sults:

φ("r) =
1

4π

∫

SB

µ("r′)
∂

∂n"r′

[
1

‖"r − "r′‖

]
dS ′B −

1

4π

∫

SB

σ("r′)
1

‖"r − "r′‖dS ′B + ΦW . (2.36)

The doublet, µ represents the interface potential jump:

µ("r) = φe("r)− φi("r), (2.37)

where the superscripts e and i represent the limit as the point "r is approached from the exte-

rior domain, and the interior domain respectively. The source, σ represents the magnitude

of the interface discontinuity in the normal derivative:

σ("r) =

(
∂φe

∂n

)
−

(
∂φi

∂n

)
(2.38)

The application of boundary conditions to the source-doublet formulation is similar to that

in the Green’s Theorem formulation; however, care must be taken to ensure that the inte-

rior and exterior problems are appropriately considered. A benefit of the source-doublet

method is that the interior potential can be carefully chosen in order to simplify the par-

ticular problem being solved. In the following paragraphs a brief discussion of two of the

many possible interior potential choices is presented. The two formulations represent a

subtle difference between the traditional source-doublet method and a useful variation of

the source-doublet method which is investigated in this thesis:

Internal Potential Case 1: In the first example of the source-doublet approach, a zero
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internal potential is examined:

φ("r) =
1

4π

∫

SB

µ("r′)
∂

∂n"r′

1

‖"r − "r′‖dS ′B −
1

4π

∫

SB

σ("r′)
1

‖"r − "r′‖dS ′B + ΦW . (2.39)

In this case the source strength has a value:

σ("r) =

(
∂φe

∂n"r

)
= n̂"r ·

(
"VG + "VGp + "Ω× "rGp −∇× "Ψ("R, t)

)
, (2.40)

and, similarly, the doublet strength can be written as:

µ("r) = φe("r)− φi("r) = φ("r), (2.41)

By inserting these values into the source-doublet BIE, the result is:

φ("r) =
1

4π

∫

SB

φ("r′)
∂

∂n"r′

1

‖"r − "r′‖dS ′B−

1

4π

∫

SB

n̂"r′ ·
(

"VG + "VGp + "Ω× "rGp −∇× "Ψ("R, t)
) 1

‖"r − "r′‖dS ′B+ (2.42)

ΦW .

hence,

φB("r) =
1

4π

∫

SB

φ("r)
∂

∂n"r′

1

‖"r − "r′‖dS ′B−

1

4π

∫

SB

n̂"r′ ·
(

"VG + "VGp + "Ω× "rGp −∇× "Ψ("R, t)
) 1

‖"r − "r′‖dS ′B. (2.43)

Solving equation 2.43 gives the potential φ("r) (which is also the doublet strength) at the

surface of the body. This expression is similar to equation 2.25. The potential and velocity

at points in the domain is a simple evaluation of the BIE in equation 2.39.

Internal Potential Case 2: In the second example of the source-doublet approach, an

interior potential corresponding to the wake induced potential is examined:

φ("r) =
1

4π

∫

SB

µ("r′)
∂

∂n"r′

1

‖"r − "r′‖dS ′B −
1

4π

∫

SB

σ("r′)
1

‖"r − "r′‖dS ′B + ΦW . (2.44)
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where, the source strength has a value:

σ("r) =

(
∂φe

∂n"r

)
−

(
∂φi

∂n"r′

)

= n̂"r′ ·
(

"VG + "VGp + "Ω× "rGp −∇× "Ψ("R, t)−∇ΦW ("r)
)

, (2.45)

and, similarly, the doublet strength can be written as:

µ("r) = φe("r)− φi("r) = φe("r)− ΦW ("r) = φB("r), (2.46)

By inserting these source and doublet values into the source-doublet BIE, the result is:

φ("r) =
1

4π

∫

SB

φB("r)
∂

∂n"r′

1

‖"r − "r′‖dS ′B + ΦW−

1

4π

∫

SB

n̂"r′ ·
(

"VG + "VGp + "Ω× "rGp −∇× "Ψ("R, t)−∇ΦW ("r)
) 1

‖"r − "r′‖dS ′B

(2.47)

hence,

φB("r) =
1

4π

∫

SB

φB("r)
∂

∂n"r′

1

‖"r − "r′‖dS ′B−

1

4π

∫

SB

n̂"r′ ·
(

"VG + "VGp + "Ω× "rGp −∇× "Ψ("R, t)−∇ΦW ("r)
) 1

‖"r − "r′‖dS ′B.

(2.48)

Which is similar to the expression presented in equation 2.28.

In the first internal potential case the boundary integral equation absorbed the wake

potential into the surface singularity strength representations; however, in the second ex-

ample, the wake was treated as a superimposed potential field and as such the potential

on the body. In the second case, one effectively sets up an internal potential which cor-

responds to the wake potential. The difference between the two formulations is subtle.

For the work presented in this thesis, the ability to treat the wake using a velocity and/or

potential representation is useful.

38



The Indirect Neumann Source BIE

The remaining two BIE formulations which are considered impose Neumann boundary

conditions. The Neumann-Source formulation potential is [113]:

φ("r) =
1

4π

∫

SB

σ("r′)
1

‖"r − "r′‖dS ′B, (2.49)

where, σ("r′) is the boundary surface distribution of fluid source strength. To add generality,

an arbitrarily defined potential ΦW can be added:

φ("r) = φB("r) + ΦW =
1

4π

∫

SB

σ("r′)
1

‖"r − "r′‖dS ′B + ΦW . (2.50)

The gradient of the equation is taken to yield a boundary integral equation for the velocity

in the domain:

∇φ("r) = ∇
(

1

4π

∫

SB

σ("r′)
1

‖"r − "r′‖dS ′B + ΦW

)
. (2.51)

When the boundary conditions are applied to the resulting equation is:

n̂"r · ("VG + "VGp + "Ω×"rGp−∇× "Ψ) = n̂"r ·∇
(

1

4π

∫

SB

σ("r′)
1

‖"r − "r′‖dS ′B + ΦW

)
. (2.52)

Solving for the strength of the source distribution σ(x′), one can back substitute into equa-

tion 2.49 or 2.50 to obtain a relationship for the potential in the domain.

The Indirect Neumann-Doublet Membrane BIE

The Indirect Neumann-Doublet BIE is an identical formulation to that used in a doublet

lattice type code[113]. The potential is defined as:

φ("r) =
1

4π

∫

SB

µ("r′)
∂φ

∂n

[
1

‖"r − "r′‖

]
dS ′B, (2.53)

where, µ("r′) is the boundary surface distribution of dipole or doublet strength. In order

to once again add generality, one can explicitly incorporate the superposition of any other
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solutions of Laplace’s equation:

φ("r) = φB("r) + ΦW =
1

4π

∫

SB

µ("r′)
∂φ

∂n

(
1

‖"r − "r′‖

)
dS ′B + ΦW . (2.54)

The boundary conditions given in equation 2.3 are applied to give:

n̂"r · ("VG + "VGp + "Ω×"rGp−∇× "Ψ) = n̂"r ·∇
(

1

4π

∫

SB

µ("r′)
∂φ

∂n

(
1

‖"r − "r′‖

)
dS ′B + ΦW

)
.

(2.55)

The indirect Neumann-Doublet approach is particularly useful for lifting membrane appli-

cations. For example, thin fabric or membrane structures are difficult to model well with a

source-doublet type approach due to the need for panel elements which are of comparable

size to the thickness of the membrane. Instead, the Neumann doublet membrane formu-

lation approximates the thin surface using a single sheet of doublet singularities which do

not have strict limiting constraints as the Dirichlet approach.

2.3 The Pressure-Velocity Relationship

The Bernoulli Equation is used to determine the forces and pressures on the body. Since a

potential-vorticity approach is used, the applicable unsteady Bernoulli equation is derived[113].

The incompressible Euler equations are:

∂"U

∂t
+ "U ·∇"U = −∇p

ρ
. (2.56)

If those regions of the flow which have zero vorticity (all of space excluding the trailing

vortex wake region) are considered, the resulting equation is:

∂"U

∂t
+

1

2
∇|"U |2 = −∇p

ρ
. (2.57)

The definition of the velocity, given by equation 2.8, can be substituted into equation 2.57

resulting in:
∂(∇φ +∇× "Ψ)

∂t
+

1

2
∇|∇φ +∇× "Ψ|2 = −∇p

ρ
. (2.58)
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Collecting like terms, and re-arranging:

∂(∇× "Ψ)

∂t
+∇∂φ

∂t
+

1

2
∇|∇φ +∇× "Ψ|2 +∇

(
p

ρ

)
= 0. (2.59)

Integrating eqn. 2.59 along the streamline from surface point x1, to a farfield reference

point at∞ (where at "R =∞, "Ut=0→t∞ = 0, and p = p∞) results in:

∫ px1

∞

∂(∇× "Ψ)

∂t
· d"C +

(
∂φ

∂t x1

+
1

2
|∇φ +∇× "Ψ|2x1

)
=

p∞ − px1

ρ
. (2.60)

Furthermore, note that the term ∂φ
∂t in equation 2.60 is defined in an Eulerian reference

frame. The change in potential with respect to time for a point on the body surface can be

computed by converting to a body Lagrangian reference frame:

∂φ

∂t
|Eulerian =

∂φ

∂t
|body − ("VG + "VGp + ("Ω× "rGp)) ·∇φ (2.61)

The overall Unsteady Bernoulli equation is therefore:

p∞ − px1

ρ
=

∫ px1

∞

∂(∇× "Ψ)

∂t
· d"C +

∂φ

∂t
|body−

("VG + "VGp + ("Ω× "rGp)) ·∇φ +
1

2
|∇φ +∇× "Ψ|2. (2.62)

The unsteady term due to the domain vorticity:

∫ px1

∞

∂(∇× "Ψ)

∂t
· d"C, (2.63)

is difficult to handle in the form written above. By considering the contribution of the

vortex wake as an analogous contribution due to a dipole sheet, one can write:

∫ px1

∞

∂(∇× "Ψ)

∂t
· d"C =

∫ px1

∞

∂ϕ

∂t
|wake · d"C. (2.64)
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Integrating the expression for the wake potential ϕ is simple:

∫ px1

∞

∂ϕ

∂t
|wake · d"C =

∂ϕ

∂t
=

∂ϕ

∂t
|body − ("VG + "VGp + ("Ω× "rGp)) ·∇ϕ (2.65)

where,∇ϕ is simply the velocity due to the wake. The overall Unsteady Bernoulli equation

is therefore:

∂ϕ

∂t
|body+

∂φ

∂t
|body−("VG+"VGp+("Ω×"rGp))·∇(φ+ϕ)+

1

2
|∇φ+∇×"Ψ|2 =

p∞ − px1

ρ
. (2.66)

The above expression for the change in potential due to the wake can be examined from an

order of magnitude argument. For finite wing-only simulations the term is small (see figure

2-3 for a pictorial argument). Although the contribution to the pressure from the vortex

Figure 2-3: A plot of the potential due to a unit strength wake trailing behind an airfoil.
The wake extends 50 chord lengths behind the airfoil and is not shown in entirety. Notice
that the potential contribution to the airfoil is nearly zero due to the airfoil lying nearly
in plane with the wake sheet. For airfoils, the change in potential due to the wake in an
unsteady computation is a perturbation of an already small potential influence. In a scaling
argument, one can argue that the change in potential due to the wake is negligible for many
simulations (especially for thin airfoils).

wakes in many cases is small, for certain cases the order of magnitude of the unsteady
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wake potential contribution is similar to the other contributions in the pressure calculation.

This tends to occur when the wake passes above or below a downstream surface. In these

cases, one can compute the unsteady pressure contribution of the domain vorticity on the

body by solving the linear BIE system for the interior to the body wake potential:

ϕ("r) =
1

4π

∫

S′b

∂ϕ

∂n"r′
("r′)

1

‖"r − "r′‖dS ′b −
1

4π

∫

S′b

ϕ("r′)
∂

∂n"r′

1

‖"r − "r′‖dS ′b, (2.67)

where, the potential ϕ represents the potential due to the wakes at the body surface. The

normal derivative of the wake potential is known at the surface by the velocity expression

for the vorticity in the domain. By solving the boundary integral equation, the potential

contribution due to the wakes on the surface of the body is determined. As a result, the

unsteady Bernoulli’s equation for the pressure at the surface of the body is:

p∞ − px1

ρ
=

∂ϕ

∂t
|body +

∂φ

∂t
|body−

("VG + "VGp + ("Ω× "rGp)) · [∇φ +∇× ϕ] +
1

2
|∇φ +∇× "Ψ|2. (2.68)

From this pressure-velocity relationship, the forces can be computed by integration:

"F (t) =

∫

S(t)

(p∞ − px′(t)) n̂ dS ′(t). (2.69)

Similarly, the moments about the body reference frame origin can also be computed by

integration:
"M(t) =

∫

S(t)

"r′Gp × [(p∞ − px′(t)) n̂] dS ′(t). (2.70)

2.4 The Wing Trailing Edge Kutta Condition

Most surfaces with sharp geometric cusps will produce forces when the body moves relative

to a fluid. This net force is due to the viscous nature of fluids which prevents flows from

traveling around these cusps. Rather, the flow will tend to separate from a sharp corner

and shed a trailing shear wake. Since the flow is assumed to be inviscid, the production of

forces requires an additional condition on the governing equations. In this thesis a Kutta
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condition [9] is applied at all wing trailing edges. The Kutta condition prescribes a finite

surface potential jump discontinuity across the geometric cusp, thereby resulting in smooth

and finite trailing edge velocities. In order to assure the potential jump at the trailing edge,

a fictitious wake surface is introduced into the domain. The wake surface is considered as

a cut in the fluid domain capable of sustaining a potential discontinuity. Both a linear and

non-linear Kutta condition have been considered in different formulations presented in this

thesis.

The non-linear Kutta condition requires that there be no pressure jump across the trail-

ing edge [72, 73, 74]:

pupper − plower = 0, (2.71)

Which, for an unsteady flow is:

[
∂ϕ

∂t
|body +

∂φ

∂t
|body − ("VG + "VGp + ("Ω× "rGp)) · [∇φ +∇× ϕ] +

1

2
|∇φ +∇× "Ψ|2

]

upper

−
[
∂ϕ

∂t
|body +

∂φ

∂t
|body − ("VG + "VGp + ("Ω× "rGp)) · [∇φ +∇× ϕ] +

1

2
|∇φ +∇× "Ψ|2

]

lower

= 0,

(2.72)

and for a steady flow, the above expression simplifies to:

1

2
ρ|"U |2upper −

1

2
ρ|"U |2lower = 0, (2.73)

where, "U in equation 2.73 is the total velocity of the fluid relative to the trailing edge. A

linearized version of the steady pressure continuity condition at the trailing edge is also

considered for use in certain formulations. The linearized, steady, Kutta condition provides

a rapid means to compute the potential jump [123],

φupper − φlower = ∆φwake. (2.74)

Here, the subscripts upper and lower refer to points on the upper and lower surfaces of the

trailing edge of the wing. This linearized Kutta condition assumes the fluid flows in a direc-

tion normal to the trailing edge cusp. For most applications this is an adequate assumption,
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however, for highly loaded, low aspect ratio, or highly swept wings this linearization will

be inaccurate. Furthermore, although this Kutta condition performs well as a first approxi-

mation for unsteady lifting flows, it should be cautioned that highly unsteady flows will not

be accurately modeled.

For membrane flows, a condition which imposes no trailing edge vorticity has been

implemented. The condition requires that the lifting surface potential jump at the trailing

edge be equal to the potential jump imposed by the wake at the trailing edge:

∆µwing = ∆µwake. (2.75)

Equation 2.75 requires that there be no net vorticity capable of turning the flow around the

trailing edge line.

For unsteady flows, any increase in bound vorticity on the wing must be balanced by

an equivalent increase in vorticity in the wake. The formal statement for this condition

(attributed to Kelvin [9]) is:

[
dΓspan

dt

]

wing

= −
[
dΓspan

dt

]

wake

, (2.76)

where Γ represents the circulation strength of the wing and body. In this relationship,

Γspan on the wing represents the integral of the bound vorticity. Therefore, in order to

satisfy the above equation, the rate at which body bound vorticity increases must be equal

in magnitude (but opposite in direction) to the rate of of vorticity shed into the wake.

Satisfying the trailing edge Kutta condition of choice, and representing the domain vorticity

using a vortex or doublet wake representation will result in the bound vorticity increase on

the wing being appropriately accounted for in the wake.

2.5 Conclusions

This chapter presents the theoretical background for the potential flow solution framework.

Considering the wake as either a potential influence (due to a dipole sheet) or a veloc-

ity influence (due to domain vorticity) proves valuable in the implementation of the panel
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method. The Helmholtz decomposition of the fluid in the domain provides a means to rep-

resent the scalar and vector potential components of the flow independently, thus providing

flexibility in the discretization.
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Chapter 3

High Order, Curved Panel Integration

The justification for the use of curved panel, high order integration approaches is examined

in the first section of the chapter; following that integration techniques for the self term,

higher order, single and double layer potentials are presented.

3.1 Boundary Element Discretization

Discretizing the boundary integral equation involves approximations to both the boundary

surface and the solution. In most boundary element methods the body is discretized into a

series of triangular or rectangular panels. Over each of the panels, a basis function is used

to represent the unknown quantity. Due to the discrete approximations, panel integrals

such as the ones presented in equations 3.1-3.4 need to be evaluated for the discretization

of interest:

ΦPanel
σ =

∫

SPanel

σ(ξ′, η′)
1

‖x− x′‖dS ′Panel (3.1)

ΦPanel
µ =

∫

SPanel

µ(ξ′, η′)
∂

∂n

[
1

‖x− x′‖

]
dS ′Panel (3.2)

V Panel
σ = ∇

(∫

SPanel

σ(ξ′, η′)
1

‖x− x′‖dS ′Panel

)
(3.3)

V Panel
µ = ∇

(∫

SPanel

µ(ξ′, η′)
∂

∂n

[
1

‖x− x′‖

]
dS ′Panel

)
(3.4)
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Due to the singularity of the integral equation kernel under consideration, expressions for

computing the above integrals when the evaluation point and the panel are coincident are

not simple by nature. This section discusses the limitations of lower order basis functions

as well as lower order geometry representations. In the sections which follow, several tech-

niques for improving the discrete approximations using higher order techniques to remedy

these drawbacks are presented.

3.1.1 Discussion of Orders of Approximation

In order to justify the investigation of higher order approaches a brief presentation of the

limitations of some lower order approaches are presented.

1. Convergence Rates: One would expect that more accurate approximations of the

boundary integral equation will produce more accurate computations. Care however

must be taken to ensure that the surface discretization is consistent with the order of

approximation of the solution in order to achieve optimal convergence for a given

order of representation. Figure 3-13 illustrates the various convergence properties

for a Green’s Theorem solution of the potential around a unit sphere with succes-

sive grid refinements. A flat panel discretization of curved surfaces has an area

which converges to the true area as O(N−1), where N is the number of panels in

the discrete approximation. As such, flat panel discretizations of curved surfaces

at best will converge with an O(N−1) rate due to the area’s role in the discrete ap-

proximation. To achieve higher rates of convergence, a coupled approach in which

higher order surface representations must be used in conjunction with higher order

solution approximations. Several researchers have investigated higher order BEM

approaches[115, 116, 117, 118, 119, 120, 121, 123, 124, 125, 111]; however, diffi-

culties in evaluating the panel integrals prevent the more common use of these meth-

ods. In this chapter a set of high order curved panel integration approaches on curved

panels will be presented.

2. Velocity Calculations: The accurate computation of velocity is important for comput-

ing the forces and moments. This is especially true for the potential based Green’s
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Theorem and Source-Doublet formulations. There are two approaches for computing

the velocity:

(a) Numerical differencing approaches for computing surface derivatives of the po-

tential. For the potential based computations (Green’s Theorem and Source-

Doublet formulations), the unknown is a potential. The surface gradient of the

potential is the tangential velocity due to that potential. Computing the surface

derivatives of the potential requires that either:

i. The potential is represented using linear or higher order basis functions

such that gradients in surface potential amount to differentiating the basis

function representation of the solution,

ii. The discrete elements are ordered in such a manner that finite difference

approximations can be made.

(b) Direct forward evaluation of the integral equations. The forward evaluation of

the boundary integral equation for the velocity is another option for velocity

post processing. Figure 3-1 illustrates the evaluation of the velocity integral

equation post-solution for a constant collocation solution. The velocity com-

puted using the Green’s Theorem BIE is visibly wrong. This arises due to the

nature of the dipole representation. The constant dipole is equivalent to a vortex

ring. The vortex ring represents the normal velocity accurately; however, close

to the surface of the body the computation of the tangential derivative is increas-

ingly different than physical reality. Figure 3-2 demonstrates the inconsistency

with the constant basis dipole used for a tangential velocity calculation.

As a result of the desire for more accurate solutions with fewer panels as well as accuracy

in the computation of velocities, pressures, forces and moments, higher order BEM approx-

imations to the BIE’s were investigated. This chapter presents some methodology which is

a result of the investigations.
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Figure 3-1: A comparison of the pressure around a sphere, computed using a source Neu-
mann velocity formulation and a Green’s theorem formulation. The velocity was computed
using a forward evaluation of the boundary intergral equations. The result deomstrates the
diminished accuracy of the Green’s theorem approach.

3.1.2 Orders of Approximation

These approximations are made as follows:

1. Surface Discretization: The surface discretization is performed using a watertight

surface triangulation. The majority of the results presented in this thesis were per-

formed with a flat panel discretization of the surface, although, initial work presented

in this chapter demonstrates several advantages of using curved element discretiza-

tions.

2. Solution Discretization: The solution discretization is performed using piecewise

linear basis functions with solution continuity enforced. These C0 continuous ele-
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Figure 3-2: An illustration of the inconsistency of using constant doublet representations
when modeling the tangential velocity close to a body when a forward evaluation of the
BIE is used. (a) shows the linear dipole and the equivalent constant vorticity distribution
on a surface, (b) shows the same for a constant dipole and the equivalent point vortices,
(c) shows the tangential velocity computed a small ε above the surface for the linear dipole
distribution, while (d) shows the tangential velocity due to the constant distribution of dou-
blets. Notice, in (d) the tangential velocity at the wall of the body is zero at all locations
except for locations where there is a discontinuous jump in doublet strength. There the
velocity is infinite. As the evaluation point tends away from the surface, the velocity in
(d) will approach the velocity in (c), however, on average this occurs after several panel
lengths away from the surface. The difficulty with computing the tangential velocity arises
due to the poor approximation of tangential velocity self term for constant dipole panels.
As such, linear or higher order dipole distributions are recommended

ments are similar in nature to those used in the finite element community [126]. In

addition quadratic basis function approaches are presented in this chapter.
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By discretising the surface geometry into a set of flat panels with associated compact sup-

port basis functions, the Boundary Integral Equations presented in Chapter 2 form a Bound-

ary Element Method linear system of equations.

3.1.3 Brief Review of Flat Panel Integration Strategies

In their paper on panel methods, Hess and Smith [13] proposed several analytical formulas

for computing panel integrals for sources and doublets. Later, Newman [112] proposed a

more general framework for the computation of analytical formulas over flat panel poly-

gons. The framework proposed by Newman included a proposed recursive algorithm for

the integration of higher order polynomials over flat polygons. The recursive formulas are

presented in more detail by Wang [111]. Although Hess, Smith [13], Newman [112], and

others have proposed formulas for the analytical integration, numerical approaches do ex-

ist. Based on adaptive quadrature schemes, these methods are typically more expensive for

computing the self term integrals. Some examples of these approaches for both flat and

curved panels can be found in [128, 129, 130, 131, 132, 133].

3.2 Integration Approaches for Quadratic Basis Functions

on Quadratic Curved Panels

The geometry is described using parametrized triangular quadratic patches [126]:

X(ξ, η) = axξ
2 + bxη

2 + cxξη + dxξ + exη + fx (3.5)

Y (ξ, η) = ayξ
2 + byη

2 + cyξη + dyξ + eyη + fy (3.6)

Z(ξ, η) = azξ
2 + bzη

2 + czξη + dzξ + ezη + fz (3.7)

The coefficients ai through fi are determined from the nodes defining the curved panel

patch. The representation of the parametrization is shown in figure 3-3. Parametric quadratic

basis functions are used such that the patch geometry definition is consistent with the basis
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Figure 3-3: The relationship between the quadratically curved panel and the flat parametric
triangle. The curved panel in this example is a 1

8 segment of a sphere.

function definition [126]. These basis functions for a given panel are presented pictorially

in figure 3-4.

3.3 Panel Integration Approaches for Non-Self Term In-

tegrals

High order methods currently consider adaptive quadrature schemes[115], expansions[119]

and semi-analytical approaches [111, 121] for the evaluation of curved panel integrals.

Nearby non-self term panel integrals can easily be computed using the method developed

by Wang et al.[111]. The far field interactions can be computed using a quadrature approx-

imation. Although the Wang et al. method is used for nearby panels, it should be noted that

the methods presented in this chapter for the self term integrals can be extended to compute

the non-self term integrals; however, they are typically less efficient than the Wang et al.

approach. The Wang et al. method does not work well for the self term evaluation in this

quadratic panel method due to:
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Figure 3-4: The 6-quadratic basis functions on the reference triangle.

1. The inability to form a ratio between the double layer kernel for a flat panel and the

double layer kernel for a curved panel. This is shown below in the equivalent flat

panel representation of the curved panel integral:

Φ(x) =

∫

Sf

µ(x′)
∂

∂n

(
1

‖x− x′f‖

)


∂
∂n

(
1

‖x−x′f‖

)

∂
∂n

(
1

‖x−x′c‖

) |J |



 dS ′f , (3.8)

but:

K ∂
∂n( 1

r )
=

∂
∂n

(
1

‖x−x′f‖

)

∂
∂n

(
1

‖x−x′c‖

) (3.9)

Is undefined at x = x′ and zero elsewhere. Hence, it is not possible to fit a polynomial

accurately through this representation.

2. The difficulties associated with smoothly mapping non-constant radii of curvature to

a flat, straight edged reference triangle. It is challenging to determine a mapping in

which the self term curved-to-flat panel transformation is easily fitted with a polyno-

mial in these cases. Although the Wang et al. method can be applied, unless more
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complicated mapping approaches are considered, the accuracy of the approach will

typically be diminished.

3.4 Panel Integration: The Self Term Integrals

Methods for quadratic basis function single and double layer self term integration have

been developed for quadratically curved panels. These methods can easily be extended to

higher orders.

3.4.1 Single Layer Integrals: The Self Term Integral

Although the self term integration for the single layer which is used is similar to the Wang

et al. approach and those traditionally used[115], the differences introduced in this compu-

tation, albeit small, are important to improve the accuracy of the quadratically curved panel

integrals.

Background Theory

The single layer potential self term integration is performed numerically after appropri-

ately transforming the curved panel into a flat panel (with curved edges). Following the

transformation, the panel integral is evaluated using quadrature in cylindrical coordinates.

The transformation to cylindrical coordinates to desingularize the integrand was presented

by Hess and Smith[122] in their analytical computation approaches for flat panel integrals,

and the ideas have been further used in numerical implementations for higher order[115].

The background theory of the method used in this approach is described below:

1. Consider the integral governing the self term single layer on a curved panel:

Ψ(x) =

∫

Sc

σ(ξ′c, η
′
c)

1

‖x− x′c‖
dS ′c, (3.10)

where σ(ξ′, η′) is the basis function representation of the single layer strength on the

panel.
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Figure 3-5: The orthonormal projection shown for a large selection of points on the curved
panel to the tangent plane. Notice that the curved panel is projected onto the tangent plane
in a manner that is normal to the tangent plane.

2. Project the curved panel geometry using an orthonormal projection onto the tangent

plane at the evaluation point as shown in figure 3-5. As a result the integral over the

flat tangent plane is:

Ψ(x) =

∫

Sf

σ(ξ′c, η
′
c)

1

‖x− x′c‖
|J |dS ′f , (3.11)

where |J | is the determinant of the Jacobian due to the orthonormal mapping. The

value of |J | evaluated across the flat panel will be smooth assuming large distortions

are not encountered in the mapping.

3. As in the Wang et al. method [111], multiply and divide the integrand by 1
‖x−x′f‖

:

Ψ(x) =

∫

Sf

σ(ξ′c, η
′
c)

1

‖x− x′f‖

(‖x− x′f‖
‖x− x′c‖

|J |
)

dS ′f . (3.12)

4. Combine the basis representation polynomial (σ(ξ′c, η
′
c)) with the polynomial repre-
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sentation of the mapping, into a single polynomial representation Q(r′f , θ
′
f ), and the

integral becomes:

Ψ(x) =

∫

Sf

Q(r′f , θ
′
f )

1

‖x− x′f‖
dS ′f (3.13)

5. Equation 3.13 is then re-written in cylindrical coordinates as:

Ψ(x) =

∫ θ=2π

θ=0

∫ r=R(θ)

r=0

Q(r′f , θ
′
f )

1

‖r′f‖
‖r′f‖dθ′dr′ (3.14)

6. Which, when simplified becomes:

Ψ(x) =

∫ θ=2π

θ=0

∫ r=R(θ)

r=0

Q(r′f , θ
′
f )dθ′dr′ (3.15)

7. The resulting integral is simple to evaluate by first analytically integrating the poly-

nomial Q(r′f , θ
′
f ) in r, and then using one dimensional quadrature, for the remaining

θ-integral. In cases where curved panels are significantly distorted or stretched, care

should be taken as the polynomial fit will likely require significantly higher order

polynomial representations for an accurate solution than when the panels are regu-

larly shaped.

Implementation Approach

In order to implement the above approach, the following steps are used:

1. Transform the curved panel such that the tangent plane at the evaluation point lies

in the xT − yT plane, and the panel normal at the evaluation point is in the +zT

direction, as shown in figure 3-6.

2. Determine a series of points on the curved panel which will be used to fit polynomial

approximations to distribution on the panel. One can use any appropriate set of

quadrature points; however, the polynomial fit will occur in R − Θ coordinates, and

as such, an appropriate quadrature scheme might be similar to that used over 4-sided

regions(with the sides of the rectangle being the R and Θ limits). In order to achieve

a more accurate approximation to the integral, subdivision of the original panel into
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Figure 3-6: The panel after it has been appropriately transformed such that the tangent
plane at the evaluation point is the xT − yT plane, and the panel normal at the evaluation
point is in the +zT direction.

three panels should be performed, where the subdivision occurs by connecting lines

between the vertices and the evaluation point. Figure 3-7 demonstrates the points

which will be used for the polynomial fit, as well as the division of the panel into

three subpanels.

3. Orthogonally project the polynomial fit points onto the xT − yT plane. One can also

project the edges of the panel onto the xT − yT plane. The projection of the curved

panel edges and polynomial fit points onto the xT − yT plane forms a flat reference

panel for the integration. This projection is demonstrated in figure 3-8 and figure 3-5.

4. Compute the integrand, Q(r′f , θ
′
f ) at the polynomial fit points, which is product of

the following values:

(a) The determinant of the Jacobian of the mapping between the curved panel and

the orthonormal projection of the panel onto the xT − yT plane. The expression
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Figure 3-7: The points which are used to compute the polynomial approximation of the
smooth integrand. Notice the polynomial fitting points are arranged in a manner that re-
sembles a quadrature scheme for a degenerate quadrilateral. This apparent degeneracy will
disappear once R − Θ coordinates are used. In addition, one should note the division of
the panel into three subpanels. The layout of quadrature points and division of the panel is
performed on the ξ − η parametric triangle.

of the determinant can be found analytically for quadratic panels.

(b) The ratio between the kernel evaluated on the flat panel to the evaluation point

and the kernel evaluated on the curved panel to the evaluation point.

(c) The Basis function value, σ(r′f , θ
′
f ).

5. Compute a polynomial approximation to represent the integrand in the R − Θ co-

ordinate system. This polynomial approximation is computed by a simple linear

system solve (The right hand side vector contains the known values of the function,

the system matrix is a Vandermonde matrix where the entries are evaluated at the

polynomial fit points (in R−Θ coordinates), while the vector of unknowns contains

the unknown polynomial coefficients).
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Figure 3-8: The orthonormal projection shown for a large selection of points on the curved
panel. Note that the panel edges will not be straight lines in the general case. This is
the fundamental difference between the Wang et al. method and the current method for
computing the self term integration of the single layer.

6. Integrate the resulting polynomial in R analytically. The integrand of:

Ψ(x) =

∫ Θ=2π

Θ=0

∫ r=R(θ)

r=0

Q(r′f , θ
′
f )drdθ′ (3.16)

is a polynomial representation inR−Θ. As such, the integral is simply an appropriate

coefficient multiplication and exponent augmentation. The integral becomes:

Ψ(x) =

∫ Θ=2π

Θ=0

U(R′
f (θ

′
f ), θ

′
f )dθ′, (3.17)

where U(R′
f (θ

′
f ), θ

′
f ) is the polynomial resulting from integration. R′

f (θ) is the dis-

tance from the evaluation point to the flat panel edge for a given angle θ. This integral

is merely an integration of U(R′
f (θ), θ

′
f ) in θ around the edges of the panel.

7. Determine a quadratic parametric relation for the edges of the curved panel (a one-

dimensional quadratic parametrization of the projected edge), such that in the param-
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eter t the θ-integral becomes:

Ψ(x) =

∫ Θ=2π

Θ=0

U(R′
f (θ), θ

′
f )dθ′ =

∫ t=1

t=0

U(R′
f (θ

′
f (t)), θ

′
f (t))|Jθ→t|dt. (3.18)

Since the above integral is computed numerically using quadrature, place quadrature

points on the panel edges. These quadrature points are placed by mapping the Gauss

quadrature points from the parametric representation to the curved edges.

8. Integrate the line integral numerically using the panel edge based quadrature routine.

The scheme presented for the single layer self term can be applied to arbitrary curved panels

with high order basis functions. In addition, the method does not have the same limitations

as the Wang et al. method due to the lack of restrictions on the reference panel edge shape.

In the current method, the reference flat panel edges can be straight or curved lines. The

curved panel self term single layer integration using the above process is simple from both

an application and conceptual point of view.

3.4.2 Double Layer Integrals: The Self Term Integral

As with the single layer integration, the double layer self term integration approach we

present is a conceptually simple numerical integration. Similar to the single layer, the

approach we present for the double layer is not restricted simply to self term panels.

Background Theory

The double layer self term integral is performed through the implementation of some funda-

mental ideas presented in Kellogg [114] and later exploited in Newman [112]. The double

layer expression is considered from a slightly different perspective as shown below:

Φ(x) =

∫

S

µ(x′)
∂

∂n

1

‖x− x′‖dS ′, (3.19)
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where µ(x′) is the basis function representation. If we re-write the expression as:

Φ(x) =

∫

S

µ(x′)n̂ ·
[
∇

(
1

‖x− x′‖

)]
dS ′, (3.20)

the expression in the square brackets can be regarded as the velocity at the panel surface

integration point x′ due to a point charge at x. Furthermore, if we assume that for now

µ(x′) is a unit constant distribution over the panel:

Φ(x) =

∫

S

n̂ ·
(
∇

(
1

‖x− x′‖

))
dS ′, (3.21)

which is exactly the flux through the panel S ′ due to a point charge at x.

Since the point charge at x emits a divergence free velocity in a radial manner, we can

equivalently say that the flux due to the point source which passes through the panel, is

identical to the flux which passes through any radial projection of the panel (where the

radial projection is centered at the point source which is also the evaluation point). If the

panel is radially projected onto a unit sphere centered at the evaluation point, the integration

is equivalent to determining the flux through a portion of a sphere defined by the radial

projection of the panel. This is shown in figure 3-9.

The integral for the flux through the spherical patch formed by the radial projection of

the panel (where the radial projection is centered at the evaluation point which lies at the

origin) is expressed as:

Φ(x) =

∫

S

n̂ ·
(
∇

(
1

r

))
dS ′ =

∫

S

1 dS ′ (3.22)

Which is identically the area of the sphere onto which the projection of the panel acts. In

order to compute higher order distributions a similar radial projection can be used. In the

higher order approach, the basis function is considered as a weighting function on the flux

through the panel due to the source point charge. In other words, both the panel and the

basis function are projected onto the unit sphere in a radial projection. This is shown by

considering equation 3.20.

The interpretation of the dipole integral here is a flux through the panel surface S, due
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Figure 3-9: The radial projection of a flat panel onto the unit sphere centered at the evalua-
tion point, x.

a point charge located at x, weighted with the basis function value µ(x′) at the point x′ at

which the flux is being evaluated. Again, since the flux due to the source point charge is

divergence free, this weighed flux for each point x′ on the panel can be projected onto the

unit sphere in a similar radial projection as before. The resulting integral becomes:

Φ(x) =

∫

S

µ(θ,φ)n̂ ·
(
∇

(
1

r

))
dS ′ =

∫

S

µ(θ, φ)dS ′ (3.23)

Which is merely a calculation of the basis function weighted area of the radially projected

panel onto the unit sphere.

A Note on the Self Term Double Layer Potential Integral

When the self term of the double layer potential integral over a surface is considered, care

must be taken. Consider the double layer integral:

Φ(x) =

∫

S

µ(x′)
∂

∂n

1

‖x− x′‖dS ′, (3.24)
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At x = x′, the integral is undefined. As such the point is excluded from the domain and the

Cauchy Principle Value is evaluated, such that:

Φ(x) = ±2πµ(x) + −
∫

S

µ(x′)
∂

∂n

1

‖x− x′‖dS ′, (3.25)

where the ±2πµ(x) term is the Cauchy Principle Value of the integral, the sign of which

depends on the direction in which one approaches the panel (from above or below).The

remaining integral is evaluated over all x′ (= x points on the panel. In the section which

follows, the evaluation of the integral is of interest and will be described.

Implementation Approach

The implementation of the integration of the double layer over curved panels is presented

for quadratic basis functions; however, it should be noted that arbitrary order basis func-

tions can be used. Furthermore, it should be noted that the constant basis computation is

much less computationally complex than the higher order computations, since it amounts

to computing the area of the sphere between the equator and the projection of the panel.

This is a direct result of the fact that there is no varying basis distribution on the panel.

The following steps are performed to compute the double layer integral.

1. Transform the curved panel such that the tangent plane at the evaluation point lies

in the xT − yT plane, and the panel normal at the evaluation point is in the +zT

direction, as shown in figure 3-6. Furthermore, translate the transformed panel such

that the evaluation point lies at (xe, ye, ze) = (0, 0, 0).

2. Split the curved triangle into 6-sub triangles. These sub triangles are formed by:

(a) Dividing the panel along lines joining the evaluation point and the vertices.

(b) Dividing the panel along the lines joining the evaluation point and the nearest

point on each of the panel edges (in the current implementation this is measured

on the reference parameter based triangle).

3. Determine quadrature points on each of the six sub triangles. In addition to the

points themselves, determine the basis function value at each of the points. These
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quadrature points are determined based on quadrature rules applied to the ξ − η

parameter triangles and then mapped to the surface of the curved panel. As in the

single layer self term computation, these points are used for the determination of

a polynomial approximation, hence any appropriate distribution of points will be

adequate. Again, we choose to use the quadrature rule for four-sided domains. Figure

3-10 demonstrates the splitting of the curved triangle and the placement of quadrature

points.

Figure 3-10: The 6-subtriangles illustrated on the curved panel. The illustration on the
right shows the points which will be used in the polynomial approximation of the integrand
after it is projected to the unit sphere.

4. Radially project the points on the panel onto the unit sphere. The points can be

projected onto the unit sphere by:

PS(x, y, z) =
P (x, y, z)

‖P (x, y, z)‖ (3.26)

Note, since the integral in question excludes the point x = x′, the projection of the

portion of the panel directly encircling the origin (which is the evaluation point), will

lie on the equator of the sphere.
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By radially projecting the panel onto a unit sphere centered at the evaluation point,

the integral can be represented as:

Φ(x) = −
∫

S

µ(x′)
∂

∂n

1

‖x− x′‖dS ′ →
∫ Θ=2π

Θ=0

∫ Φ=φ(Θ)

Φ=0

µ(φ, θ)
∂

∂n

(
1

r

)
r2 sin(φ)dφdθ

(3.27)

Which, when we consider the unit sphere (r = 1), becomes:

Φ(x) =

∫ θ=2π

θ=0

∫ φ=φ(θ)

φ=π
2

µ(φ, θ) sin(φ)dφdθ (3.28)

If, the sin(φ) term in the integrand is combined with the basis representation to give

P (φ, θ), the resulting integral expression is:

Φ(x) =

∫ Θ=2π

Θ=0

∫ Φ=φ(Θ)

Φ=π
2

P (φ, θ)dφdθ (3.29)

5. Determine the Φ−Θ coordinates of each of the points.

Figure 3-11: The radial projection of the points on the panel and the edges onto a unit
sphere centered at the evaluation point.
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6. Sort the projected points such that they lie within the Θ angles of the original curved

panel subdivision.

7. For each of the 6 sub-triangles determine the polynomial approximation, P (φ, θ),

which best represents the basis function value as it is radially projected from the

panel points to the points on the sphere.

8. Integrate the inner integral of the polynomial, P (φ, θ), analytically in Φ:

Φ(x) =

∫ Θ=2π

Θ=0

∫ Φ=φ(Θ)

Φ=π
2

P (φ, θ)dφdθ → Φ(x) =

∫ Θ=2π

Θ=0

Q(φ(Θ), θ)dθ (3.30)

9. Integrate the remaining line integral using quadrature. The edge of the panel over

which the line integral is being performed must be expressed as a quadratic line

based on a parameter t. The integral to be computed then becomes:

Φ(x) =

∫ t=1

t=0

Q(φ(Θ(t)), θ(t))|J |θ→tdt, (3.31)

which is easily computed using moderate orders of Gaussian quadrature in one di-

mension.

10. Since we are concerned only with evaluating the Cauchy Principle Value integral in

this computation, in order to get the full influence of the self term, we add to this

result the appropriate ±2πµ Cauchy Principle Value (CPV).

3.4.3 Potential Flow Around the Unit Sphere

In order to demonstrate the quadratic panel method arising from application of the integra-

tion techniques described, a series of solutions for the flow around increasingly refined unit

spheres is presented. The potential flow around the unit sphere has an analytical solution

for the perturbation potential which is given by[113]:

φ = U∞ cos θ

(
R3

2r2

)
. (3.32)
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The simulations considered were run at U∞ = 1, over unit radius (R = 1) spheres. The

panel method approximations which are considered in the convergence comparison are:

1. Constant collocation on planar panels

2. Linear basis Galerkin on planar panels

3. Quadratic basis Galerkin on planar panels

4. Quadratic basis Galerkin on quadratic curved patches

The results of the quadratic curved panels are visibly superior to the constant collocation as

presented in figure 3-12. The convergence of each of the methods to the analytical solution

Figure 3-12: An illustration of the solution φ computed on a 32-panel sphere comparing
constant basis function representations with quadratic basis functions on quadratic patches.
The theoretical result is also plotted and coincides with the result from the high order panel
method. For clarity in the depiction of the constant basis function results, both the potential
value at the centroid and the basis function itself are represented on the plot. This further
demonstrates that the constant basis approximation will have poor error convergence.

is demonstrated in figure 3-13. The error was computed for each panel and integrated

using high order quadrature schemes. From figure 3-13, it can be seen that the highest
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Figure 3-13: The error convergence of the potential for constant basis representation on flat
panels, linear basis representation on flat panels, and quadratic representation on curved
panels. The plots show L1 and L2 error integrated over the sphere using the underlying
basis representation for the integration. Notice that the constant basis functions on flat
panels converge at a rate ofO(N− 1

2 ), the linear basis on flat panels atO(N−1), the quadratic
basis on flat panels at O(N−1), and the quadratic basis on quadratic patches at O(N− 3

2 ).

convergence rate for flat panel discretizations is limited by the geometry convergence. This

is realized when comparing the quadratic, linear and constant basis solutions when flat

panel discretizations are used. The flat panel discretization surface area converges at a

rate inversely proportional to the number of panels (O(N−1) = O(h2)), hence becomes

the limiting convergence rate for the case. It is interesting to note that the results for the

linear basis function representation are the most accurate of the set of computations done

on flat panels. Although this may appear strange, it is consistent with the approximations

being made. Quadratic basis functions will provide a more accurate solution to the discrete

geometry (which is based on a flat panel representation), which in the case of a sphere or

curved surface, is typically a worse approximation than the linear basis on flat panels.

The convergence results for the curved panel high order basis functions demonstrate

that increased convergence rates can only be achieved if approximation order increases are
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realized in both basis function approximation and surface discretization. If we consider the

panel methods described, it would take a discretization on the order of 105 − 106 constant

basis flat panels to achieve the error levels displayed by a 128 curved panel high order

method. Similarly, it would take on the order of 104 panels to reach that level of accuracy

using linear basis functions on flat panels. From these results it can be seen that low panel

counts using accurate geometry representations and high order basis functions can often

lead to accuracy levels hard to achieve with flat panel lower order approaches.

3.5 Conclusion

The work presented in this chapter highlights the methods involved in computing panel

integrals for the high order BEM representation and proposes approaches for integrating the

self term integrals. It was found that the high order method, when compared on a number

of panels basis was always significantly more accurate than the low order approaches.
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Chapter 4

Wake Details

The explicit modeling of wake shear layers in panel methods often presents challenges.

More specifically, the following challenges exist:

1. Ensuring the wake position is representative of a physically realistic vorticity dis-

tribution: The wake should evolve with the local freestream velocity, otherwise it is

a force producing surface. Many panel methods require user specified wakes[106,

116], while several others [35, 107] incorporate wake roll-up and wake evolution

routines. The wake roll-up routines often suffer from limitations associated with the

use of panels to discretize the wake potential jump or vorticity.

2. Satisfying a potential jump along the downstream portion of the body: The wake

represents a potential jump in the domain. This potential jump must also be present

at the body-wake intersection. Since the potential jump in a domain discontinuity,

meshing challenges will typically exist at wake-body intersections.

3. Using appropriate models to deal with wake intersections and downstream lifting

surfaces: During unsteady motions, wakes may readily intersect with downstream

surfaces. When a doublet wake intersects with a downstream surface, the solution of

the potential flow will lose physical meaning. Although wake-body intersections are

non-physical, they can often occur due to the nature of the discrete representation.

In this chapter, several techniques for more advanced and automatic wake modeling and

evolution are presented.
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4.1 Body Piercing Wakes

In traditional panel method approaches, the wing trailing potential jump is represented us-

ing a dipole sheet extending behind the wings and conforming to the downstream portions

of any bodies, as demonstrated in figure 4-1. The dipole wake sheets induce a potential

Figure 4-1: A pictorial representation of the Green’s Theorem formulation of the Boundary
Integral Equation.

jump in the domain across the thin trailing wake. For potential based solutions, such as the

source-doublet formulation, wake-body intersections must be carefully treated to preserve

and accurately model the potential jump. In order to do this, the wake sheet must be abutted

to the body and form an impermeable intersection (The wake should align exactly with the

fuselage). The result is a large potential jump along the wake-body intersection. This is

illustrated in figure 4-2. When the velocity is computed, the effect of the potential jump

along the side of the body cancels with the effect of the potential jump due to the wake.

As such, the velocity at all points on the body is smooth. When determining the velocity

near the wake-body intersection, a limiting process must be used such that the velocity

evaluation point never coincides with the triple point intersection of the wake and fuselage.

Significant constraints on wake-body meshing are imposed through the use of dipole
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Figure 4-2: The effect of dipole wakes on the potential at a wake-body interface.

potential jump sheet wakes. Since the potential jump in the wakes is usually large, one

must ensure that the dipole wakes align with the body discretization exactly. If the wake

does not align with the body discretization, the edge of the wake sheet next to the body

will act as a strong vortex. In turn, this will cause erroneous values of the potential along

the body. For the wake piercing formulation presented in this thesis, the wakes are treated

as equivalent vorticity distributions which produce a velocity influence. By examining the

traditional dipole wake sheet implementation as analogous vorticity influences, one finds

that there are three strong line vortices at all wake-body intersections (see figure 4-3). This

set of strong vortices is not physical, rather it is a mathematical consequence of preserving

the wake potential jump right up to the fuselage. The combined-body and wake line vortices

are of equal magnitude, in the same positions, but of opposite signs, thus, in the velocity

evaluation, they completely cancel each other (to preserve the physical reality of minimal

vorticity at the wake-body intersection). The net velocity at wake-body intersections is

therefore smooth.

The concept of the body piercing vortex wakes is a natural extension of using an equiv-

alent vorticity wake to produce a velocity influence on the body, rather than a potential
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Figure 4-3: Representing the potential wake as vortices.

jump. Additionally, consider that the wake is merely a means by which the body bound

vorticity (or equivalent circulation) is shed into the domain. The body bound vorticity can

be mathematically represented in many diverse ways in a potential flow. As such, it is

convenient to extend the vortex wakes into the body and represent the circulation of the

body and wing using an embedded or body piercing vorticity distribution. By enforcing

the influence of this body piercing wake as a velocity influence on the wing-body system,

the potential jump in the solution for the body surface potential is not explicitly modeled,

rather it is implicitly modeled via the velocity influence vorticity body piercing wakes. By

accounting for all contributions to the total or overall potential, the potential jump at the

wake-body intersection is re-introduced via the potential influence of the vorticity wake

(which is equivalent to a dipole sheet). This body piercing wake formulation is illustrated

in figure 4-4. Although the body piercing wake seems highly un-natural, the portion of the

wake inside of the body is merely a means of representing the body bound vorticity. The

body bound vorticity is required to produce the circulation around the lifting surface.

The body piercing wake formulation is implemented as follows:

1. Setup a solution to the wing-body component of the potential flow solution using any
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Figure 4-4: A demonstration of the body piercing wakes.

potential flow formulation.

2. Prescribe a wake which pierces the body. The wake should have a gradual variation

of doublet strength from a value of zero at internal wake boundary points to the value

prescribed by the Kutta condition at points where the wake pierces the boundary from

interior to the exterior. For wings this piercing wake must intersect the wing at the

trailing edge at which a Kutta condition will be applied.

3. Express the wake influence in terms of a contribution to the velocity boundary con-

dition. Solve the system of equations, ensuring that the boundary conditions and

trailing edge Kutta condition are satisfied. Be careful to recognize that the quantity

being solved for has a different representation than it would if one were to consider

a traditional panel method formulation (ie. if one is solving for the doublet strength,

realize that the doublet strength no longer represents the perturbation potential, rather

it represents the perturbation potential minus the wake potential!).

4. If the potential is desired, compute the potential influence due to the freestream,

wakes and body and add them together.
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Although, it is believed that the body piercing wake formulation is novel for three dimen-

sional potential flow applications, initial proposals for body piercing wake concepts can

be seen in some of the two dimensional panel method investigations by Hess, Pierce and

Smith [13]. In two dimensions a single vortex point inside 2-Dimensional airfoils (repre-

sented using Neumann source panels) is used to provide the circulation necessary for lift

generation. The idea was not pursued for long, since Hess, Pierce and Smith soon found

that the vorticity panel Neumann approach was more convenient for their applications.

A brief example of body piercing wakes is presented to illuminate the application.

Figure 4-5: A schematic of the sphere example with (a) Body conforming wakes, and (b)
body piercing wakes. The body conforming wake is represented using a potential jump
inducing potential jump, while the body piercing wake is represented using an equivalent
vortex ring (shown using thick lines).

A dipole sheet enclosing the trailing half hemisphere of a sphere: The example of

a body piercing wake is the flow around a unit sphere centered at the origin. A trailing

wake sheet of unit strength is prescribed. In the traditional formulation, the wake sheet

is described using a dipole sheet of constant strength which conforms to the sphere as

shown in figure 4-5a. In the body-piercing-wakes formulation, the wake is represented

using a quadrilateral vortex ring which pierces into the sphere as shown in figure 4-5b. The
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Figure 4-6: The total potential computed due to a body conforming wake, (o), and body
piercing wake, (*).

resulting total potential for the two separate simulations is presented in figure 4-6. The

total potential is the superposition of the body surface potential, and the potential due to

the wake sheet.

4.1.1 Comments on Body-Piercing Wakes

For unsteady panel methods, a simple, and general approach to handle the wakes is a ne-

cessity. The body piercing wakes presented in this chapter have the potential to simplify

panel methods greatly. Without the need for complicated wake-body intersection griding,

it is possible to reduce user interaction times with panel methods by orders of magnitude.

The body piercing wake concept can be applied to all non-membrane panel method formu-

lations by appropriately incorporating the correct boundary conditions. Due to the conver-

sion from a potential jump influence wake sheet to an equivalent velocity influcence, the

discontinuities at wake-body intersections associated with the potential jump requirement

are eliminated.

The body piercing wake formulation is effective for higher order distributions with

77



large panel counts. Although the method will work for low order, coarse discretizations,

the effect of the internal wake will tend to reduce the accuracy of the solution (since the

wake influence becomes a velocity boundary condition). The use of at least linear strength

basis functions for the solution of body piercing wake problems is recommended.

4.2 The Vortex Particle Method

The vorticity in the wakes can be represented in a number of ways. In this thesis, a vortex

particle method is investigated for the representation of the domain vorticity. Although

a vortex particle method is chosen in this work, one could easily implement many other

forms of vortex representation including sheet or filament vorticity.

The domain vorticity is represented using discrete vortex particles which capture the

strength and magnitude of the vorticity. The overall domain vorticity is represented as the

summation over all of the discrete vortex particles in the domain, which is written as[88]:

"ω("R, t) =
∑

p

"ωp(t)volpδ("R− "Rp(t)) =
∑

p

"αp(t)δ("R− "Rp(t)),

where, "ωp(t)volp is written as "αp(t). Here, volp refers to the volume of the fluid domain

which is represented by the vortex particle.

For a vortex particle representation of the vorticity, the discrete vector potential is:

"Ψp("R, t) =
1

4π

∑

p

"α("R, t)
1

‖"R− "Rp(t)‖
.

The vorticity induced velocity is:

∇× "Ψp("R, t) =
1

4π

∑

p

∇ 1

‖"R− "Rp(t)‖
× "α("R, t). (4.1)

Similarly, the gradient of the velocity term used for the vorticity stretching in the vorticity
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evolution equation is:

∇
(
∇× "Ψ("R)

)
=

1

4π

∑

p

∇
(
∇ 1

‖"R− "Rp(t)‖
× "α("R, t)

)
. (4.2)

A Lagrangian reference frame is used for the evolution of the vorticity, such that the posi-

tion "Rp(t) of a discrete vortex particle at any given time is:

d

dt
"Rp(t) = "Up("R(t), t). (4.3)

The evolution of the vortex particle strength as it travels through the domain is:

D"αp(t)

Dt
= "αp(t) ·∇"Up("R(t), t). (4.4)

Each of the vortex particles, or vortons, has an associated core in order to mimic the phys-

ical vortex core as well as to reduce the numerical instability of the vortex interactions. A

collection of vortex particle core expressions are presented in [88]. The evaluation of the

vorticity induced vector potential can be represented as a matrix vector product:

[C] ["α] = "Ψp

Here the vorticity is known and a single matrix vector product results in the vector potential.

Additional information about vortex particle core functions and vortex methods in general

can be found in [88].

Discrete Form of the Vorticity Evolution Equation

The evolution of vorticity is computed by discretizing the ODEs governing the vorticity

evolution and computing the vortex particle position at time, t + 1. A simple approach to

this would be to use a forward Euler equation:

"R(t + 1) = "R(t) + "Up("R(t), t)∆t (4.5)
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and then update the strength of the vortex as:

"αp(t + 1) = "αp(t) + "αp(t) ·∇"Up("R(t), t)∆t. (4.6)

4.3 Conclusions

In this chapter, methods for simplifying and automating wake modeling have been pre-

sented. The approaches presented in this chapter help minimize the user involvement in the

solution of lifting body flows by:

1. Allowing CAD and CFD surface grids to be used for lifting body simulations. The

development of body piercing wakes eliminates the task of prescribing wake-body

intersections.

2. Using vortex particle methods to evolve the domain vorticity in time. The vortex

particles are not constrained by connectivity requirements. This permits automatic,

hands of wake evolution in complicated environments.

With the flexibility of vortex particle methods, coupled with the generality of body-piercing

wakes, the lifting body problem is significantly simplified.
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Chapter 5

Implementation Details

In this chapter the implementation details of the panel method formulations are described.

The boundary integral equation is discretized using a boundary element method [89,

127, 90], while the vortex volume integral equation is represented using a vortex particle

method [59, 88, 57].

5.1 Boundary Element Method Implementation

The Galerkin Boundary Element Method is used to discretize the various potential flow for-

mulations. Solution basis functions of linear order are considered for all examples shown.

The Boundary integral equation is written in terms of a residual R:

(BIE −RHS) = R. (5.1)

As an example, the Neumann-Source problem is written as:

[
N∑

j=1

n̂ ·∇
(

1

4π

∫

Sj

σjbj
1

‖"r − "r′‖dS ′j + Φw

)
−

(
n̂ · ("VG + "VGp + "Ω× "rGp −∇× "Ψ)

)]
= Rσ.

(5.2)

The weighted residual is minimized using a Galerkin formulation [127]. For each panel i

on the discrete surface, a minimization of the residual is achieved by first multiplying by a
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target basis function bi and integrating the product over the panel:

∫
bi (BIE −RHS) dST =

∫
biRdST (5.3)

for the example of the Neumann-Source formulation (for all target basis i):

∑

j

∫

STi

bi

[
n̂ ·∇

(
1

4π

∫

Sj

σjbj
1

‖"r − "r′‖dS ′j + Φw

)]
dSTi−

∫

STi

bi

[(
n̂ · ("VG + "VGp + "Ω× "rGp −∇× "Ψ)

)]
dSTi (5.4)

=

∫

STi

biRσ dSTi .

In effect, this formulation minimizes the residual by ensuring it lies in a space orthogonal

to the solution basis. In the panel method presented, the integration over the test basis

functions is performed using numerical quadrature schemes[134, 135, 136]. In addition, the

testing basis functions bi are of identical form to those used for the solution representation

bj .

As a result of the discretization and formation of a residual minimization statement, the

boundary integral equations become linear systems of equations which are readily solved

using any number of techniques. Although the Galerkin formulation statement is robust,

the computational effort is increased over the simpler collocation based approaches [127]

due to the necessity of evaluating the integral over the target panel numerically. This outer

integral evaluation results in an increase in complexity by a factor proportional to the num-

ber of quadrature points used in the integral evaluation.

5.2 Wake Implementation details

The vortex particle method wake representation was presented in chapter 4. Some ad-

ditional details pertaining to the implementation of the wake model are presented in this

section.
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5.2.1 Kutta Condition Implementation

The addition of wakes involves adding new unknowns to the system. These unknowns can

be determined by adding a Kutta condition to the linear system. The Kutta condition can

be linear or non-linear. The linearized potential Kutta condition [123] is implemented by

adding appropriate rows and columns to the the influence coefficients matrix. The nonlinear

Kutta condition [137, 117, 142] is implemented using a fixed, approximate Jacobian in a

damped NewtonMethod [139] solver. The use of Quasi-Newton methods such as the BFGS

[140] algorithm will be investigated in future implementations. The advantage of a Quasi

Newton method implementation is that an approximate Jacobian matrix is constructed with

minimal time investment, thus reducing the cost involved in constructing the full Jacobian.

The linear system including a wake and Kutta condition can be written as:



 [B2B] [W2B]

[B2W ] [W2W ]










ˆ{B}
ˆ{W}




 =





{B.Cbody}

{T.EKutta}




 ,

where, B2B represents the body to body potential or velocity influence matrix,W2B rep-

resents the wake to body potential or velocity influence, B2W represents the body to wake

influence at the Kutta condition forcing points, and W2W represents the interaction be-

tween the wake and the Kutta condition points. For a simple linearized Source-Doublet

formulation the linear system is:



 [B2Bµ] [W2Bµ]

[ΦU − ΦL] [I]









{µ̂body}

{µ̂wake}




 =





[B] {σbody}

{0}




 .

This is a compact manner to write the linear system including the Kutta condition. For the

non-linear Kutta condition, an iterative procedure is used to solve for the surface singularity

strength:

1. For the current iteration wake strength,
{

Ŵn

}
, solve the following intermediate lin-

ear system for the body singularity strength
{

B̂n

}
:

[B2B]
{

B̂n

}
+ [W2B]

{
Ŵn

}
= {B.Cbody} . (5.5)
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Since,
{

Ŵn

}
is prescribed for the current step, the linear system to be solved is:

[B2B]
{

B̂n

}
= {B.Cbody}− [W2B]

{
Ŵn

}
. (5.6)

2. Determine how well the Kutta condition is satisfied using the current wake strength,

but the updated body surface singularity distribution:

[B2W ]
{

B̂n

}
+ [W2W ]

{
Ŵn

}
− {T.EKutta} = {R} . (5.7)

3. If the residualR from equation 5.7 is less than some given tolerance, stop the iteration

loop, else go to 4.

4. Update the wake strength based on the Kutta condition, and the current solution. For

the non-linear pressure Kutta condition, this amounts to computing the change in

potential based on the current trailing edge pressure jump:

[
∂(Pu − Pl)i

Ŵj

] {
∆Ŵn

}
= {∆(Pu − Pl)n} . (5.8)

Solving this linear system, the resulting wake strength Ŵ is:

Ŵn+1 = Ŵn + ∆Ŵn (5.9)

5. Go to step 1. Repeat until converged.

The above weak iteration can be used for both linear and non-linear equations. For linear

equations, the iteration will take a single step to converge, however, for non-linear Kutta

conditions the approach may take several steps to converge, depending on how well the

Jacobian matrix in equation 5.8 is represented.
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5.2.2 Doublet Sheet, Vortex Sheet and Vortex Particle Wakes

Consider a discrete dipole sheet representing a wing trailing wake. The discrete doublet

wake can be equivalently represented using equivalent vortex sheets and vortex rings. For

piecewise continuous doublet representations, the equivalent vortex ring surrounding the

doublet panels is nullified by the neighboring panels. As such, the use of higher order,

piecewise continuous doublet wake panels is preferred. In order to convert the dipole panels

to equivalent vortex particles the following steps are taken (see figure 5-1 ):

1. Determine the equivalent vortex representation for each dipole sheet to be converted

to vortex particles. The equivalent vortex sheet is computed by examining the tan-

gential derivative of the potential distribution.

2. Determine the number of vortex particles to be emitted from each panel.

3. Divide the panel into equal area segments and generate a vortex particle at the cen-

troid of each of the segments.

(a) The particle strengths are computed by multiplying the area represented by the

panel segment by the strength of the vortex panel.

(b) The vortex particle radius is determined using the maximum radius of the panel

segment and adjust it by a user specified factor.

5.2.3 The Farfield Approximation Model

Two levels of farfield approximation exist:

1. Fixed in space particles: When vortex particles travel sufficiently far away from the

bodies in the domain their exact position becomes less important. As such, once the

vortex particles have reached a sufficient distance from the body, they can be frozen

in space. This effectively reduces the inter-particle computations since no induced

velocities are required for the farfield-fixed-in-space vortex particles. The vortex

particles which are fixed in space do however continue to move with the freestream

velocity relative to the body in question.
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Figure 5-1: A schematic illustrating the conversion of dipole sheet panels to vortex par-
ticles. In (a) the linear variation dipole distribution is shown for a particular wake panel.
In (b) and equivalent vortex representation is illustrated. Notice, there are strong vortices
around the circumference of the panel, and there is a constant strength vorticity distribution
on the panel. In (c) the constant strength vorticity distribution on the panel is converted into
a series of vortons or vortex particles. Finally, in (d) the cancellation of the circumferential
panel vortices with the circumferential vortices of neighboring panels is illustrated. This
cancellation occurs due to the piecewise continuous linear basis representation of the dou-
blet strength. If the representation were not continuous, the circumferential vortices would
not cancel with their local neighbors.

2. Multipole Expansion LumpingOnce particles reach extreme distances from the body,

their influence can be treated as a lump sum influence. The vortex particles are

lumped into multipole expansions and each multipole expansion is treated as a simple

multipole particle. These multipole representations have no inter-particle influence

in the farfield; however, they do have influence on the near field vortices and the

body. Since these multipole representations have no inter-particle influence, they

simply convect with the freestream flow. This farfield simplification is made in order

to reduce the number of particles in the domain in order to maintain a fast simulation.

The farfield models are used to reduce computational complexity.

86



5.3 Putting it all together

The following section describes the solution approach implemented in the panel method

framework presented in this thesis.

5.3.1 Summary of Solution Steps

In order to simulate a body shedding wakes, it is necessary to compute velocities and use

those velocities to advect the wake. In addition to convecting the wake, the velocities due

to the wake and any other domain vorticity must also be computed as an influence on the

body boundary condition. In the current implementation this is accomplished by using a

time stepping procedure. The following general steps occur during each time step in the

solution process regardless of the potential flow formulation being used:

Step 1) If the simulation is a morphing body simulation, load the current geometry def-

inition. Solve the potential flow boundary integral equation, to determine the unknown

singularity strengths on the surface of the body. Also determine the unknown potential

jump in the new wake region for the current timestep. Any of the potential flow formula-

tions from chapter 2 can be used for determining the potential flow solution. The velocity

boundary condition should be computed based on the current body translational and rota-

tional velocities, as well as any morphing of the body surface. The current domain vorticity

influence, "UΨ, is also included in the boundary conditions. Included in this flow solution

is the determination of the potential jump across unknown buffer wake, which enforces the

potential Kutta condition.

Step 2) Determine the strength of the vorticity that needs to be released into to domain.

This new vorticity is the converted vorticity from the previous timestep known buffer wake

layer.

Step 3) Determine the velocity and gradient of the velocity influence from the body onto

the vortex particles in the wake using the boundary integral equations. This involves eval-
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uating the gradient of the potential flow integral equation at each of the vortex particle

positions. This is a single matrix vector product.

Step 4) Determine the velocity and gradient of the velocity influence of each of the wake

particles on each of the other wake particles using the integral equation for the vorticity-

velocity relationship. This is a matrix vector product.

Step 4 a) If necessary, compute the pressures and forces acting on the body, prior to updat-

ing the position and strength of the wake. This is an application of the unsteady Bernoulli

equation, to determine the pressure from the velocity.

Step 5) For each vortex particle in the wake, update the particle position and vortex parti-

cle strength using the Lagrangian vortex evolution equations. If the vortex particles are in

the farfield region, simply advect the particles with the local freestream velocity relative to

the body. For the nearfield particles, this step involves determining the new position and

strength by solving the ODEs governing the evolution of the vorticity.

Step 6) Compute the wake to body influence based on the new wake voterx particle po-

sitions and strengths. This is done by evaluating the matrix vector product represented by

the Poisson equation governing the vorticity-velocity relationship.

Step 7) Start over at (1) unless the iteration stopping condition has been reached.

5.4 Acceleration Algorithms

Two matrix vector product(MVP) acceleration techniques are implemented for the solution

of the potential flow. The precorrected-FFT [84] is used for accelerating the GMRES [100]

iterative potential flow solution, while the Fast Multipole Tree approach is used for eval-

uating the vorticity stretching and velocity influences. Following the introduction of the

acceleration methods a brief discussion of the use of the methods is presented. Although
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the acceleration methods are briefly outlined in the following two sections, more detailed

information can be found in the original literature [110, 109, 70, 86].

5.4.1 precorrected-FFT

The precorrected-FFT method used is based on the original p-FFT algorithm [84]. Through

a collaborative effort, a generic version of the pFFT algorithm was implemented[47]. In

the pFFT algorithm, the matrix vector product:

[A]"σ = "φ (5.10)

is accelerated using the following steps:

1. Projection: Through a polynomial interpolation procedure the charge distribution σ

is projected onto a 3-Dimensional Fast Fourier Transform Grid. In order to make the

process generic, the projection operator takes the moments and centers of discrete

charge representation and projects those moments onto the FFT grid. By taking

moments and centers, the use of arbitrary charge sources is possible. The process is

summarized as:

[P ]"σ = "σg (5.11)

where, P is the projection matrix and σg is the FFT grid equivalent charge. The

projection operator is setup once per given geometry per FFT grid.

2. FFT , Convolution, FFT−1: An FFT is performed on the equivalent grid source

charges. Also, an FFT is performed on the kernel evaluated on the grid. The FFT is

performed using the FFTw code[48]. Once in Fourier space, a multiplication of the

transformed charge and transformed kernel is performed (the original physical space

operation was a convolution). Finally, an inverse FFT is applied to the result of the

multiplication to give the grid potentials, φg.

[H] "σg = "φg (5.12)
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3. Interpolation: The grid charges are interpolated back onto the evaluation points

through a polynomial interpolation. The interpolation is achieved using the same op-

erator as in the projection with different moments and centers possible (if the testing

basis functions are different or the inner/outer operators are different). The interpola-

tion matrix is determined by taking the transpose of the result (in reality a transpose

multiply operation is performed to reduce the number of memory accesses):

[I] "φg = "φ (5.13)

4. Precorrection: Finally, the approximation of the nearfield interactions are subtracted

and replaced by directly computed interactions (using an appropriate integration

scheme).
(
[D]− [Ĩ][H̃][P̃ ]

)
σ = PC (5.14)

The end result is a matrix vector product which is represented as:

[I][H][P ] +
(
[D]− [Ĩ][H̃][P̃ ]

)
σ = φ (5.15)

The matrices [I],[P ] and [D] as well as the Kernel transform a need only be computed

once per given fixed geometry. The matrix vector product is rapidly computed during the

iterative solution process by multiplying the stored matrices. The generic framework which

was developed enabled the separation of the operators.

5.4.2 Fast Multipole Tree Method

The fast multipole tree method [110, 70] is implemented for accelerating the evaluation of

the vorticity stretching and velocity influences. The method uses a multipole expansions

but does not go into the complexity of using local expansions [46]. The following steps

highlight the FMT algorithm which is implemented:

1. Octree Domain Decomposition: The following steps are used to setup the octree

and multipole representation:
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Figure 5-2: The pFFT algorithm presented graphically. First a uniform 3D-FFT grid is
generated. The domain charges are projected onto the grid. Following that the convolution
is performed in Fourier space to yield the grid potential. Following that the grid potentials
are interpolated back to the evaluation points, and lastly the nearby interactions computed
directly and subtracted from the grid based computation.

(a) Create a root cell enclosing the entire geometry under consideration

(b) Get NumElements, the number of elements in the current cell

(c) IfNumElements > MaxNumElements then split current cell into 8-children

cells and cycle over each of the 8-children cells by going to step b.

(d) If NumElements < MaxNumElements then construct leaf cell multipole

representation by clustering elements in current cell into a multipole moment

expansion at the centroid of the current cell. Go to b. and continue decomposi-

tion with the next cell in the list.

(e) Translate and add the current cell multipole expansion to the parent cell multi-

pole expansion. The parent cell is the one level higher cell to which the current
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child cell is associated.

2. Potential Evaluation: The potential evaluation is the second step in the multipole

process. The following steps are taken to evaluate the potential at a point "R =

(x, y, z):

(a) Start at the root cell level:

(b) Evaluate the distance, Rpr between the cell centroid and the evaluation point.

Compare this with the cell sidelength S. Compare the separation to sidelength

ratio with a user specified minimum:

K = Rpr/S (5.16)

(c) If K < Kuser: The current cell multipole representation is too close to the

evaluation point. If the current cell is not a leaf cell, go to the children cells

of the current cell, cycling through each starting at step (b). Nested loops can

continue multiple levels until each interaction is accounted for. If the current

cell is a leaf cell, directly evaluate the interactions between the elements in the

current cell and the evaluation point.

(d) If K > Kuser: Compute the potential due to the current cell to the evaluation

point:

i. If the current cell is a leaf cell, the potential is computed by cycling through

the elements in the cell.

ii. If the current cell is not a leaf cell, compute the potential at the evaluation

point using the multipole expansion expressions in the cell.

In the current implementation of the Fast Multipole Tree approach, a heirarchical distance

specification is used. One specifies a center of the domain and one can specify multipole

tree evaluation properties in different zones of the domain defined using increasingly larger

spherical zones. For example, near the body, one might wish to ensure that the majority

of interactions are directly computed, while far from the body, the more frequent use of
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Figure 5-3: The domain is divided into several concentric spherical domains. In each do-
main, the minimum separation distance between evaluation point and cell center can be
specified. This allows for high resolution of the interactions in certain regions of the do-
main, while other regions can have a more approximate, more rapidly computed interaction.

multipole expansions can be considered. This is shown in figure 5-3 The various controls

on the Fast Multipole Tree acceleration in the current code are as follows:

1. Octree Decomposition Setup Controls

(a) Buffer for the bounding box. The bounding box can be enlarged by a small

amount to encompass additional space if necessary.

(b) Multipole Order. Second order is maximum expansion order.

(c) Maximum number of elements per octree cell. The number of elements per cell

enables the octree decomposition. It has been found through trial and error that

10-20 elements are the best compromise between accuracy and computation

time.

2. Evaluation Controls

(a) Minimum cell separation for farfield multipole approximation. This is based

on the ratio of cell-sidelength to the distance between the cell-centroid and
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element-centroid. Typically, separation distances of 2.5 cell sidelengths are

a good compromise between accuracy and evaluation time.

(b) The farfield radius. The farfield radius dictates where the motion of particles

is based only on the freestream velocity relative to a fixed in space body. The

magnitude and direction of the vorticity associated with each of the particles is

not adjusted.

(c) Nearfield Subdomian Radii. The nearfield subdomain radii are used to deter-

mine the minimum cell separation value based on the distance away from the

body.

5.4.3 A Brief Discussion of the Acceleration Routines

The pFFT and FMT approaches have different strengths for the problem under consider-

ation. For this reason, both of the approaches are used for their appropriate application.

The pFFT is used for computing the matrix vector product inside of the GMRES iterative

solution method, while the FMT is used to compute the matrix vector products for one off

computations (such as the velocity and stretching computations). This is discussed briefly

here.

1. The pFFT is used for the solution routines, since, once the matrices are set up for

a given geometry the matrix vector product is extremely efficient. Since the Fast

Multipole Tree method which is implemented only considers an upwards sweep of

the Octree structure (no local expansions), the matrix vector product is less efficient.

2. The pFFT is not used for the wake interactions, since the wake may extend a long way

behind the body. In order to accurately approximate the wake, a large equi-spaced

grid must be used. The FMT is more appropriate due to the hierarchical nature of the

octree grid. This permits rapid evaluation of the influence.

3. The pFFT is not used for the wake particle to particle interactions due to the expense

of precorrection. The precorrection cost becomes significant component of the setup

time when the direct computations are simple point to point interactions.
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4. The FMT is used for computing the majority of the velocity influences, since the

pFFT would typically require a larger direct interaction stencil and/or a larger pro-

jection and interpolation stencil and order. This increases the direct and precorrection

components of the matrix vector product setup significantly. Since the FMT can be

tuned, it is ideal for computing the velocity and stretching influences.

5.5 Implementation Details of the BIE Formulations

In this section a brief discussion of the three boundary integral equation formulations which

were presented in Chapter 2 are discussed. The application of these formulations for solv-

ing the body surface singularity distributions is examined more closely in the following

chapter; however, for completeness they are presented here.

1. Source-Doublet Formulation with Potential Doublet Buffer Wakes: The source-

doublet formulation used for solving the potential flow involves the use of sources

and doublets on the surface of the body, with a dipole buffer wake sheet used for

satisfying the linear Kutta condition. The no flux boundary condition is satisfied

through the use of the source distribution. In addition to the body motion and morph-

ing velocities, the vortex particle wake velocity is also used as a boundary condition

on the potential solution. The time stepping procedure is similar to that presented

earlier.

2. Doublet Lattice Neumann Formulation with Velocity Inducing Doublet Buffer

Wakes: The doublet lattice formulation is similar to a traditional doublet lattice

solver except for the linear order doublet strengths and the use of vortex particles

in the wake rather than a traditional wake sheet. The Kutta condition is the simple

linearized no trailing edge vorticity Kutta condition.

3. Source Neumann Formulation with Body Piercing Doublet Wakes: The imple-

mentation of the source Neumann formulation with body piercing wakes is presented

in a little greater detail that the previous two formulations. The surface singularity in
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this formulation is a source distribution of piecewise linear strength. The source dis-

tribution is treated as a velocity influence. The wakes are represented using doublet

sheets which pierce the body at the trailing edge. For a single, simple wing, Figure

5-4 illustrates the piercing doublet wake. The doublet wake sheet is treated as a ve-

locity influence. The combined velocity influence must satisfy the surface boundary

condition (which is used to determine the source strengths) and the Kutta condition

(which is used to determine the doublet strengths). The non-linear Pressure Kutta

condition described earlier is implemented.

Figure 5-4: A schematic illustrating the body piercing wakes demonstrates the linear vari-
ation of the internal to the body wakes. For effective computations, it has been found that
a linear distribution of doublet strength inside of the body results in sufficiently smooth
source distributions on the surface of the body. For efficiency the source-Neumann formu-
lation is the approach considered in this work (note: the body piercing wake concept can
also be used for source-doublet type approaches).

5.6 Conclusions

The various implementation details for the potential flow solution framework have been

presented in this chapter. In the chapter which follows simulation results and examples are
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presented for the various potential flow formulations investigated.
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Chapter 6

Simulations and Results

This chapter demonstrates the solution of a selection of relevant sample potential flows

using the formulations presented in this thesis.

6.1 Validation Computational Experiments

6.1.1 NACA-0012 Non-Lifting Wing

A rectangular wing with a symmetric NACA 0012 airfoil at zero degrees angle of incidence

is examined in this section. The discretized wing comprises 4096 triangular panels and

2145 vertices. The wing is a lattice of ordered right angle triangles (32 panel widths in

the spanwise direction by 64 panel widths in the chordwise direction) with leading edge

refinement. Although an analytical solution is not known, the NACA 0012 airfoil is a

common test case and as such, the comparison to computational data from the 2-D panel

method XFOIL [38] is made. The surface pressure distribution for the source-Neumann

formulation and the Source-Doublet Potential formulation is illustrated in figure 6-1. Since

the flow is at a zero incidence angle, the wake sheet strength is identically zero.
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Figure 6-1: The results are illustrated for both the Neumann-Source approach and the
Source-Doublet approach. Comparison is made to the 2-D results from the panel method
code XFOIL [38] and show a good match.

6.2 Steady NACA 0012 Lifting Wing Simulations

In order to determine the steady state solution to a given lifting problem, there are two

options. First, the solution of a potential flow problem with a very long trailing wake. This

solution is determined in one step and does not require iteration in time. The second ap-

proach is more costly yet more accurate. It involves solving for the steady state conditions

by iterating some startup flow up to steady state. The second option, though more costly is

chosen for this example. The lifting body wing centerline pressure distribution is presented

in figures 6-2 and 6-3. Figure 6-2 illustrates the pressure distribution around the midsection

of a NACA 0012 with Aspect Ratio of 4. Since bodies of thickness are presented, only the

source-doublet and source Neumann-formulations are considered. The results demonstrate

good agreement with each other, as well as a good agreement with a reduced angle of at-

tack 2-D simulation. In addition to the thick body simulation results, a plot of the wing

centerline pressure difference due to a flat plate with an aspect ratio 4 wing is presented in

6-3. The result demonstrates the large leading edge contribution to the pressure due to the
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strong leading edge vorticity in this case.

Figure 6-2: The pressure distribution around the midsection of an Aspect Ratio 12 finite
wing with NACA 0012 profile at a zero angle of attack

.

6.3 Unsteady Computations

In this section results for wings under unsteady motions are examined.

6.3.1 Unsteady Startup Flow

The simulation of an unsteady startup flow is presented in this section. The wing in this

example is subject to a unit step velocity increase, such that the acceleration of the wing

at time t = 0 is an impulse function. As a result of the sudden start up, several interesting

flow features can be seen. First, an infinite force will act on the body due to the sudden

acceleration of the body (in the discrete simulations, this force is large, not infinite). A

starting vortex is formed due to the satisfaction of the Kutta condition at the initial startup.

As the distance between the starting vortex and wing increases, the effect of the downwash
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Figure 6-3: The pressure distribution at the midspan of a Aspect Ratio 12 membrane wing.

from the starting vortex is reduced. As a result the lift will gradually rise and after a

long time, settle at a steady state value. Finally, since the wing is three-dimensional, one

can readily see the wing tip vortices and the wing tip vortex roll-up. The startup flow was

examined for three different aspect ratio wings (Aspect Ratio 4, Aspect Ratio 8, and Aspect

Ratio 12), each with a NACA 0012 profile, except for the membrane which is an infinitely

thin plate with no camber. The non-membrane wings are discretized using 4096 triangular

panels and 2145 vertices, while the membrane wing is discretized using 2048 panels and

1089 vertices. In these simulations, there is significant wing leading edge refinement in

order to accurately capture the large gradients of singularity strength at the leading edge.

Figure 6-4 shows the time evolution of the Z-component of the resultant force for the

wing at an incidence angle of 2.5 degrees. The results are compared with data extracted

from a vortex lattice startup flow computation presented in Katz and Plotkin [113]. Figure

6-5 shows the resulting vortex particle trail behind the wing. The unsteady startup flow

demonstrates that the methods developed in the solution framework accurately model time

dependent flows. The unsteady lift increase with time compares well with the results pre-

sented in [113]. The only noticeable difference between the results is the early transient

102



Figure 6-4: The figure illustrates the time development of the Z-Component coefficient
after a sudden step function velocity change. The wing is instantaneously set to 2.5 degrees
angle of attack at time t=0. The results are plotted for an aspect ratio of 4,8, and 12. In
addition results are plotted for the membrane solution approach (M), the source doublet
approach (G), and the Source-Neumann approach (N). The plot also illustrates the results
presented in Katz and Plotkin [113].

time response of the Neumann-Body-Piercing Wake formulation result. These deviations

between the Neumann Source formulation code and the other formulations are attributed to

the satisfaction of a nonlinear pressure Kutta condition rather than a linear Kutta condition.

6.3.2 Unsteady Finite Aspect Ratio Heaving Wing

The unsteady heaving wing problem provides an opportunity to validate the unsteady time

dependent flow solution capabilities of the panel methods examined. The heaving wing

demonstrates the ability to compute unsteady flows in which wake-body interactions play

an important role in the overall production of forces. The heaving wing simulations are

compared to analytical expressions for an oscillating 2-Dimensional plate which are pre-

sented by Theodorsen [104] and Katz and Plotkin [113].
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(a) The vortex particle representation of the vor-
ticity behind an aspect ratio 8 wing after a sudden
startup. The figure illustrates the vorticity distri-
bution in the wake. As expected, there is a strong
concentration of vorticity trailing the wingtips,
which eventually forms two vortices. In addition,
the figure clearly illustrates the startup vortex, as
well as the gradual increase in vorticity due to the
sudden startup of the wing.

(b) The vortex particles trailing an aspect ratio 8
wing after a sudden unit step velocity startup. The
figure clearly demonstrates the startup vortex roll
up as well as the commencement of the wing tip
vortex roll up.

Figure 6-5: The startup flow around an aspect ratio 8 wing.

Theodorsen Theory For 2-Dimensional Flat Plate Heaving Motions [104]

In the Theodorsen theory, oscillations are assumed to have a small amplitude. The Z-

Component of force produced during heaving oscillations of a 2-Dimensional flat plate is

expressed as [104]:

FZ = −πρc

(
UC(k)

dh

dt
+

c

4

d2h

dt2

)
, (6.1)

The first part of equation 6.1 represents the generation of traditional steady state lift mul-

tiplied by a lift reduction factor C(k), while the second part of the equation represents the

unsteady acceleration component of the lift. The lift reduction factor C(k) can be written

as a function of the reduced frequency k as[104]:

C(k) = F (k) + iG(k). (6.2)
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The expression for the real component, F (k) is:

F (k) =
J1(k)(J1(k) + Y0(k)) + Y1(k)(Y1(k)− J0(k))

(J1(k) + Y0)2 + (Y1 − J0(k))2
, (6.3)

while, the expression for G(k) is:

G(k) = − Y1(k)Y0(k) + J1(k)J0(k)

(J1(k) + Y0)2 + (Y1 − J0(k))2
. (6.4)

A plot of the circulatory lift reduction factor and phase shift due to Theodorsen’s lift defi-

ciency factor is presented in figure 6-6. The reduced frequency k is defined as:

Figure 6-6: The Theodorsen lift deficiency function as a function of the reduced frequency.
The function is presented in terms of the magnitude (C(k)) and the phase shift in radians.

k =
ωc

2U
. (6.5)

The Theodorsen lift deficiency factor C(k) is a direct result of the downwash on the main

wing produced by the unsteady wake development. The unsteady release of vorticity causes

a reduction in the circulatory lift while also causing a lag in the development of the lift.
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Katz-Plotkin Theory [113]

Katz-Plotkin derived the following similar expression; however, considered different as-

sumptions [113]:

L = −πρc

(
U

dh

dt
+

3c

4

d2h

dt2

)
. (6.6)

To arrive at equation 6.6, Katz and Plotkin [113] neglected the effect of the wake downwash

on the flat plate. Although this simplifies the derivation, this results in significant deviations

from the Theodorsen [104] result and the computational results.

Simulations of Heaving Wings

Simulations are performed for several different frequencies. Each simulation has a heaving

velocity defined by:
dh(t)

dt
= −0.05sin(ωt). (6.7)

The computational results are presented and compared with the Theodorsen Theory [104]

and the Katz and Plotkin theory [113] in figures 6-7 - 6-9. The results for the heave oscil-

lations compare more favorably with the theory presented by Theodorsen [104] than Katz

and Plotkin [113] as would be expected. This is due to the panel method accurately repre-

senting the unsteady vorticity in the wake. As the heave oscillations increase in frequency,

the importance of more accurately capturing the wake downwash effect on the heaving

wing is apparent.

The computational results demonstrate slight differences when compared to the theo-

retical predictions. There are several reasons for this:

1. The computational results consider a finite aspect ratio wing. As such, the com-

putational results expectedly demonstrate a slightly lower Z-force prediction due to

the 3-Dimensional nature of the flow. This effect is clearly captured in the lower

frequency oscillations where tip vortices play a significant role in Z-force reduction.

2. The computational results consider several different Kutta conditions, whereas, the

Theodorsen theory [104] considers a finite-trailing-edge-velocity Kutta condition.

As such, the computational results would be expected to differ from the theoretical
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Figure 6-7: The plot illustrates the z-Component Coefficient of Force resulting from heav-
ing oscillations at a reduced frequency of π

5 . Notice, at this higher reduced frequency, the
unsteady component of the Forces begins to have an effect on the overall forces. This
can be seen from the phase shift which appears between the velocity and the resulting lift.
Computational results are presented for the source-doublet, the doublet Neumann mem-
brane lattice, the source-Neumann wake piercing formulation with body piercing wakes
(for both a steady and unsteady pressure Kutta condition). Comparison is made to theories
presented by Theodorsen [104] and Katz and Plotkin [113].

predictions, especially at higher frequencies. For example, in figure 6-7 results have

been presented for steady and unsteady, linear and non-linear Kutta conditions. It can

be seen that differences exist between the various simulations. The most notable dif-

ferences occur when the Kutta condition considered differs from the one considered

by Theodorsen.

The simulation results for the heave oscillations demonstrate the versatility and ease

of use of the combined panel method-vortex particle method approach. In figures 6-10

vorticity wake structure plots are presented for both fast and slow heave oscillations. The

plots illustrate both the vorticity structure as well as the vorticity evolution with time.
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Figure 6-8: The plot illustrates the z-Component Coefficient of Force resulting from heav-
ing oscillations at a reduced frequency of π

10 . At this frequency, the Z-force is of opposite
phase to the velocity as would be expected in lower frequency motions. Computational
results are presented for the source-doublet, the doublet Neumann membrane lattice, the
source-Neumann wake piercing formulation with body piercing wakes (for a steady pres-
sure Kutta condition). Comparison is made to theories presented by Theodorsen [104] and
Katz and Plotkin [113].

6.4 Wing-Body Simulation Example

In this section, a practical simulation of a wing-body configuration is demonstrated. The

example demonstrates the ability to reduce the problem setup time through the use of the

novel approaches presented in this thesis. The use of a body piercing wake allows the

wing-body mesh to be imported from a standard mesh generation tool.

6.4.1 Rigid Body Piercing Wakes

The first example presented demonstrates the use of rigid body piercing wakes. The ge-

ometry under consideration is presented in figure 6-11. The wing trailing edge vertices are

prescribed, and from that the rigid wake geometry is constructed. The wake is extended

into the wings through the trailing edge, as well as through the fuselage. The results of the

wing body rigid-body-piercing-wake-only simulations are presented in figure 6-12. The re-

sults presented in figure 6-12 demonstrate the body-piercing wake approach for a practical
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Figure 6-9: The plot illustrates the z-Component Coefficient of Force resulting from heav-
ing oscillations at a reduced frequency of π

20 . At this frequency, the Z-force is of opposite
phase to the velocity as would be expected in lower frequency motions. Computational
results are presented for the source-doublet, the doublet Neumann membrane lattice, the
source-Neumann wake piercing formulation with body piercing wakes (for a steady pres-
sure Kutta condition). Comparison is made to theories presented by Theodorsen [104] and
Katz and Plotkin [113].

geometry.

6.4.2 Combined Body Piercing Wakes and Vortex Particles

A second example is considered in which both body-piercing wakes and vortex particles are

used in the same simulation. The body piercing wakes are used to represent the vorticity

at the trailing edge of the wing for the timestep under consideration. The wake is then

converted to vortex particles in preparation for the next timestep. Results are presented in

figure 6-13. The results demonstrate the pressure distributions as well as the vortex particle

wake evolution. Tip vortices are seen forming downstream of the lifting surface. The

effective lift of the wing-body configuration at 3 degrees angle of attack was Leff = 0.618,

while an aspect ratio 6 wing alone had an effective lift of Leff = 0.629 and an aspect

ratio 5.2 wing was found to have an effective lift of Leff = 0.516. The lift coefficient

for the wing-body was determined to be CL = 0.168, while for an aspect ratio 6 wing
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(a) An illustration of the vortex particle structure
behind a slowly heaving wing. The appearance
of distinct vortex rings is clear. These rings are a
direct result of the heaving motion during which
the Z-component of the forces oscillates between
a positive and negative value.

(b) The vortex particle structure behind a rapidly
heaving AR8 wing. The figure illustrates the vor-
tex particle structure behind a rapidly heaving
wing. The appearance of distinct vortex rings is
clear. These rings are a direct result of the heav-
ing motion during which the Z-component of the
forces oscillates between a positive and negative
value.

(c) An illustration of the vortex particles in the
wake trailing a slowly heaving wing. The wake
roll-up during the oscillation can be seen.

(d) An illustration of the vortex particles in the wake
trailing a rapidly oscillating wing. The vortex wake
self influence is seen to further deform the wake as the
wake propagates downstream.

Figure 6-10: Plots of the vortex wake structures behind oscillating wings.

the lift coefficient was CL = 0.171 and for an aspect ratio 5.2 wing CL = 0.162. The

results illustrate successful fuselage lift carryover is achieved with the body-piercing wake
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(a) Side View. (b) Front View.

(c) Top View.

Figure 6-11: The geometry considered for the wing-body example.

formulation.

6.5 Example : Flapping Flight

In this section an example of the application of the panel method framework to a flapping

flight application is presented.
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(a) Surface potential 3D view. Notice the body
piercing wake approach captures the discontinu-
ous potential along the fuselage when the overall
potential φ is determined. Since the body pierc-
ing wakes are represented as a velocity influence
the solution of the body surface potential φB is
continuous. Note that the surface potential repre-
sentation is based on the potential at the centroid
of each of the panels, therefore, the wake poten-
tial jump does not appear along the wake shed-
ding line.

(b) Surface potential side view. Notice the body
piercing wake approach captures the discontinu-
ous potential along the fuselage when the overall
potential φ is determined. Since the body pierc-
ing wakes are represented as a velocity influence
the solution of the body surface potential φB is
continuous. Note that the surface potential repre-
sentation is based on the potential at the centroid
of each of the panels, therefore, the wake poten-
tial jump does not appear along the wake shed-
ding line.

(c) Surface pressure plot. Notice here that the
pressure is continuous.

(d) Surface pressure plot. Notice here that the
pressure is continuous.

Figure 6-12: Results for the surface potential and surface pressure considering a rigid body-
piercing wake representation.

6.5.1 Flapping Wing Example

The method presented by Hall et al. [143] is used to determine the minimum power wake

vorticity distribution for a particular flapping wing lifting line. In this case a simple hinged
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(a) The surface pressure distribution as viewed
from above.

(b) The surface pressure distribution as viewed
from below.

(c) Surface pressure plot including vortex particle
wakes.

(d) Surface pressure plot including vortex particle
wakes.

Figure 6-13: The geometry considered for the wing-body example.

flapping motion is considered. Considering the lifting line flapping motions, the wake im-

posed downwash and the resulting minimum power vorticity distribution, a thin membrane

flapping wing geometry representation replicating the minimum power wake vorticity dis-

tribution is constructed as follows:

1. Construct a reference wing platform which flaps with the correct parameter depen-

dence while shedding the least amount of vorticity possible into the domain. The

wing can be designed to have a zero vorticity shedding throughout the wingbeat by

instantaneous local modifications of section camber and angle of attack. In this ex-
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periment, however, the wing is assumed to have a zero camber and the wing section

is aligned with the flow at the leading edge. This assumption will produce a reference

wing which has non-zero vorticity, especially in regions near the tip where incidence

angles are important; however, as a first order approximation for demonstrating the

translation process this is adequate.

2. Compute the downwash at lifting line positions along the wake considering only the

vorticity downstream of the lifting line.

3. Compute the local section angle of attack for the entire wing beat at each spanwise

section of the wing. This is computed considering the optimal vorticity distribution

in the wake from the Hall et. al. simulations.

4. Adjust the reference wing platform for the local downwash effects due to the wake

as well as the local sectional angle of attack. The resulting geometry will have sig-

nificant twist as the wing span is traversed during the flapping motions.

5. Mesh the flapping wing as either a thick body representation (using an airfoil profile)

or as a thin membrane. In this paper the thin membrane is considered due to the ease

of meshing the geometry (especially near flapping joints).

The membrane doublet lattice code is used for these simulations due to the relative

ease of meshing the morphing geometry with a thin surface approximation. The minimum

power vorticity wake result from the Hall et al.[143] simulation approach is presented in

figure 6-14(a). The panel method simulation results based on this result are presented in

figures 6-14(b) - 6-14(d). Although the wake resulting from the panel method differs in

fine details from the desired vorticity distribution, the result of the panel method simulation

demonstrates a good overall agreement between the target vorticity wake structure and the

resulting simulated vortex particle wake structure. In addition, the panel method simulation

demonstrates the effects of wake roll-up during wingstroke segments where large vorticity

release is expected (such as during the downstroke portion of the flapping cycle).
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(a) The reference wake from the wake only mini-
mum power vorticity solution. Flight path is from
right to left.

(b) A top view of the resulting FastAero simula-
tion of a flapping geometry. Flight path is from
right to left.

(c) An illustration of the vortex particle wake
trailing a flapping wing, simulated using Fas-
tAero.

(d) An illustration of the vorticity in the wake
trailing a flapping wing, simulated using Fas-
tAero.

Figure 6-14: A demonstration of the use of a wake only optimal vorticity distribution result
to construct an efficient three-dimensional flapping wing geometry for simulation in an
unsteady panel method solver.

6.6 Some Comments on Solution Time and Accuracy

The methods presented in this thesis have all been accelerated to scale nearly linearly with

the number of discrete elements. Despite the acceleration of the methods, the computa-

tional burden can still be extensive. In this section the computational cost is discussed

briefly. Although the current code is not completely optimized in terms of computational
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structure and implementation, the discussion of the computational times will provide in-

sight into the relative cost of each of the three panel method formulations.

6.6.1 Doublet Neumann Formulation

The doublet Neumann formulation is consistently the fastest approach for simulating un-

steady lifting surface flows. This is due to the following reasons:

1. The number of surface elements needed for a particular simulation is typically one

half of that needed for a similar thick body lifting surface simulation.

2. The problem involves the setup of a single linear system matrix. This results in a

single accelerated system being setup per geometry.

3. The Aerodynamic Influence Coefficient Matrix is typically very well conditioned due

to the strong diagonal dominance of the matrix.

4. The implementation of a linear Kutta condition means that the solution for any given

timestep is known after a single solve. This does not involve additional solves to

refine iterations.

5. The forces, moments and surface pressures can all be computed based on the dou-

blet strength solution and surface gradients of the doublet strength. As a result, no

forward evaluation of the integral equations are necessary.

As a result, the Doublet-Neumann method yields rapid solution times. For example, the

unsteady rigid wing simulations in this chapter were all simulated in less than one hour on

a 3.2 ghz Intel Pentium, 2GB RAM memory personal workstation.

6.6.2 Source Doublet Formulation

The source-doublet formulation is the next fastest approach for simulating the unsteady po-

tential flow. The advantages of this approach are similar to the membrane doublet Neumann

code with a few differences:
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1. The rigid body problem involves a single setup of two linear system matrices. This

results in a set of accelerated systems being setup per geometry.

2. The implementation of a linear Kutta condition means that the solution for any given

timestep is known after a single solve.

3. The forces, moments and surface pressures can all be computed based on the dou-

blet strength solution and surface gradients of the doublet strength. As a result, no

forward evaluation of the integral equations are necessary.

The source-doublet formulation performs solutions in a comparable time as the Membrane

Doublet Neumann code, however, is slower due to the comparably reduced conditioning of

the linear system matrix and the increased complexity of thicker bodies. The thick wing,

unsteady simulations were computed in under an hour.

6.6.3 The Body Piercing wake Formulation

The body piercing wake formulation is by far the most costly of the implementations. This

is due to several reasons, but most notably:

1. The body piercing wake formulation involves and iterative pressure Kutta condition.

Although a time savings is realized in using an approximate Jacobian, there is still

significant computational cost in solving the linear system multiple times to deter-

mine the wake strength and surface singularity distribution.

2. The post-processing of the solution involves the setup and evaluation of an integral

equation for both the body induced velocity and the body induced potential. In a

future version of the method these matrices should be setup on a one-off basis for

rigid body simulations. The setup and forward evaluation of the integral equation for

post-processing purposes imposes a significant time penalty on the method.

Although the source-Neumann-body-piercing-wakes formulation presents increased solu-

tion times, it should be noted that the reduction of the solution setup time and grid gener-

ation complexity should easily offset the cost of the solution. In addition, when compared
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on an even level with the other methods (rigid body simulations implementing non-linear

iterative pressure Kutta conditions) the source-Neumann approach will not be significantly

unfavorable.

6.6.4 Rigid Vs. morphing Bodies

The computational framework has the capacity to simulate both rigid bodies as well as

morphing geometry bodies. The two options prove to have significantly different solution

times. For the rigid body, the body system matrices for the are setup once. At each iteration

the solution involves solving for the particular boundary conditions on the given geometry.

In the case of the morphing geometry problem, the solution is performed on a different

geometry at each step. In the current implementation this means that the system matrix

setup time for each timestep takes a significant portion of that particular step’s time. As

a result, morphing body geometries are typically significantly more costly that their rigid

body counterparts. As a result, future work will involve reducing the linear system setup

time in the pFFT algorithm through thorough optimization of the computational routines.

6.6.5 Comments on the use of Galerkin linear basis approaches

In each of the formulations implemented in this thesis, a Galerkin, linear basis approach

was considered. The additional computational complexity due to the high order galerkin

method compared with a lower order constant collocation approaches is seen more pre-

dominantly at the linear system setup stages of the computation where an approximately

six-fold increase in computational time is seen. This is due to the following two reasons:

1. The linear basis function panel integration costs are approximately two times more

expensive than the constant basis counterpart.

2. The Galerkin testing involves a quadrature integration which at minimum comprises

the panel integration at 3 positions on the target panel. When compared with the

single evaluation point in a constant collocation approach, the Galerkin method is at

least three times more expensive.
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Although the linear Galerkin approaches are more time consuming than constant colloca-

tion, the benefits of increased convergence and more refined solution representation out-

weigh the disadvantages.

6.7 Conclusions

in this chapter several example simulations highlighting the panel method formulations

implemented have been shown. The methods are all in good agreement with available

theoretical, computational and analytical results.
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Chapter 7

Conclusions

This thesis presents a panel method which addresses the drawbacks with current panel

method implementations.

7.1 Contributions

Several contributions have been made in this thesis.

7.1.1 The general panel method framework

The panel method which has been developed in this thesis represents a synthesis of both

new and existing ideas, which when combined form a powerful tool for the rapid, hands off

analysis of steady and unsteady lifting body and wing-body flows. The tool is a contribution

in that it combines the most effective strategies currently available with contributions to the

field made in this thesis to provide an advanced potential flow analysis environment . The

tool which has been developed provides a framework in which potential flow simulations

can be easily performed requiring:

•Minimal user setup time due to automatic wake generation strategies.

• Minimal user expertise in wake modeling due to the use of automatic vortex particle

wake generation schemes.

• Minimal solution turnaround times due to the implementation of fast acceleration
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approaches.

•Minimal user interference due to the hands off automatic wake strategies.

The approach relies on advanced acceleration algorithms (pFFT [109] and FMT [110])

to facilitate the rapid solution of a combined panel method-vortex-particle approach [63,

62].

7.1.2 Body Piercing Wake Formulation

The thesis presents a potential flow formulation which considers body piercing wakes

to handle the difficulties associated with wing-body geometries in both traditional panel

method approaches as well as combined panel method and vortex particle method ap-

proaches. The introduction of body piercing wakes permits wing-body simulations which

have not been possible in previous panel method-vortex particle approaches [62].

7.1.3 Higher Order Integration Approaches

This thesis presents the development of a conceptually simple, yet accurate, quadratic ba-

sis function, quadratic geometry self term panel integration approach for the double layer

integration. In addition, a desingularized projection based numerical integration approach

for the single layer self term has been implemented to form a quadratic basis, quadratic

geometry dense system BEM solver.

7.2 Future Work

Although the panel method presented in this thesis represents a complete framework, there

are several directions of future work which will be considered:

1. The continued development of the panel method to include:

(a) Viscous diffusion in the vortex particle wake. The addition of viscous diffu-

sion models will provide accurate vorticity wake models for flows which will

be considered (such as lower Reynold’s number natural flapping flight applica-

tions).
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(b) Boundary layer corrections through the use of integral boundary layer methods.

(c) More panel integration schemes and orders into the panel method framework.

For example, implementing the curved panel, high order integration approaches

into the accelerated potential flow framework.

(d) Several wake models of differing complexity. Due to the generality of the

Helmholtz decomposition of the velocity field, many diverse wake models can

be considered. In certain situations, a filament or sheet based wake model might

be more appropriate than the vortex particle approach. As such, incorporating

those models into the general accelerated framework will prove useful.

2. The use of the panel method to analyze complex unsteady potential flow problems

particularly suited to hands-off, automatic wake handling, for example:

(a) Rotor aerodynamics: Due to the non-diffusive nature of the Lagrangian vortex

particle dynamics, accurate models of rotor aerodynamics are possible.

(b) Natural flapping propulsion and flight aerodynamics: Due to both the rapid so-

lution of unsteady flow problems as well as the automatic hands-off simulation

capabilities the method presented in this thesis represents an attractive approach

for natural flapping propulsion and flight analysis.

(c) Induced drag reduction in formation flight: Due to the automatic wake genera-

tion and advection, analyzing formation flight drag reduction is simplified when

compared to previous approaches.
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