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Introduction



Motivation For This Work

® Solve fluid flow around 3D bodies

Been done extensively, since ¢.1960’s

® Why revisit?
Reduce solution time (significantly)
#® Problems requiring multiple solutions:
# Stability and control
#® Optimization problems
#® B.L. Coupling Applications
#® Lot’'s of aerodynamic applications

® Primarily a design code

Fast, robust, accurate, non-separated flow
Not a Navier-Stokes solver!



Possible Applications

Carleton University Hammerhead UAV Project, 2000, David Willis

© Carleton University Hammerhead UAV Project, 2000, David Willis




Other possible applications

# Automobile Aerodynamics : F-1 & Indy

(http://www.flowsol.co.uk/index.html)




Other possible applications
#® High Performance Sailing eqg. IACC

(http://oe.mit.edu/flowlab/websail.gif)




How Do We Model This?

& Start with the conservation of momentum
and conservation of mass

Result Is
®Navier Stokes
@ Continuity

#: Complicated Non-Linear Mess



Assumptions About the Flow

® Incompressible
® Steady

® Inviscid

# |rrotational

The resulting simplified equation is...



Potential Flow Equation

Result Perturbation Potential on exterior
domain:

1°¢ =0

Laplacian operates on the “Velocity
Potential”



Body Boundary Conditions
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Farfield Conditions
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Boundary Integral
Equations



Introduction To Integral Equations

®& Mathematical Appraoch:
Find Fundamental solution (Kernel)

Use Green’s 39 |dentity
Transform from domain to boundary Integral

Use boundary condition data

#® Aerodynamic Singularity Approach:

Source, doublet, and vortex singularities
Smear them on the boundary surface



The 1/|r-r’| Integral Equation




i Single Layer

Viector Plot of Velocities in Scan Plane




Double Layer

Vector Plot of VWelocities in Scan Plane




Double Layer-Vortex Relationship

The doublet is used for the lifting body cases, the source can not produce
A vortex like effect!!!




Direct Integral Formulation

Potential Formulation

@ This Is the integral used in this work




Math-to-English Translation

What Are We Trying To Do?
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Prescribe the Single Layer

Source/Sink Stren%th IS prescribed by boundary condition on normal velocity
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Solve For the Potential Distribution




Direct Integral Formulation

Potential Formulation

® The direct potential formulation

# Solve for the potential on the surface

Rapid post processing to get the surface velocities
The typical Laplace “type” problem formulation
NO distinction between lifting and non-lifting surfaces



The Indirect Approach

@ Consider an inner and outer potential domain:




The inner-outer Potential

@& Subtracting the inner and outer potential
equations:

Source Strength Doublet Strength



Indirect Source Formulation

Fredholm Integral of the Second Kind

® The source singularity integral equation:

® We can exploit the Neumann B.C.’s by taking the
gradient

Method explored in the unaccelerated method




Physically

Source Velocity Formulation

Smear Surface With Source Singularities

1




Each Singularity produces a velocity field corresponding to the singularity

Velocity Field Due to the Source




Adjust the strengths of the sources over the surface to achieve a

zero velocity through the surface

"
sSources O} Sinks




Indirect Dipole Formulation

Hypersingular Self Term Evaluation

® The second formulation sets the source strength
to zero.

Unaccelerated method uses this




Physically

What Are We Trying To Do?




Physically

Doublet Velocity Formulation

Each Singularity produces a velocity field corresponding to the singularity







Discrete Implementation
BEM



Discrete Geometry
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Computer Solution

Discretizing the equations (in 2-D):

Piecewise Linear Basis

Piecewise Constant Basis




Direct Algorithm Flow Chart

Input Geometry
-Discretized
-Vertices
-Connectivity
-Surface Normals

Solution Ax =b

Post Processing

For Every Panel i

Transform

Integrals
&
Shape Function Extraction

Fill the matrix A




Transformation

® From Arbitrary 3D to Panel based
(~2D):

P(xt,yt,zt
ﬂ( yt,zt)

Transform



Panel Integrals

® Two Approaches:

Hess and Smith
Douglas Aircraft Co. ~c. 1960’s

Newman
MIT OE, ~c. 1985

& Double layer is the building block
Once evaluated, all other integrals are similar.



Hess & Smith: Constant Source
Calculation

Hess, J.L., & Smith, A.M.O., “Calculation Of Potential flows about arbitrary bodies”, 1967.

The integral :

(|lx — 2’| = /(R? + h?))

Is modified to an “in plane” integration:
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Hess and Smith

# Hess and Smith (Douglas A/C Company),
suggest an in plane evaluation:




Hess and Smith

# Hess and Smith (Douglas A/C Company),
suggest an in plane evaluation:




Hess and Smith

# Hess and Smith (Douglas A/C Company),
suggest an in plane evaluation:




Hess and Smith Const. Doublet

® Resulting expression for the constant
strength doublet.

Complicated!!!
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Newman: Computing The Dipole Integral

Uses the Gauss-Bonnet Concept—yprojecting the panel onto a
unit sphere, and determining the solid angle from sum of
Included angles:

N.Newman, "Distributions Of Sources and Normal Dipoles over a Quadrilateral Panel”, 1985



Newman Doublet

b_llw (_\c'ﬁ

The hnal result is:




Hess & Smith Vs. Newman

.'3,' Newman Method

.0
o :
S

Hess & Smith Method




Calculating the Linear Variation
Integrals

® General methods for
the linear strength




Linear Shape Functions

In Neta,Nji,Nc VS. Nl, N2, N3 SyStem




Higher Order Shape Functions

® The Linear Shape function is easily
extended to higher order

#® Quadratic

& Cubic ... etc.
This also may facilitate curved panel
Integration as suggested by Wang. et al.



Higher Order Triangles

Linear Basis Triangle  Quadratic Basis Triangle Cubic Basis Triangle




Galerkin

Target Panel

# Galerkin Formulation

Advantages:
& Corners Are Easy
& More Accurate

Disadvantages:
# More Evaluation Pts.
Scales With NP

Numerical Evaluation of outer

Integral is necessary- G.Q. Source Panel




Direct Algorithm Summary

For Every Panel i

For Every Control Point j




Direct Solution

® Gaussian Elimination

Costly solution
® Time O(N?3)
® Memory O(N?)

® N X N Interaction Integrals

Direct interactions are time consuming:
# sin, cos, and log functions.



PFFT++

Matrix Vector Product Accelerator

PFFT Acceleration

pFFT++ Implemented From
White, Zhu and Song Constant Collocation Code



lterative Methods

& GMRES, GCR.
#® Basic Ildea of these methods:

Evaluate Modify
Error e=G-b Guess

Guess a
solution x

lterate Until Desired
Error Is Reached




What STILL Costs So Much?

& |terative methods:
Matrix vector product : Ax (O(kn?))
Still computing direct interactions

®Want to approximate:

Matrix vector product
®Farfield effects
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PFFT Method

#& Computes an approximate matrix vector product
Approximates farfield interactions
Directly compute nearby interactions

Phillips, J.R. & White, J.K., “A Precorrected-FFT

Method for Electrostatic Analysis of Complicated
3-D Structures”




Overlay an FFT Grid

A coarse FFT grid is shown here ( VS ;
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We can approximate the farfield as a 1/r computation on the gri
without performing a panel integral
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P = Project Panel Strength To Grid
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We can approximate the farfield as a 1/r computation on the grid
without performing a panel integral




H = FFT Convolution Computation
Grid Strength ™ Grid Potential

The convolution in real space becomes a multiplication in Fourier space
via an FFT



| = Interpolate Grid Potential Back
to Geometry
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We can approximate the farfield as a 1/r computation on the grid
without performing a panel integral



Computation of Potential Is:

® The grid based computation gives:
Grid Computed Potential = [I][H][P]*Source

| . Interpolation matrix
H:FFT
P . Projection matrix



tion : Near field Portions
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The FFT Convolution effect is subtracted, and the nearfield is added



PFFET Matrix Algorithm

All are sparse matrices ©



# Approach:

Consider a point source (
In the domain.

Select a grid stencll

Construct a polynomial
basis on the grid to
represent grid source

Solve for polynomial basis
coefficients by ensuring
that the grid potential (2)
IS identical to the source
potential (1) at a point

In the domain.

grid stencil




¥ Approach:

Consider a point source
In the domain.

Select a grid stencll

Construct a polynomial
basis on the grid to
represent grid source

Solve for polynomial basis
coefficients by ensuring
that the grid potential (2)
IS identical to the source
potential (1) at a point

In the domain.

i
‘y .

e
-

=
-
.

o

o

o
-
:

.

i

=
.
.
.

L

o
-

=
i

i

.

T
o
.

-
s S

=

=
e

=

-

5

Eonnei

=
ok
AR

o
Kk %

o

5

S

i
&
.

5

.
o
]

=
L

o

i3

v
Kol




Full Panel Projection

The panel charge is projected onto
the grid stencil via a polynomial like

interpolation of the Guass Quadrature
points.




Interpolation

The grid potential is interpolated
onto the point via a polynomial

like interpolation similar to the pro-
jection routine.




Interpolation

The grid potential is interpolated
onto the panel via a polynomial

like interpolation similar to the pro-
jection routine.




Implementation

® CH++

Object Oriented Programming
Fast

® Linear Strength Panels, with higher order
possible

Not optimized for speed
Not optimized for memory

Basic tool at the moment



Results and Conclusions



Direct Formulation Sphere Test
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Sphere Test Cases
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Convergence : Linear vs Constant

Ls Norm of the Error Over the Sphere
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Solution Time : Linear vs Constant

Solution Time For the Linear Case

Humber Of Panels

— -%—- [irect Linear Computation Time - Dirichiat = pFFT++ Accelerasied Lingar Computation

---&--- [irect Linear Computation Time - Maumann = e OFFT++ Acceleraiad Constant Collocation - Basaline




Memory — Linear Vs. Constant

Memory Requirement Comparison

MeEmaory (Mhb)

Humber of Fanels in the Sumialation

g pEF T Mdemory Eslimate Far Constand Colacation Case ---@--- Direcl Case Mermory Requinement a- - Memosy Estemate Tor Lngar Farmulatic '|.




Lifting Cases




NACA 2412 -- Lifting Case




Conclusions

® Convergence

Limited by discretization

& flat panels -> curved panels? — Wang et. Al.
Higher order extensions?

#® Quadratic

# Cubic ...

® Memory

pFFT++ linear implementation is not memory optimal.
® For triangles, in optimal pFFT ++ memory is not large

& Time

Once again pFFT++ linear implementation is not C++ optimally
coded.

#® Higher order discretization is reasonably cheap.



Summary

@& Currently
Linear distribution of singularities on surface
PFFT++ and Direct solver in C++

& Future
Fast algorithm optimization
® Code
® Algorithm

More Post processing—what do we want to know?

Add on: stability, boundary layer coupling, free surface,
structural coupling etc.

& PhD. Can we look at more complex fluid
problems than this with this method?
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