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Abstract

In air-packaged surface micromachined devices and microfluidic devices the surface to
volume ratio is such that drag forces play a very important role in device behavior and
performance. Especially for surface micromachined devices, the amount of drag is greatly
influenced by the presence of the nearby substrate. In this thesis a precorrected FFT ac-
celerated boundary element method specialized for calculating the drag force on structures
above a substrate is presented. The method uses the Green’s function for Stokes flow
bounded by an infinite plane to implicitly represent the device substrate, requiring a num-
ber of modifications to the precorrected FFT algorithm. To calculate the velocity due to
force distribution on a panel near a substrate an analyticalpanel integration algorithm was
also developed. Computational results demonstrate that theuse of the implicit representa-
tion of the substrate reduces computation time and memory while increasing the solution
accuracy. The results also demonstrate that surprisingly,and unfortunately, even though
representing the substrate implicitly has many benefits it doesnot completely decouple
discretization fineness from distance to the substrate.

To simulate the time dependent behavior of micromechanicaland microfluidic systems, a
stable velocity implicit time stepping scheme coupling theprecorrected FFT solver with
rigid body dynamics was introduced and demonstrated. The ODE library was integrated
with the solver to enable the simulation of systems with collisions, contacts and friction.
Several techniques for speeding up the calculation of each time step were presented and
tested. The time integration algorithm was successfully used to simulate the behavior of
several real-world microfluidic devices.

Thesis Supervisor: Jacob K. White
Title: Professor
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Contributions

• Adapted the precorrected FFT to support non-translationalinvariant substrate Stokes

flow Greens function.

• Coupled velocity implicit time stepping scheme to accelerated boundary element

solver that enables the stable and efficient simulation of time dependent problems in

microfludics.

• Developed analytical panel integration algorithm for polynomial force distributions

over odd powers of the distance between the source and the evaluation point. This

algorithm can be used to calculate the Stokes velocity field due to polynomial force

and force multipole distributions on flat panels.

• Used C++ template metaprogramming techniques to implement efficient and generic

routines that enable exploiting kernel symmetry to reduce memory requirements for

the precorrected FFT algorithm.

• Developed specializations of the precorrected FFT algorithm for the calculation of

the drag force on surface micromachined devices.

• Demonstrated the surprising result that using the Stokes substrate Green’s function

doesnot decouple structure discretization from distance to the substrate, regardless

of the smoothness of the force distribution.
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Chapter 1

Introduction

For small length scales, as the ratio between the surface area and the volume increases, drag

forces play an important role in the behavior of any objects moving in a fluid. For the length

scales and velocities encountered in many micromechanicaland microfluidic applications,

the Stokes flow model is known to produce accurate estimates of the drag forces on objects

in a fluid [1, 2]. The Stokes drag force on air-packaged microelectromechanical systems

(MEMS) such as oscillators, accelerometers and micromirrors is an important factor that

significantly influences their dynamic behavior and performance [3, 4, 5, 6]. Especially

for surface micromachined devices, the drag is greatly influenced by the presence of the

nearby substrate [7]. In microfluidic devices the fluid drag force drives the motion of beads

and cells in the flow and is also very important.

Several methods exist for the calculation of the drag forceson objects immersed in Stokes

flow: finite differences [8], immersed boundary methods [9],the finite element method

[10] and the boundary element method [1]. Since, for Stokes flow, the fluid structure only

depends on the boundary configuration at the time point of interest, the boundary element

method is a particularly suitable approach. Moreover, for problems where one is interested

in the time domain evolution of a system, the boundary element method has the advantage

that remeshing the domain at each step is not necessary. Furthermore, using the boundary

element method with appropriate Green’s functions it is often possible to drive the motion

of the objects in the flow by specifying a background flow without having to explicitly
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discretize the surface of the microfluidic channel or other boundaries that, in other methods,

would just be used to drive the bulk fluid.

The formulation of Stokes flow problems as boundary integralequations can be found in

[11, 12, 1] and is reviewed in Chapter 2. Boundary element methods, based on discretiza-

tion of the boundary integral equations for Stokes flow are briefly reviewed in Chapter 2.

An analytical panel integration scheme for calculating theStokes velocity due to a force

distribution on a flat panel is presented in Chapter 3. However, näıve implementations

of the boundary element method have a prohibitively high cost in both computation time

and memory when applied to large engineering problems. Accelerated boundary element

solvers based on the multipole method [13], panel clustering and wavelets [14] and on the

precorrected FFT method [15], have been applied to the calculation of the Stokes drag

force [16, 17, 18, 6, 19, 20].

In this thesis we present a precorrected FFT accelerated boundary element method special-

ized for calculating the drag force on structures above a substrate. Our method uses the

Green’s function for Stokes flow bounded by an infinite plane to implicitly represent the

device substrate, requiring a number of modifications to theprecorrected FFT algorithm.

Computational results demonstrate that the use of the implicit representation of the sub-

strate reduces computation time and memory while increasing the solution accuracy. The

modified precorrected FFT algorithm and results demonstrating its use are presented in

Chapter 4.

Our computational results demonstrate that, surprisingly, even though representing the sub-

strate implicitly has many benefits, it doesnot completely decouple discretization fineness

from distance to the substrate. A detailed description of this important result can be found

in Chapter 5.

The calculation of the trajectories of objects moving in Stokes flow is a convenient tool for

the design of microfluidic devices such as cell traps [21, 22,23, 24] and micromixers [25].

Time domain simulation is also very important for the designof MEMS devices such as

micromirrors [26].

The Stokes equations state that the pressure, viscous forces and body forces are at balance
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regardless of the history of flow, even though the boundariesof the flow maybe changing

in time [1]. When there are no abrupt changes in the fluid velocity, momentum diffuses

throughout the fluid domain much faster than the configuration of the flow is changing

due to the evolution of its boundaries [1]. Therefore, in these conditions, a quasi-static

approach for analyzing the time evolution of the system is appropriate [25]. However, for

small length scales, such as those present in MEMS and microfluidic devices, the ratio of

the drag forces and the mass of the bodies is such that the timeconstant associated with

transferring momentum between an object and the surrounding fluid is very small. For

typical geometries, the time scale for momentum transfer between the objects and the fluid

is much smaller than the timescale at which the objects move through the devices, which

is usually the time scale of interest in simulation. The existence of the very small time

scale for momentum diffusion makes the problem stiff and severely limits the step sizes

that explicit time integration schemes can use.

To deal with stiffness without incurring the excessive costof solving a non-linear equation

for the forces on the surface of the object at each time step, we couple the boundary element

Stokes solver with a time stepping scheme that updates the velocity implicitly and the

position explicitly. Using this velocity implicit scheme allows for the stable simulation of

the motion of objects using large time steps. To deal with problems involving collisions,

contacts and friction we coupled our velocity-implicit time integration method with the

freely available rigid body physics library ODE [27]. The quasistatic velocity-implicit time

domain solver for Stokes flow is presented in Chapter 6 where itis applied to a set of

real-world microfluidic problems.

For the implementation of the precorrected FFT solver, C++ template metaprogramming

techniques [28, 29] were used to construct efficient and generic routines that enable exploit-

ing the symmetry of the Stokes flow Green’s function’s to reduce memory usage. The use

of C++ template metaprogramming techniques also enabled thegeneric implementation of

most of the building blocks for the precorrected FFT algorithms in a way that makes it easy

for a new solver, with a different kernel, to be developed. Details regarding the implemen-

tation of the more interesting blocks of the precorrected FFT algorithm are presented in
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Chapter 7.

Thesis structure

The thesis is structured as follows: in Chapter 2, a review of the Stokes flow model and

the formulation of Stokes flow problems as boundary integralequations is presented; in

Chapter 3, an analytical panel integration scheme for calculating the Stokes velocity due to

a force distribution on a flat panel is presented; in Chapter 4,the precorrected FFT method

is reviewed and extended to support the Stokes substrate Green’s function; in Chapter 5, a

surprising result describing the dependency of the solution accuracy on the discretization

of the structures and their distance to the substrate is presented; in Chapter 6, a velocity-

implicit time stepping scheme for the stable and efficient simulation of the motion of objects

in Stokes flow is presented; in Chapter 7, a set of relevant technical contributions are de-

scribed. Finally, in Chapter 8, conclusions are drawn and future work is suggested. While

Chapter 8 is a global conclusions chapter, some of the other chapters also have a local set

of conclusions and suggestions for future work.
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Chapter 2

Background

For many air-packaged surface micromachined devices and microfluidic devices, it has

been verified that the characteristic velocityU , characteristic lengthL, densityρ and vis-

cosityµ are such that the Reynolds numberRe = ULρ/µ is small, the viscous term in the

Navier-Stokes equations for moment conservation dominates over the inertial terms and the

fluid motion can be accurately modeled by the combination of the Stokes equation

−∇P + µ∇2u = ∇ · σ = 0 (2.1)

and the continuity equation

∇ · u = 0, (2.2)

whereu is the fluid velocity,P is the pressure,µ is the viscosity, andσ is the fluid stress

tensor, which can be written elementwise as

σik = −Pδik + µ

(
∂ui

∂xk

+
∂uk

∂xi

)

, (2.3)

or in matrix form as

σ = −P I + µ
(
∇u + (∇u)T

)
, (2.4)

where∇u is the Jacobian of the velocity.

The Stokes equations (2.1) can be obtained as an approximation of the Navier-Stokes equa-
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tions for momentum conservation1

ρ
∂u

∂t
+ ρu · ∇u = µ∇2u −∇P (2.5)

whereρ is the fluid density. The approximation can be justified by non-dimensionalizing

(2.5)

Re

(
1

Sr

∂ũ

∂t̃
+ ũ · ∇̃ũ

)

= ∇̃2ũ − ΠL

µU
∇̃P̃

whereSr = τU/L whereτ is either an externally imposed time constant or, in its absence,

is the convective time scale andSr = 1.

The Reynolds number is the ratio of the diffusive time constant for momentum in the fluid

τD = ρL2/µ and the convective time constantτC = L/U it states that the momentum

diffuses through the fluid much faster than it is convected. However, ifτC is small it also

means that any objects moving in the fluid are doing so in such away that the time constant

associated with the changing boundary configuration is larger than the time constant associ-

ated with momentum diffusion. In other words, the fluid reaches a steady state momentum

distribution much faster than the boundaries move; this justifies a quasi-static approach for

time domain integration. Note that the quasi-static time evolution model is not valid if

the fluid motion is starting or stopping or if there are any hard collisions, in which caseτ

maybe much smaller than the convective time scale.

2.1 Boundary Integral Equation Formulation

An integral equation formulation for the Stokes flow problemcan be constructed using the

Lorentz reciprocity identity [1]. The Lorentz reciprocityidentity states that if(uA, PA)

and(uB, PB) are the solutions of two Stokes flow problems, defined on the same geomet-

ric domain but with different boundary conditions, the corresponding velocities and stress

1Equations (2.1) and (2.5) are vector equations that expresses momentum conservation along each axis.

13



tensors are related by

∂

∂xj

(uA
k σB

kj − uB
k σA

kj) = ∇ · (uT
AσB − uT

BσA) = 0, (2.6)

wherever the solutions A and B are non-singular.

The Lorentz reciprocity identity can be used to construct a boundary integral equation for

σB anduB by choosing a problem A that has a known solution, integrating (2.6) over the

volume of fluid domainV and using the divergence theorem to reduce the integral overthe

volume of the domain to an integral on its surface,∂V ,

∫

V

∇ · (uT
AσB − uT

BσA)dV =

∫

∂V

(uT
A σBn
︸︷︷︸

fB

−uT
B σAn
︸︷︷︸

fA

)dS = 0 (2.7)

where fA/B represent the force applied to the fluid at a point on the surface where the

normal direction isn, pointing away from the fluid.

A common choice for problem A is the free-space Stokes flow Green’s function, i.e. the

fluid velocity, stress and pressure field produced by applying a point forceg atxs to (2.1)

and solving 





−∇P + µ∇2u = δ(x − xs)g

∇ · u = 0,

which yields

u(x) =
1

8πµ
GF (x,xs)g =

1

8πµ

1

r
(I + r̂r̂T )g (2.8)

σ(x) =
1

8π
T F

ijk(x,xs)gj = − 3

4π

1

r2
r̂r̂T (r̂Tg) (2.9)

P (x) =
1

8π
pF (x,xs)g =

1

4π

r̂

r2
g

wherer = x − xs, r = ‖r‖2 andr̂ = r/r. The matrix relating the velocity field atx with

the point forceg atxs, GF (x,xs) in (2.8) is also known as astokeslet. For simplicity, the

F notation is dropped in this section.

Since the velocityu(x) in (2.8) and the stress tensorσ(x) in (2.9) are singular atxs, to
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apply (2.7) we exclude a regionVǫ(xs) aroundxs such thatuA(x) andσ
A(x) are analytical

insideV as illustrated in Figure 2-1.

Figure 2-1: The integration volumeV , in gray, is bounded by the substrate, the objects in the fluid,
and aninfinite surfaceSout. The exclusion volumeVǫ contains the source pointxs such thatuA(x)
andσA(x) are analytical inV − Vǫ.

Figure 2-2: When the source pointxs is located on a smooth surface, for small enoughǫ the
exclusion regionVǫ(xs) is bounded by a hemisphereHǫ and a diskDǫ.

The exclusion volumeVǫ(xs), which for convenience is often chosen to be a spherical

section of radiusǫ > 0, is parameterized onǫ such that its surface and volume are asymp-

totically proportional toǫ2 andǫ3 respectively.

We obtain an equation foruB andfB, which from now on we will refer to simply asu and

f , by applying (2.7) toV − Vǫ which yields

∫

∂(V −Vǫ)

fk(x)Gki(x,xs) − µuk(x)Tkij(x,xs)nj(x)dA = 0. (2.10)

When the source pointxs is located on a smooth surface, for small enoughǫ the exclusion

regionVǫ(xs) is bounded by a hemisphereHǫ and a diskDǫ as illustrated in Figure 2-2.

Using surfacesDǫ andHǫ, (2.10) can be rewritten as

∫

(∂V −Dǫ)
S

Hǫ

fk(x)Gki(x,xs) − µuk(x)Tkij(x,xs)nj(x)dA = 0 (2.11)
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That can be decomposed into a sum of simpler terms

∫

∂V

fk(x)Gki(x,xs)dA = µ

∫

∂V

uk(x)Tkij(x,xs)nj(x)dA

︸ ︷︷ ︸

4πuk(xs) for rigid bodyu andxs on∂V

+

∫

Dǫ

fk(x)Gki(x,xs)

︸ ︷︷ ︸

O(ǫ)−−→
ǫ→0

0

−
∫

Hǫ

fk(x)Gki(x,xs)

︸ ︷︷ ︸

O(ǫ)−−→
ǫ→0

0

−µ

∫

Dǫ

uk(x)Tkij(x,xs)nj(x)dA

︸ ︷︷ ︸

= 0 for xs on disk

+µ

∫

Hǫ

uk(x)Tkij(x,xs)nj(x)dA

︸ ︷︷ ︸

−−→
ǫ→0

4πuk(xs)

.

(2.12)

Considering only rigid body motion and then computing the limit of (2.12) asǫ → 0 as the

outer surfaceSout stretches to infinity yields

∫

∂V

fk(x)Gki(x,xs)dA = 8πµuk(xs) (2.13)

Using the symmetry relationG(x,xs) = GT (xs,x), true for any Stokes flow Green’s

function due to the Lorenz reciprocity theorem, and replacing the force on the fluidfk by

the force on the object surface,−fk, results in

∫

∂V

Gik(xs,x)fk(x)dA = −8πµui(xs). (2.14)

where the pointxs, originally defined as the source of the Green’s function(uA,σA), can

now be interpreted as atest point.

2.2 Green’s function for a flow bounded by a plane wall

The important forces in many MEMS are the forces acting on thin structures,Sobj, that are

suspended over a substrate,Swall, while the forces on the substrate do not usually determine

device performance. The need to solve (2.14) explicitly forthe force on the substrate can

be eliminated by using a Green’s function that satisfies a zero velocity condition on the
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substrate. Specifically, the Green’s function can be computed by solving







−∇P + µ∇2u = δ(x − xs)g

∇ · u = 0

u(x) = 0, for x onSwall.

(2.15)

Figure 2-3: Schematic representation of source and image source associated with theGreen’s
function for Stokes flow bounded by a plane wall.

In the presence of the substrate,Swall, as illustrated in Figure 2-3, the solution of (2.15) is

given by

u(x) = Gw(x,xs)g = GF(x,xs)g − GF(x,xi)g

+2h2GD(x,xi)Ng + 2hGSD(x,xi)Ng

(2.16)

whereh is the normal distance above the substrate of source pointxs, N = I− 2nwnT
w, nw

is the wall unit normal as illustrated in Figure 2-3,xi = Nxs, GF is the free-space Green’s

function (2.8) and

GD(x,xi) =
1

r3
i

(I − 3r̂ir̂i)

is the potential dipole, whereri = x− xi, ri = ‖ri‖2, r̂i = ri/ri. The last term in (2.16) is

referred to as the Stokeslet doublet and is given by

GSD(x,xi) = (ri · nw)
︸ ︷︷ ︸

−h−k

GD(x,xi) +
r̂in

T
w − nwr̂T

i

r2
i

︸ ︷︷ ︸

GR(ri)

. (2.17)

Using the definition ofGSD, GD andGR, it follows that the substrate Green’s function can
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be written as

GS(x,xs)=GF(r)−GF(ri)−2hkGD(ri)N+2hGR(ri)N (2.18)

wherek is the distance of the evaluation point to the substrate. If the plane normalnw is

aligned with one of the global coordinate axes,GR has only two independent scalar entries,

whileGSD in (2.16) has 6 independent scalar entries. Reducing the number of unique scalar

kernels can be used to reduce memory usage and computation time.

Using the substrate Green’s function,(2.14) becomes

∫

Sobj

Gw(xs,x)f(x)dA = −8πµu(xs). (2.19)

2.3 Nullspace and defect in the range

For any Green’s functionG(xs,x) associated with incompressible Stokes flow, the bound-

ary integral equation for a single body (2.14) is singular and has a rank 1 nullspace given

by f = n. The extension to thek-body case generates a rank-k nullspace [18]. This can

shown by settingf = n and using the divergence theorem

∫

∂V

Gik(xs,x)nk(x)dA =

∫

∂V

Gki(x,xs)nk(x)dA =

∫

V

∂Gki(x,xs)

∂xk

dA = 0 (2.20)

and recalling thatGki(x,xs) = G(x,xs)ei is thekth component of the velocity field due to

a point force along theith direction applied onxs and that∇G(x,xs)ei is the divergence

of that incompressible velocity field, which is zero.

Due to the reciprocity relation,G(x,xs) = GT (xs,x), and therefore the defect in the

range of the integral operator in (2.14) is alsou(xs) = n(xs). Therefore, for (2.14) to have

a solution, the velocity field must satisfy

∫

∂V

nT (x)u(x)dA = 0, (2.21)
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or equivalently, the net flux over the body surfacesSobj must be zero. Fortunately, all the

motion velocitiesu due to rigid body motion satisfy the zero net flux condition (2.21) and

therefore (2.14) has a solution.

For the substrate case, since∇ · (Gw(x,xs)g) = 0, for any forceg, andGw(x,xs) =

Gw,T(xs,x) the nullspace and defect of (2.19) are still the object surface normalsn.

There are several approaches to handling the nullspace problem [30, 6]. For the examples

examined in this thesis we used the simplest approach in [6],computing the null-space free

solution by projection.

2.4 Boundary Element Method

The Stokes flow problem defined by the integration volumeV and a set of boundary condi-

tions onu(xs) at each pointxs on ∂V is represented, in a continuous infinite dimensional

form by (2.14) or (2.19). However, for almost any practical problem, there is no explicit

analytical solution for (2.14) or (2.19). Approximate values for the forces on the object

surface are generated by limiting the dimension of the solution space and the number of

constraints to a finite number.

There are several ways to generate a finite linear system of equations from the boundary

integral equation (2.14) or (2.19). In this section we describe one of the simplest pos-

sible discretization schemes: constant strength collocation. First the integration surface

∂V is discretized into a set ofnpanels triangular or quadrilateral flat panels. The value of

the velocity and the drag force on each panel is approximatedby a constant value. With

this discretization method, velocities and forces can be represented as vectorsU andF in

R
3×npanels . To generate a set of3npanels equations using collocation, consider imposing

npanels∑

j=1

∫

Pj

G(xk,x)F:,jdA(x)=−8πµu(xk)=−8πµU:,k, (2.22)

for k = 1 . . . npanels, wherexk is the centroid of thekth panel,F:,j denotes the vector force

on thejth panel andU:,k denotes the velocity at the centroid of thekth panel. The resulting
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3npanels × 3npanels system of equations can be represented by

GF = −8πU. (2.23)

Since the substrate surfaceSwall spans a large area, discretizing (2.14) using (2.22) would

require a large number of panels and would greatly increase the time and memory required

to compute drag forces. Moreover, as the distance between the substrate and the suspended

structures is reduced, the discretization for bothSobj andSwall must be refined because the

forces on the substrate and the bottom of the structures exhibit sharper features that require

finer discretization. Therefore, discretizing the substrate greatly increases the number of

unknowns in the problem, implying that only small to medium complexity problems can

be solved using (2.14) with (2.22). By using a Green’s function that implicitly represents

the no-slip no-penetration substrate boundary condition,we remove the need to explicitly

represent the substrate in (2.22) and greatly reduce the number of unknowns inF.

Calculating the panel integrals in (2.22) requires some carebecause the Green’s function

is singular. Algorithms for calculating the panel integrals in (2.22) can be obtained by

generalizing the results in [31] and are presented in Chapter3.

Equation (2.23) is usually solved using iterative methods such as GMRES [32], and such

methods compute solution approximates by forming productsof G with candidate vectors.

For discretized versions of (2.14), the matrix vector products can be computed rapidly

using sparsification techniques such as multipole algorithms [33, 16, 30] or precorrected

FFT (pFFT) methods [15, 34, 35]. Using pFFT methods to solve (2.19) has complications

as described in Chapter 4.
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Chapter 3

Panel integration

The entries in the boundary element method matrix (2.23) relate the force distribution over

a flat panelP to the velocity at a test point or the weighted integral of thevelocity over a test

panel. The velocity due to a force distribution on a panel canbe computed by integrating the

Stokes Green’s function. In free space, the Stokes Green’s function is called thestokeslet

and is given by (2.8); in the presence of a substrate, the Stokes Green’s function is given

by (2.16). In either case, the integrals of (2.8) or (2.16) can be calculated by combining the

appropriate values of

S(m,n, p, q) =

∫

P

(x0 − x)m(y0 − y)n(z0 − z)p

((x0 − x)2 + (y0 − y)2 + (z0 − z)2)q+ 1
2

dS. (3.1)

In fact, combining the appropriate values ofS(m,n, p, q) can be used to calculate the ve-

locity field due to any polynomial force distribution overP .

The calculation of panel integrals can be performed using analytical or numerical integra-

tion or by combining analytical and numerical integration.Analytical panel integration

algorithms have the advantage that they are accurate but also that, for vector functions,

much of the setup cost and the more expensive function evaluations can be reused for the

different scalar entries of the vector function. On the other hand, using efficient adaptive

quadrature methods for calculating the integral of vector functions has problems because

each entry of the vector kernel may converge at a different rate. If the entries of the vector
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kernel are integrated separately many, often not trivial, calculations must be repeated. On

the other hand, if the quadrature rule is applied to the vector kernel integral as a whole, the

kernel with the worst convergence will determine the numberof quadrature points to be

used, which will also be inefficient. However, especially when the evaluation point is not

close to the source panel and a fixed quadrature rule can be used for all the kernel entries,

using numerical integration is often more efficient than using the analytical panel integra-

tion methods (see [36] for a list of efficient quadrature rules on triangular panels and other

shapes). Our implementation uses analytical integration for the calculation of the velocity

at a point due to a force distribution on a panel if the point iscloseto the panel and uses

numerical quadrature [36] if the point is further away from the panel. When using Galerkin

testing our implementation computes the integral over the test panel using quadrature.

In this chapter an analytical panel integration for calculating (3.1) is presented. The al-

gorithm extends some of the results in [31], [37], [38], [39]and [40], uses some different

recursion schemes and is designed for the simultaneous calculation of multiple entries of

(3.1), which is particularly useful when dealing with vector kernels such as (2.8) and (2.16).

The panel integration algorithm can calculate the integralof polynomial distributions over

any odd power of the distance between the evaluation point and the source panel.

This chapter is structured as follows: first, in Section 3.1 the analytical panel integration is

presented; in Section 3.2 and Section 3.3 an efficient way of assembling the Stokes Green’s

functions is presented; in Section 3.4 the panel integration algorithm is demonstrated; fi-

nally, in Section 3.5 some comments and suggestions for future work are made.

3.1 Analytical panel integration

In this section, an analytic method for computing (3.1) is presented. Since the algorithm

relies on several recursion relations and geometric transformations an overview of the al-

gorithm is presented in Figure 3-1.

In the following three coordinate systems will be referred to: the global coordinate system,

with (x, y, z) Cartesian coordinates; the panel plane coordinate system, with coordinates
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(u, v, w) defined such that the panel lies on a constantw plane; the edgek coordinate

system in which the position of the target point is describedas a distanceb along edgek,

Ek, and a distanceAk normal to edgek in the plane of the panel. The three coordinate

systems are illustrated in Figure 3-2, Figure 3-3 and Figure3-4.

Figure 3-1: Overview version of the panel integration algorithm for polynomials over odd powers
of the distance between the source and the target. In the graphic (REC1) refers to equation (3.4),
(REC2) refers to equations (3.9) (3.10) and (REC3) refers to equation (3.11). (REC 4) corresponds
to the material presented in Section 3.2 and Section 3.3.

First a rigid body transformation from the(x, y, z) global coordinate system, illustrated

in Figure 3-2, to a coordinate system(u, v, w) where the source panel is on a plane with

constantw, as illustrated in Figure 3-3, is computed. In the new coordinate system the
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Figure 3-2: Source panel and evaluation point in global coordinate system.

Figure 3-3: Source panel and evaluation point in panel coordinate system.

Figure 3-4: Source panel and evaluation point in the edge coordinate systems.

distance alongw between any point in the source and the evaluation point isZ.

Considering the panel vertices and edges, as illustrated in Figure 3-2, a rotation matrix from

the panel coordinate system to the shifted global coordinate system can be determine using

Ru = E1/‖E1‖2

R̂v = −(I − RuR
T
u )EN

Rv = R̂v/‖R̂v‖2

Rw = Ru × Rv

(3.2)
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which can be represented in matrix form as








x0 − x

y0 − y

z0 − z








=
[

Ru Rv Rw

]

︸ ︷︷ ︸

R








u

v

w








(3.3)

For points on the source panel, in the(u, v, w) coordinate system,w is constant and has a

value ofZ. Sincew is constant, the integral over the surface of the source panel can be

described as an integral inu andv. For a givenq, the integralS(m,n, p, q) can be expressed

as a linear combination of integrals ofum′

vn′

/r(u, v)2q+1 over the source

SL(m′, n′, q) =

∫

S

um′

vn′

r(u, v)2q+1
dS

wherem′ +n′ ≤ m+n+ p. However, whenever possible, it is more efficient to bypass the

explicit calculation ofS(m,n, p, q) and to work withSL(m′, n′, q) instead (see Sections 3.2

and Section 3.3 for further details). In the following the prime notation is dropped for sim-

plicity. The 2D surface integral ofumvn/r(u, v)2q+1 for nonzerom or n can be computed

using the divergence theorem on the(u, v) plane, which yields the recurrence relations

SL(m,n, q) = 1
1−2q

×







Ev(m, n − 1, q − 1) − (n − 1)SL(m, n − 2, q − 1)

Eu(m − 1, n, q − 1) − (m − 1)SL(m − 2, n, q − 1)
(3.4)

whereEu andEv are the line integrals



Eu(m, n, q)

Ev(m, n, q)



=

nedges∑

k




sin θk

− cos θk





∫

Ek

u(l)mv(l)n

r(u(l), v(l))2q+1
dl (3.5)

where[sin θk,− cos θk] is thekth edge exterior normal in the(u, v) plane. The anglesθk

are illustrated in Figure 3-3.
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Calculating SL(0, 0, q) and SL(m,n, q)

The values ofSL(0, 0, q) andSL(m,n, 0) are required to initiate the recursion (3.4). To

calculateSL(m,n, 0), the two equations in (3.4) can be combined yielding

SL(m,n, q) = 1
(m+n+2)−(2q+1)

× (Eu(m + 1, n, q)+

Ev(m,n + 1, q) − Z2SL(m,n, q + 1)),
(3.6)

which can be used to computeSL(m,n, 0) as the valuesSL(m,n, 1) are being generated.

The value ofSL(0, 0, q) can be determined using cylindrical coordinates(ρ, φ, w) such that

u = ρ cos φ andv = ρ sin φ andw is unchanged

SL(0, 0, q) =

∫ φmax

φmin

∫ ρmax(φ)

ρmin(φ)

ρdρdφ

(ρ2 + Z2)q+1/2
=

1

1 − 2q

∫ φmax

φmin

1

(ρ2 + Z2)q−1/2

∣
∣
∣
∣

ρmax(φ)

ρmin(φ)

dφ

(3.7)

and then replacing the integrals overφ by integrals over the position along the edge,b,

SL(0, 0, q)=
1

1 − 2q

nedges∑

k=1

∫ Bk,1

Bk,0

1

(ρ2 + Z2)q−1/2

∣
∣
∣
∣
∣

√
b2+A2

k

ρ0

dφ(b)

db
db (3.8)

wheredφ/db = Ak/(b
2 + Ak). More explicitly

SL(0, 0, q) =
1

1 − 2q

nedges∑

k=1

AkK(k, q) − Z1−2q∆φ

1 − 2q
(3.9)

whereK(k, q) is given by

K(k, q)=

∫ Bk,1

Bk,0

db

(b2 + A2
k)(b

2 + A2
k + Z2)q−1/2

=







AkI(k, 0) + Z tan−1 Zb
Akrk(b)

∣
∣
∣

Bk,1

Bk,0

, q = 0

−Z−1 tan−1 Zb
Akrk(b)

∣
∣
∣

Bk,1

Bk,0

, q = 1

AkI(k,q−1)+(2q−3)K(k,q−1)
(2q−1)Z2 , otherwise

(3.10)
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a) When point is over panel∆φ = 2π. b) When point is not over panel∆φ = 0.

Figure 3-5: Cylindrical coordinate system used to evaluateS(0, 0, q). The signs associated with
each edge integral are indicated in superscript.

whereI(k, p) is the edge integral calculated in thekth edge coordinate system (see Fig-

ure 3-4,

I(k, p) =

∫ Bk,1

Bk,0

db

rk(b)2p+1
×







sign(Bk,0) log(Bk,1/Bk,0), Ck = 0, p = 0

sign(Bk,0)(B
2p
k,1 − B2p

k,0)/2p, Ck = 0, p 6= 0

sign(Bk,0) log(b + rk(b))|Bk,1

Bk,0
, Ck 6= 0, p = 0

1
2p−1

1
C2

k

(

b
rk(b)2p−1

∣
∣
∣

Bk,1

Bk,0

+ 2(p − 1)I(k, p − 1)

)

, ow.

(3.11)

wherer2
k(b) = b2 + C2

k andC2
k = A2

k + Z2. The expressions forK(k, 0) andK(k, 1) can

be rearranged for accuracy and reduced cost, see [31] for details. To avoid loss of accuracy

in (3.11), expressions of the formam − bm can be computed using

am − bm = bm
(a

b
− 1
)m−1∑

k=0

(a

b

)k

(3.12)

where it is assumed that|a| < |b|, if that is not the casea andb can simply be swapped.

The term∆φ in (3.9) is2π if the evaluation pointx0 is over the source, as illustrated in

Figure 3-5a). If the evaluation point is over an edge∆φ is π. If x0 is over a corner,∆φ

is the internal angle between the two edges that define that corner. If x0 is not over the

panel, as illustrated in Figure 3-5b),∆φ is zero. Ifx0 is on the panel, thenSL(0, 0, q) is not

defined forq > 0.
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Calculating Ev and Eu

One way to calculate (3.5) would be to expressu andv on each edge as a function of the

position along the edgeb, see Figure 3-4, using

uk(b) = Uk + (b − Bk,0) cos θk = αk,u,0 + αk,u,1b

vk(b) = Vk + (b − Bk,0) sin θk = αk,v,0 + αk,v,1b

and to combine integrals of powers ofb overrk(b)
2q+1 as in

∫

Ek

u(b)mv(b)n

√

b2 + C2
k

2q+1db =
m+n∑

p=0

ηq,m,n,k,p

∫

Ek

bp

√

b2 + C2
k

2q+1db.

Instead, we introduce a simpler recursion that reusesI(k, q) from (3.11), which is already

used to computeS(0, 0, q), and

J(k, p)=

∫ Bk,1

Bk,0

bdb

(b2 + A2
k + Z2)p+1/2

=
rk(b)

1−2p

1 − 2p

∣
∣
∣
∣

Bk,1

Bk,0

(3.13)

that has a simple integrand for anyq. Note that, for accuracy, (3.13) can be calculated using

(3.12). To appropriately combine the values ofI(k, p) andJ(k, p) we present the following

recurrence relation: If

∫

Ek

u(b)mv(b)n

√

b2 + C2
k

2q+1 db

︸ ︷︷ ︸

E(q,m,n,k)

=
∑

p

βq,m,n,k,p

∫

Ek

1
√

b2 + C2
k

2(q−p)+1
db

︸ ︷︷ ︸

I(q−p,k)

+

∑

p

γq,m,n,k,p

∫

Ek

b
√

b2 + C2
k

2(q−p)+1
db

︸ ︷︷ ︸

J(q−p,k)
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whereβq,0,0,k,p = δq,p andγq,0,0,k,p = 0, then

E(q,m + 1, n, k) =
∑

p

βq,m,n,k,p

∫

Ek

αk,u,0 + bαk,u,1
√

b2 + C2
k

2(q−p)+1
db+

∑

p

γq,m,n,k,p

∫

Ek

bαk,u,0 + (b2 + C)αk,u,1 − C2
kαk,u,1

√

b2 + C2
k

2(q−p)+1
db

=
∑

p

γq,m,n,k,pαk,u,1I(q − p − 1, k)+

∑

p

[βq,m,n,k,pαk,u,1 + γq,m,n,k,pαk,u,0]J(q − p, k)+

∑

p

[βq,m,n,k,pαk,u,0 − C2
kγq,m,n,k,pαk,u,1]I(q − p, k)

i.e.

βq,m+1,n,k,p = βq,m,n,k,pαk,u,0 − C2
kγq,m,n,k,pαk,u,1 + γq,m,n,k,p−1αk,u,1

γq,m+1,n,k,p = βq,m,n,k,pαk,u,1 + γq,m,n,k,pαk,u,0

and similarly

βq,m,n+1,k,p = βq,m,n,k,pαk,v,0 − C2
kγq,m,n,k,pαk,v,1 + γq,m,n,k,p−1αk,v,1

γq,m,n+1,k,p = βq,m,n,k,pαk,v,1 + γq,m,n,k,pαk,v,0

3.2 Assembling the Stokes free space kernel integral

Fortunately, to calculate the panel integral of the Stokes free space Green’s function

GF (r) =
1

r
(I + r̂r̂T ) (3.14)

it is not necessary to explicitly calculateS(m,n, p, q). Let R represent the rotation matrix

associated with the source panelP andrL = [uvw] the value ofr in local panel coordinates

such thatr = RrL it is clear that

GF (r) =
1

r
(I + r̂r̂T ) =

1

r
I +

1

r3
RrLr

T
LRT = RGF (rL)RT . (3.15)
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SinceR andRT are constants, (3.15) can be integrated using,

∫

P

GF (r)dS = R

∫

PL

GF (rL)dSLR
T (3.16)

wherePL anddSL indicate an integration in the panel coordinate system.

From (3.16) one can conclude that the panel integral can be calculated in panel coordinates

using SL(m,n, q)Zp and afterward surrounded by the appropriate rotations. Thepanel

integral in local coordinates is given by

∫

PL

GF
LdSL = SL(0, 0, 0)13 +








SL(0, 2, 1) SL(1, 1, 1) SL(1, 0, 1)Z

SL(1, 1, 1) SL(0, 2, 1) SL(0, 1, 1)Z

SL(1, 0, 1)Z SL(0, 1, 1)Z SL(0, 0, 1)Z2








(3.17)

where13 represents the identity matrix with 3 rows and columns.

3.3 Assembling the Stokes substrate kernel integral

The Stokes substrate Green’s function

GS(x,xs)=GF(r)−GF(ri)−2hkGD(ri)N+2hGR(ri)N (3.18)

where

GD(ri) =
1

r3
I − 3

r5
i

rir
T
i (3.19)

and

GR(ri) =
ri

r3
i

nT
w − nw

ri

r3
i

T

(3.20)

is more complicated thanGF . The panel integral ofGS can be calculated by setting up

an image panelPi, as illustrated in Figure 3-6, over whichGF (ri), 2hkGD(ri)N and

2hGR(ri)N can be integrated. The panel integral for the direct and image GF terms can

be computed by following the procedure outlined in Section 3.3.

The panel integrals forGD andGR present some further challenges as, form (3.18), the
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Figure 3-6: Schematic illustration of source panel, image panel and evaluation point.

GD andGR terms are scaled by a term proportional toh, the distance of the source panel

to the substrate. To introduce this dependency on the distance of the source panel to the

substrate, while integrating over the image panel, the identity rT
i · nw = −h − k can be

used. Note thatk is constant buth changes along the panel. LetRi represent the rotation

matrix associated with the image panelPi such thatri = Riri,L andnw = Rinw,L, the

value ofh can be expressed in terms ofri,L andnw,L usingh = −rT
i,Lnw,L − k.

To represent2hkGD(ri)N in terms ofri,L we can use

2hkGD(ri)N = −2k(rT
i,Lnw,L + k)RikG

D(ri,L)RT
i Ri (13 − 2nw,LnT

w,L)
︸ ︷︷ ︸

NL

RT
i

= −Ri(2k(rT
i,Lnw,L + k)GD(ri,L)NL)RT

i .

(3.21)

To represent2hGR(ri)N in terms ofri,L we can use

2hGR(ri)N = −Ri(2(rT
i,Lnw,L + k)GR(ri,L,nw,L)NL)RT

i (3.22)

The panel integrals of (3.21) and (3.22) can computed fromS(m,n, q)Zp. Note that, since

these panel integrals are being calculated over the image panel ,Pi, x0 will never beon the

panel and therefore there is no need to worry about the possibility of trying to calculate the

integral of a hyper-singular expression at its singular point.

The terms associated with the dipole kernel can be calculated by combining a constant

strength dipoleGD
L,0 and a linear strength dipoleGD

L,1. The panel integral of the constant
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strength dipole is given by

∫

Pi,L

GD
L,0dSL = SL(0, 0, 1)13 − 3








SL(0, 2, 2) SL(1, 1, 2) SL(1, 0, 2)Z

SL(1, 1, 2) SL(0, 2, 2) SL(0, 1, 2)Z

SL(1, 0, 2)Z SL(0, 1, 2)Z SL(0, 0, 2)Z2








(3.23)

wherePi,L represents the image panel in the image panel coordinate system.

Let

α = [SL(1, 0, 1) SL(0, 1, 1) SL(0, 0, 1)Z]nw,L

and

βi,j =
3∑

k=1

SL(δi,1 + δj,1 + δk,1, δi,2 + δj,2 + δk,2, 2)Zδi,3+δj,3+δk,3nw,L,k

whereδi,k is the Kronecker delta function andnw,L,k is thekth component of the substrate

normal in the image local panel coordinate system. The panelintegral of the linear strength

dipole is given by

∫

Pi,L

GD
L,1dSL = α13 − 3








β1,1 β1,2 β1,3

β2,1 β2,2 β2,3

β3,1 β3,2 β3,3








(3.24)

Therefore, the total contribution due to the dipole terms is

∫

Pi,L

GD
L dSL = −2k

(
∫

Pi,L

GD
L,1dSL − k

∫

Pi,L

GD
L,0dSL

)

. (3.25)

The contributions associated with the rotlet term,GR, consists of the sum of the panel

integral of a constant strength rotletGR
L,0 and the panel integral of a linear strength rotlet

GR
L,1 with strengthrT

i,Lnw,L. Letγ0 = [S(1, 0, 1) S(0, 1, 1) S(0, 0, 1)Z]T , the panel integral

of the constant strength rotlet is given by

∫

Pi,L

GR
L,0dSL = γ0n

T
w,L − nw,Lγ

T
0 . (3.26)
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Let

γ1 =








[SL(2, 0, 1) SL(1, 1, 1) SL(1, 0, 1)Z]nw,L

[SL(1, 1, 1) SL(0, 2, 1) SL(0, 1, 1)Z]nw,L

[SL(1, 0, 1)Z SL(0, 1, 1)Z SL(0, 0, 1)Z2]nw,L








(3.27)

the panel integral of the linear strength rotlet is

∫

Pi,L

GR
L,1dSL = γ1n

T
w,L − nw,Lγ

T
1 (3.28)

and the total rotlet contribution is

∫

Pi,L

GR
LdSL = 2

(

k

∫

Pi,L

GR
L,0dSL −

∫

Pi,L

GR
L,0dSL

)

. (3.29)

The integral of the Stokes substrate Green’s function is then given by

∫

P

GSdS =R

∫

PL

GF dSRT − Ri

∫

Pi,L

GF dSRT
i +

Ri

(
∫

Pi,L

GD
L dSL −

∫

Pi,L

GR
LdSL

)

Ni,LR
T
i

(3.30)

Galerkin

If the boundary element method is using Galerkin testing, the entries of the boundary el-

ement matrix are the weighted integrals over a test panel of the velocity due to a force

distribution over a source panel. To calculate the entries with Galerkin testing our imple-

mentation calculates the integral over the test panel usingquadrature rules (see [36]).

3.4 Testing

In this section we demonstrate the panel integration algorithm by plotting the velocity field

produced by a force along thex, y or z direction. The velocity field produced by a force

distribution on a square panel with 1µm side atz = 2µm, parallel to the substrate, is
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illustrated in Figure 3-7. For comparison, where for comparison, the velocity field in the

absence of the substrate is also illustrated in Figure 3-7.
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Figure 3-7: Velocity field produced by a constant force distribution on a square panelwith 1µm side
at z = 2µm. The figures on the top row were produced by integrating the Stokes substrate Green’s
function. The figures on the bottom row were produced by integrating the Stokes free space Green’s
function. On the first column, a force along thex axis was applied; on the second column, a force
alongy was applied; on the third column, a force alongz was applied. To improve visualization of
the field, the length of the arrows in the figures is proportional to the logarithmof the magnitude of
the velocity.

The velocity field produced by a force distribution on a triangular panel with 1µm side at

z = 2µm, normal to the substrate, is illustrated in Figure 3-7. Forcomparison, where for

comparison, the velocity field in the absence of the substrate is also illustrated in Figure 3-7.

The panel integration algorithm was tested by comparing itsresults to those produced using

adaptive subdivision quadrature methods using the quadrature rules in [36] as the inner

quadrature rule. The results were verified to match to any reasonable degree of accuracy.
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Figure 3-8: Velocity field produced by a constant force distribution on a triangular panel with 1µm
side atz = 2µm placed normal to the substrate. The figures on the top row were produced by
integrating the Stokes substrate Green’s function. The figures on the bottomrow were produced by
integrating the Stokes free space Green’s function. On the first column, a force along thex axis
was applied; on the second column, a force alongy was applied; on the third column, a force
alongz was applied. To improve visualization of the field, the length of the arrows in the figures is
proportional to the logarithm of the magnitude of the velocity.

3.5 Notes

The panel integration algorithm presented in this chapter does not account for the case

where the evaluation point ison an edge or corner of the panel. Extending the panel inte-

gration algorithm to deal with such cases is not too complicated but it was not necessary

for the purposes of developing the boundary element solver because, for that application,

the evaluation points where either not on the source panel orwere interior points on the

source panel.

The velocity due a linear strength force distribution can becalculated by replacingSL(m,n, q)
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in Sections 3.2 and 3.3 by

ŜL(m,n, q) =








SL(m,n, q)

SL(m + 1, n, q)

SL(m,n + 1, q)








(3.31)

and replacing scalar operations by the corresponding pointwise vectorized operations. Nat-

urally the same process can be applied to the computation of the velocity due to higher

order force distributions.
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Chapter 4

Precorrected FFT solver for Stokes flow

In this chapter we describe an accelerated boundary elementsolver for calculating the drag

force on microelectromechanical and microfluidic devices.The drag force on microelec-

tromechanical devices such as oscillators, accelerometers, combdrives and micromirrors is

an important factor that significantly influence their dynamic behavior [3, 4, 5]. Especially

for surface micromachined devices, the drag is greatly influenced by the presence of the

nearby substrate [7]. Stokes drag near the bottom of a microfluidic channel is also impor-

tant for the calculation of the cell trapping dynamics of structures such as those described

in [21], [22] and [23]. However, explicitly accounting for the substrate can be computa-

tionally expensive.

Accelerated boundary element solvers based on the multipole method [13], panel clustering

and wavelets [14] and on the precorrected FFT method [15], have previously been applied

to the calculation of drag forces on MEMS structures [6, 16, 17, 18, 19]. However, with

the exception of the variable order wavelet method used in [19], these implementations of

the boundary element method use a free-space Green’s function that requires an explicit

discretization of both the substrate and the suspended structures. The problem with dis-

cretizing the substrate is that a large number of unknowns are needed. In addition, when

the structure is close to the substrate, the substrate discretization must be refined to match

the “shadow” of the structure.

In this chapter we present a more efficient fast BEM solver for structures above a substrate
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that uses the Green’s function for Stokes flow bounded by a plane to implicitly represent

the device substrate. In particular, we develop an approachbased on the precorrected FFT

(pFFT) algorithm [15], as the pFFT method has been demonstrated to be extremely mem-

ory efficient. Such pFFT approaches rely on translation invariance and, as we describe

below, that introduces algorithmic complications when combined with the substrate Stokes

Green’s function.

In the following, it is shown that using the Stokes substrateGreen’s function significantly

reduces memory usage and the time required to calculate the drag force. It is also shown

that, if the substrate is represented explicitly, then for small separation distances between

the structures and the substrate a very large number of panels must be used to represent the

substrate. In Chapter 5, it is also demonstrated that to achieve a given level of accuracy, re-

gardless of whether an implicit or an explicit representation of the substrate is used, the size

of the panels used to discretize the structures must be reduced as the distance between the

structures and the substrate decreases. This result is surprising because the need to refine

the discretization of the structures as the gap decreases isnot necessarily driven by a need

to more accurately represent the solution. Nevertheless, it is demonstrated that, despite

the complications introduced in the pFFT algorithm and the fact that the discretization still

needs to be refined as the structures are brought closer to thesubstrate, using the Stokes

flow substrate Green’s function is still worthwhile as it produces more accurate results more

efficiently than by using an explicit substrate discretization.

This chapter is structured as follows. In Section 4.1, the pFFT algorithm is reviewed. In

Section 4.2, the modifications to the pFFT algorithm required to support the Stokes sub-

strate Green’s function are presented. In Section 4.3, results validating and demonstrating

the pFFT accelerated boundary element method using the substrate Green’s function are

shown. Finally, in Section 4.4, the advantages and limitations of the approach proposed in

this chapter are discussed. The background material, associated with the Stokes flow model

and boundary integral formulation is presented in Chapter 2.
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4.1 Precorrected FFT algorithm

The precorrected FFT algorithm, introduced in [15], accelerates the process of calculating

the interactions betweenN sources andM targets by first applying interpolation to map the

effects of theN arbitrarily located sources to a regular grid, ofNG points, then calculating

the interactions between theNG regular grid points using FFT accelerated convolution and

finally interpolating the results from the grid to theM targets. Since the interactions calcu-

lated using this grid based procedure are not accurate enough when the sources and targets

are nearby, in the pFFT algorithm the values of the inaccurate grid based nearby interac-

tions are discarded (effectively subtracted from the result produced by the FFT accelerated

convolution) and replaced with more accurate estimates of the nearby interactions, usually

obtained with numerical or analytical integration.

To use the FFT to accelerate the convolution step on a regulargrid, the interactions between

sources and targets must be translation invariant. However, the substrate Green‘s function

for Stokes flow is not translation invariant on the directionnormal to the substrate. In

the following sections the basic concepts and steps involved in the pFFT algorithm are

reviewed.

4.1.1 Projection and interpolation

Consider evaluating a functiong(xt, xs, yt, ys, zt, zs) = g(xt,xs), wherexs denotes a

source point andxt denotes a target point. The functiong can be approximated by polyno-

mially interpolating from a set of samplesg(xt,xp) evaluated at a set of pointsxp near the

source pointxs. In particular,

g(xt,xs) =
∑

p

g(xt,xp)Lp(xs) + Ep(xt,xs) (4.1)

where, for a given projection orderp, Lp(xs) is a Lagrangian interpolator, i.e. a polynomial

that is 1 whenxs = xp and zero for the remaining sample points, andEp(xt,xs) is the

projection error. In the context of the pFFT algorithm, thissource interpolationis called
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projection.

Dually, g(xt,xs) can be approximated by interpolating samplesg(xi,xs) evaluated at a set

of pointsxi near the target pointxt. Analogous to (4.1),

g(xt,xs) =
∑

i

Li(xt)g(xi,xs) + Ei(xt,xs) (4.2)

whereLi(xs) is again a Lagrangian interpolator andEi(xt,xs) is the interpolation error.

Projecting the source using (4.1) and interpolating at the destination (4.2) results in

g(xt,xs)=
∑

i

Li(xt)
∑

p

g(xi,xp)Lp(xs) + Ei+p(xt,xs) (4.3)

where thexi’s andxp’s are conveniently chosen points (e.g. a subset of points ona uniform

grid) andEi+p represents the approximation error.

The accuracy of the above approximation can be improved by using additional information

aboutg, such as its derivatives with respect to the source and field positions.

4.1.2 Collocation

The BEM collocation matrixG in (2.23) can be approximated using (4.3)

∑

s Gt,sfs =
∑

s

∫

Ss
g(xt,xs)f(xs)dS =

∑

i

∑

p Li(xt)g(xi,xp)
∑

s

∫

Ss
Lp(xs)f(xs)dS+

∑

s

∫

Ss
Ei+p(xsk

,xt)f(xsk
)dS =

∑

i

It,i

∑

p

gi,p

∑

s

Pp,s

︸ ︷︷ ︸

G
i+p
t,s

fs +
∑

s Et,sfs,

(4.4)

where the matrixPp,s is called the projection matrix, and the matrixIt,i is called the interpo-

lation matrix. The error termEt,s maybe large ifxs andxt are nearby or if the interpolation

stencil forxt overlaps with the projection stencil forxs and the kernel is singular, in which
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case the kernel valuesg(xi,xp) for xi = xp, which cannot be correctly evaluated, will

corrupt the approximation. In the precorrected FFT algorithm the error term for nearby

interactions i.e.,Et,s = Gt,s −G
i+p
t,s , is calculated explicitly and added to the contributions

calculated using projection and interpolation in order to improve the accuracy of the ap-

proximation. For distant interactions,Et,s is negligible and is set to zero thus generating a

sparse matrix̂Et,s called the precorrection matrix.

The non-zero entries of the precorrection matrix are generated using quadrature schemes [36]

or an analytical method to calculate an accurate value forGt,s and by subtracting the grid

based contributionGi+p
t,s . An analytical method for calculating the velocity field dueto a

force distribution on a flat panel is presented in Chapter 3.

4.1.3 Convolution on regular grid

If the pointsxi andxp are points on regularly spaced grids with the same spacing and the

same axis of alignment, andgi,p = g(xi,xp) is translation invariant1, thengi,p = ĝi−p is a

block Toeplitz matrix. Therefore, the term in (4.4),

∑

p

gi,p

∑

s

Pp,sfs

︸ ︷︷ ︸

f̂p

=
∑

p

gi,pf̂p =
∑

p

ĝi−pf̂p (4.5)

can be interpreted as a discrete convolution and can be calculated efficiently using the

FFT algorithm [41]. Calculating the convolution using the FFT to transform both a zero

padded̂fp and the kernel associated withĝi−p to the frequency domain, performing a point-

wise multiplication, and then inverse transforming the result has a computational cost of

O(NG log(NG)). By contrast, calculating the convolution on the grid directly has a cost of

O(N2
G). A similar interpretation and acceleration scheme can be used for the case where

the kernel is of the formg(xi,xp) = g(xi − Dxp) whereD is a 3 by 3 diagonal matrix

with entries that are 1 or -1. For the grid axis correspondingto -1 entries the matrixgi,p

1A function is translation invariant ifg(xi,xp) only depends on the relative position ofxi andxp and the
two parameter functiong(xi,xp) can be reduced to a single parameter functiong(xi − xp).
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forms Hankel blocks that can be viewed as a discrete convolution of an image source with

a shifted translation invariant kernel [15].

In the following, for simplicity, we will assume that the grid of NG points is arranged in

NZ regularly spaced layers with withNXY points parallel to the substrate.

4.2 Dealing with the substrate Green’s function

Since the Stokes flow substrate Green’s function is not translation invariant along the direc-

tion normal to the substrate, the FFT based convolution described in section 4.1.3 cannot

be directly applied to accelerate the calculation of the velocity on theNG grid points. Ex-

amining how the Stokes flow substrate Green’s function is nottranslation invariant along

the direction normal to the substrate leads to several alternatives for extending the pFFT

approach.

The Stokes flow substrate Green’s function, repeated from (2.18),

Gw(x,xs)=GF(r)−GF(ri)−2hkGD(ri)N+2hGR(ri)N
︸ ︷︷ ︸

Gim(x,xi)

is not translation invariant along the direction normal to the substrate for two reasons: first,

it is the combination of a direct contribution and an image contribution; second, some of

the image terms are multiplied byh or hk and therefore depend on the absolute position

of the source and the target. The first issue can be addressed by splitting the kernel into

a direct contributionG(x,x0)
F and an image contributionGim(x,xi). The direct contri-

bution is translation invariant and does not pose any additional challenge. However, the

image contributionGim(x,xi) has an explicit dependence onh andhk and is not transla-

tion invariant even though the kernelsGF, GD andGSD are. To deal with the translation

variant terms, it is possible to move theh and thehk dependence to the projection and
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interpolation matrices as in

ut =
∑

s

∫

Ss
Gw(xt,xs)dSs =

∑

i Li(xt) × (

∑

p GF(xi,xp)
∑

s

∫

Ss
Lp(x)dSsfs−

∑

p GF(xi,Nxp)
∑

s

∫

Ss
Lp(x)dSsfs+

∑

p 2GR(xi,Nxp)
∑

s

∫

Ss
Lp(x)h(x)dSsfs+

k(xt)
∑

p 2GD(xi,Nxp)
∑

s

∫

Ss
Lp(x)h(x)dSsfs),

(4.6)

which can be written in matrix form as

ut =
∑

s

∫

Ss
Gw(xt,xs)fsdSs =

∑

i It,i

∑

p GF
i,p

∑

s Pp,sfs−
∑

i It,i

∑

p G
im,F
i,p Pp,sfs+

∑

i It,i

∑

p 2Gim,R
i,p

∑

s P
(1)
p,s fs+

∑

i I
(1)
t,i

∑

p 2Gim,D
i,p

∑

s P
(1)
p,s fs.

(4.7)

The resulting FFT accelerated matrix vector product, without the precorrection term, is

illustrated in Figure 4-1. Using this scheme each matrix vector product requires 6 scalar

projections, 6 FFTs, 6 iFFTs and 6 scalar interpolations. Using the symmetry of the ker-

nels, this scheme requires storing 6 scalar kernels transforms for the direct contribution

GF(x,x0) and 14 scalar kernel transforms for the image contributionGim(x,xi).

Figure 4-1: The velocity on the interpolation gridu can be calculated using 6 projections, 6 FFTs,
6 IFFTs and 6 interpolations and uses30NG normalized storage for kernel transforms. Note that
the transforms of the Green’s functions are computed once and stored.
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Splitting the kernel into 20 scalar components while the original kernel has 8 independent

scalar entries seems wasteful. Motivated by this observation, an alternative approach, one

that does not require splitting the kernel nor modifying theprojection and interpolation

steps, was considered. Instead of splitting the kernel and using a three dimensional FFT to

accelerate the convolution, in the alternative approach the velocity on each of theNZ layers

of the grid is computed using an explicit convolution of the force distribution on each of

theNZ layers. SinceGw is translation invariant along directions parallel to the substrate,

the alternative approach can use two dimensional FFTs to accelerate the computation of the

contribution of the velocity on a layer due to the force on another layer. Therefore, the com-

putational cost of the alternative approach isO(N2
ZNXY log NXY) = O(NZNG log NXY).

SinceGw is not translation invariant in the direction normal to the substrate and there are

8 scalar kernels, to store the interactions between all the pairs of layers requires memory

proportional to8N2
ZNXY = 8NZNG.

Despite its simplicity, this alternative approach was abandoned because it does not scale

well asNz increases. Even though splitting the kernel into subcomponents complicates

the projection and interpolation steps and requires more memory, the memory used by the

split kernel approach scales linearly with the number of grid points, while the memory and

time required for the alternative approach grow quadratically with NZ. We found that for

NZ > 4, the split kernel approach was more memory efficient.

4.3 Results and discussion

In this section we compare the results obtained using the pFFT accelerated BEM formula-

tion using the ground plane Green’s function with theoretical, numerical and experimental

results.

4.3.1 Sphere moving near a plane wall

The Stokes drag on a sphere moving parallel or normal to a plane wall has an analytical

solution (see [42] and [43] for details). For comparison, the drag force on a sphere dis-
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gap Normalized drag - parallel motion Normalized drag - normal motion
h/r-1 coarse mesh fine mesh exact [42] coarse mesh fine mesh exact [43]
15 1.0353 1.0361 1.0364 1.0742 1.0752 1.0755
7 1.0741 1.0751 1.0754 1.1608 1.1621 1.1625
3 1.1603 1.1615 1.1620 1.3772 1.3794 1.3802
1 1.3797 1.3820 1.3828 2.1163 2.1232 2.1255

0.5 1.5908 1.5945 1.5957 3.1812 3.1993 3.2054
0.2 1.9425 1.9501 1.9527 6.2314 6.3131 6.3409

Table 4.1: Normalized drag force on a sphere of radiusr whose center is at a distanceh from a
wall.

cretization with 1280 panels, labeledcoarse, and for a sphere with 5120 panels, labeled

fine, for both in-plane and normal motion were calculated using the precorrected FFT ap-

proach described above. The drag force values, normalized with respect to the Stokes drag

force in free space−6πµrU , wherer is the sphere radius andU is its linear velocity, are

summarized in Table 4.1 and illustrated in Figure 4-2. From the table and the figures, it can

be seen that the agreement between the theoretical values and the solution produced by the

above method is very good.
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Figure 4-2: Normalized drag force density on a sphere of radiusr whose center is at a distance
h from a plane wall. The drag is normalized with respect to the Stokes drag force in free space
6πµrU . On the left is the the drag associated with motion normal to the wall, on the right isthe
drag associated with motion parallel to the wall.
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4.3.2 Cylinder over substrate - Effect of substrate discretization

The focus of this section is to analyze the effect of the substrate discretization on the so-

lution accuracy for a simple structure. The example structure was chosen to be a cylinder

with 10µm radius and 2µm thickness. A cylinder discretizations with a median panelradius

of 0.14µm was constructed using Comsol 3.2.

The cylinder mesh was placed over a 40µm by 40µm plane discretized into a set of regular

square panels. The cylinder mesh was then placed at a distance of 5µm, 2µm, 1µm and

0.5µm from the substrate. For each configuration, the drag force on the bottom of the

cylinder was calculated for lateral motion of the cylinder and the total vertical force on the

cylinder was calculated for vertical motion. A reference solution was generated by solving

the same problem but using the implicit substrate representation.

The relative error of the lateral drag force on the bottom of the cylinder is illustrated in

Figure 4-3. It is clear from the figure that, to get within 1% ofthe reference solution, a

coarse substrate discretization suffices. This result applies to the case where the geometry

of the body is very simple and the force on the bottom of the cylinder and on the substrate

is mostly constant. For cases like the comb-like structure in section 4.3.3 this is not the

case. Another observation to be made from Figure 4-3 is that the relative error for a sepa-

ration gap of 5µm did not decrease limited to 1%; this is due to the use of a finite surface

to represent theinfinite substrate. As the cylinder is brought closer to the substrate, the

interaction between the cylinder and the substrate becomesmore localized and the 40µm

side square region used to represent the substrate becomes abetter approximation of the

actual substrate.

The relative error of the total vertical force on the cylinder for vertical motion as a function

of the radius of the panels used to discretize the substrate plane for several separation

distances between the cylinder and the substrate is illustrated in Figure 4-4. Contrary to

was was observed in Figure 4-3, as the gap size is reduced, thesubstrate discretization

had to be made much finer to achieve a given accuracy. For the smaller gaps, the finest

substrate discretization did not produce a result within 1%of the reference solution. This

result clearly emphasizes the advantage of using the implicit substrate representation.
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Figure 4-3: Relative error of the drag force calculated for a cylinder movingparallel to the sub-
strate. The relative error was calculated for a fixed cylinder discretization and for a set of substrate
discretizations and gap sizes.
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Figure 4-4: Relative error of the drag force calculated for a cylinder movingnormal to the sub-
strate. The relative error was calculated for a fixed cylinder discretization and for a set of substrate
discretizations and gap sizes.

Observations

Several observations can be made from the results presentedin this example. First, for

lateral motion of a simple body like a cylinder, the body and the substrate discretization

do not need to be made very fine to achieve reasonable accuracy. Second, for objects

moving vertically, using the Stokes free space Green’s function requires that the substrate

discretization be made very fine to produce accurate results.
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4.3.3 Substrate shadow

To compare the accuracy of the results produced by solving the discretized version of

(2.14), where using the free space Green’s requires the explicit discretization of the sub-

strate, with the results of solving the discretizated version of (2.19) without an explicit

substrate representation, we chose a non-smooth problem consisting of a comb-like struc-

ture with fine fingers moving over a substrate, as depicted in Figure 4-5.

Figure 4-5: Comb like structure moving over substrate.

The drag force on the structure was calculated using the precorrected FFT algorithm for in-

plane and out-of-plane motion for several separation distances between the comb structure

and the substrate. The value of drag force on the comb structure was calculated for several

combinations of discretizations for the comb and for the substrate. The separation between

the comb and the substrate was also swept over a set of three values. The drag forces

produced by this multidimensional sweep are summarized in Table 4.2.

Several observations can be made from the data in Table 4.2:

The variation with discretization of the results obtained for in-plane motion drag is much

smaller than the variation for the values that were calculated for out-of-plane motion. For

in-plane motion the results were all within 10% of the reference values, regardless of the

discretization used for the substrate. Nevertheless, the error obtained using a coarse sub-

strate discretization is larger than the error obtained using either implicit substrate dis-

cretization or a fine explicit substrate discretization.
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gap = 4µm gap = 2µm gap = 1µm
comb subs. p.r. lateral vertical lateral vertical lateral vertical
mesh mesh [µm] drag [pN] drag [pN] drag [pN] drag [pN] drag [pN] drag [pN]

r n 0.32 58.65 587.84 89.44 1747.93 141.07 8251.85
c n 2.55 57.52 554.46 87.22 1508.66 136.16 5869.81
m n 1.27 58.21 572.23 88.60 1665.21 139.37 6976.18
f n 0.64 58.51 582.67 89.19 1724.17 140.57 8023.81
c c 2.69 56.94 506.57 86.12 1076.27 133.35 2366.16
m c 1.27 57.61 532.23 87.40 1150.91 136.56 3325.24
f c 0.64 57.92 539.91 87.92 1066.92 135.17 1119.19
c f 0.87 57.04 554.80 86.89 1490.90 135.83 5647.43
m f 0.87 57.73 572.34 88.27 1638.88 138.96 6652.27
f f 0.67 58.03 582.17 88.88 1679.91 140.12 8005.46

Table 4.2: Drag force on a comb like structure moving over a substrate. Results wereobtained
using different discretizations for both the structure and the substrate. Lateral drag results were
obtained by setting the structure velocity to -1mm/s along thex axis. Vertical drag results were
obtained by setting the structure velocity to -1mm/s along thez axis. In all cases the fluid viscosity
wasµ = 1.843 × 10−5Pa.s. In the tablep.r. stands for median panel radius andc, m, and f stand
for coarse, medium and fine meshes.n stands forno meshindicating that the substrate implicit
solver was used.r stands for the reference mesh.

Focusing on the results obtained with the implicit representation of the substrate it can be

observed that, as the separation between the comb and the substrate is reduced, the drag

calculated for out-of-plane motion depends strongly on thediscretization resolution. This

dependence indicates that, for out-of-plane motion, the solution has more variation and

that a large number of constant strength panels is needed to represent the solution. Using a

Galerkin test scheme slightly reduces this discretizationdependence but it is still clear that

a finer resolution is needed as the comb is moved closer to the substrate.

Focusing on the drag associated with out-of-plane motion calculated using explicit sub-

strate discretizations, it can be observed that even for a relatively large separation between

the comb and the substrate, the error is strongly dependent on the substrate discretization

resolution. As the distance between the comb and the substrate is reduced, the accuracy

of the solutions produced using a coarse substrate discretization deteriorates significantly.

To reinforce the claim that the cause of this deterioration is the coarseness of the substrate

discretization, consider that, for a fine substrate discretization, the results calculated using

the free-space Green’s function approach the results obtained using the implicit substrate

representation.
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Figure 4-6: Substrate “shadow” - Drag force density on the substrate under a comb like structure
moving in-plane. The figures on the left where generated using a fine discretization for the substrate,
the figures on the right where generated using a coarse discretization forthe substrate. In the top
two figures the comb structure was placed at 4µm above the substrate, in the bottom figures the
comb structure was placed at 0.5µm above the substrate.

To illustrate the effect of the substrate discretization resolution, Figure 4-6 shows that the

forces on the substrate form a “shadow” of the comb structureabove it. Comparing the

shadows for the two separation distances in Figure 4-6, it isclear that the shadow becomes

sharper as the comb is brought closer to the substrate. Therefore, for small separation dis-

tances, a constant coarse discretization cannot accurately represent the forces on the sub-

strate. On the other hand, for large separation distances, where the shadow of the structure

is much smoother, a coarse substrate discretization produces sufficiently accurate results.
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4.3.4 MEMS accelerometer

The substrate implicit pFFT solver was used to analyze the micromachined capacitive ac-

celerometer that was studied in [6] and [19]. Below, the drag force results reported in [6]

and [19] are compared with the results calculated using our solver. For this real world ex-

ample, time and memory usage are reported to reinforce observations made in section 4.3.3

and to point out some additional facts.

In [6] and [19], the combdrive was placed at a distance of 2µm above the substrate and the

mesh, referred to below as meshc, was used. To study the convergence of the solution with

the discretization resolution meshc was refined by panel subdivision to produce meshesm,

f ande. For each mesh refinement, the combdrive was placed at a distance of 4µm, 2µm,

1µm and 0.5µm above the substrate. The drag force results and the time andmemory usage

for each case are summarized in Table 4.3.

Comparison to previously published results

For the case of a 2µm gap, the drag coefficient value obtained in [44], was207.58nNm−1s,

corresponding to a quality factor ofQ = 29.1. Experimentally the quality factor was

measured to beQexp = 27. Using the substrate implicit pFFT algorithm with meshc, the

force estimate217.26nNm−1s was produced, after adjusting for the different value ofµ

used in [44], this corresponds to aQ = 28.5, which is marginally closer toQexp. Using a

mesh with 313536 panels, labelede in Table 4.3, produced a drag force of223.6nNm−1s,

corresponding toQ = 27.7, which is consistent with the result reported in [18].

The result produced in [19] used the far more general variable order wavelet acceleration

method, an implicit representation of the substrate, and the comb mesh labeledc in Ta-

ble 4.3. In [19], the computed drag force was214.7nNm−1s. According to [19], this result

was calculated in 4685s and required 4.7GB of memory. To achieve similar accuracy with

an identical mesh, the precorrected FFT based solver used 281.4MB and 176.2 seconds.

Although the pFFT solver outperformed the wavelet method onthis fairly spatially ho-

mogeneous problem, it is well known that FFT based methods perform poorly on more
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comb wall gap p. r. panels memory full GMRES iterations drag
mesh mesh [µm] [µm] [MB] time [s] time [s] [pN]

c n 4 2.39 8418 281.4 183.9 62.1 134 -150.12
m n 4 1.20 33672 1087.2 918.0 376.8 156 -153.07
f n 4 0.64 78384 2507.3 1967.5 515.6 44 -154.17
e n 4 0.32 313536 11921.8 13263.6 6432.0 44 -154.66
c c 4 2.55 12330 401.1 534.9 355.5 270 -149.96
m m 4 1.27 49320 1581.6 3654.4 3051.9 335 -152.87
f f 4 1.10 140976 4461.3 4457.0 2490.1 134 -154.12
e e 4 0.55 563904 18664.8 26399.4 16584.1 103 -154.58
c n 2 2.39 8418 281.4 176.2 54.3 119 -217.26
m n 2 1.20 33672 1087.2 871.7 330.3 139 -221.45
f n 2 0.64 78384 2507.3 1976.8 527.8 45 -222.94
e n 2 0.32 313536 11921.8 13778.9 6970.1 48 -223.60
c c 2 2.55 12330 399.7 686.1 465.0 363 -213.62
m m 2 1.27 49320 1509.3 4017.6 3401.4 442 -220.51
f f 2 1.10 140976 4296.2 6499.5 4647.5 269 -222.94
e e 2 0.55 563904 18577.5 26086.9 14928.9 129 -223.60
c n 1 2.39 8418 281.4 168.7 46.2 103 -343.57
m n 1 1.20 33672 1087.3 833.4 291.5 125 -351.05
f n 1 0.64 78384 2507.3 1952.8 503.8 43 -353.54
e n 1 0.32 313536 11921.8 13943.6 7111.7 49 -354.71
c c 1 2.55 12330 395.7 860.5 621.9 457 -325.05
m m 1 1.27 49320 1483.4 2207.0 1436.2 256 -347.01
f f 1 1.10 140976 4168.3 3982.6 2164.3 139 -352.79
e e 1 0.55 563904 18078.1 31474.9 20791.6 179 -354.33
c n 0.5 2.39 8418 281.4 163.8 41.6 94 -577.46
m n 0.5 1.20 33672 1087.3 821.0 278.7 120 -593.12
f n 0.5 0.64 78384 2507.2 2110.2 663.0 57 -598.01
e n 0.5 0.32 313536 11921.8 14487.1 7665.6 53 -600.67
c c 0.5 2.55 12330 394.2 945.7 699.6 500 -533.30
m m 0.5 1.27 49320 1473.0 4161.6 3305.3 500 -591.06
f f 0.5 1.10 140976 4087.8 7199.4 5353.6 304 -596.16
e e 0.5 0.55 563904 17835.2 29343.2 18781.4 165 -599.73

Table 4.3: Drag force on a the movable comb of a combdrive resonator for lateral motion along
the comb finger direction. The accelerometer is moving at a velocity of 1mms−1 in air with µ =
1.843 × 10−5Pa.s. Abovec stands for coarse,m stands for medium,f stands for fine,e stands for
finer andn indicates that the substrate was represented implicitly.p.r. stands for median panel
radius. A number of 500 GMRES iterations indicates that GMRES did not converge to a relative
error of 10−4.
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inhomogeneous problems [15].

Observations

The results presented in Table 4.3 demonstrate that, for thesame combdrive mesh resolution

the pFFT algorithm using the implicit substrate discretization uses less memory and is

faster than the pFFT algorithm using the free space Green’s function and discretizing the

substrate. This is true even though the kernels used to represent the substrate implicitly are

much more complicated than the free-space Stokes Green’s function. The reason for this

improvement is that not only does the free-space Stokes pFFTalgorithm need to account

for the substrate explicitly, but also needs a larger FFT grid to encompasses the substrate

and the objects above it, instead of just the objects. Furthermore, as shown in Table 4.3, the

number of GMRES iterations that is required to achieve the same relative residue norm is

typically much larger for the case where the substrate is represented explicitly suggesting

that the system of equations associated with that formulation is poorer conditioned than the

systems of equations associated with the substrate implicit method.

4.3.5 Proof mass with holes

In surface micromachined devices, parts of the device that cover large areas, such as proof

masses, are often designed with several small holes that facilitate the removal of sacrificial

layers and subsequent release of the device and that reduce the drag the device experiences

as it moves [5].

To effectively predict the behavior of the devices, or to reduce the drag by a given desirable

amount it is necessary to accurately account for the effect the holes have on the drag. For

example, while designing an oscillator, to achieve a high quality factorQ one would want

to maximize the reduction in the drag while minimizing the reduction in mass. While

accounting for the reduction in mass due to adding holes is straightforward, accounting for

the reduction in drag is more complicated since, especiallyfor off-plane motion, the drag

is strongly dependent on the size, number and distribution of the holes and on the distance
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between the structure and the substrate.

The effect of the holes in the drag force becomes stronger as the structures are closer to

the substrate and the fluid is “forced” in the holes rather than just being pushed away

from the bottom of the structure. In these cases, accuratelyrepresenting the presence of

the substrate is especially important. If an explicit substrate discretization method were

to be used, that discretization would have to fine and hence costly. By using an implicit,

accurate representation of the effects of the presence of the nearby substrate, the algorithm

proposed in this chapter allows the computational resources to be better spent in refining

the discretization of the actual suspended structure.

To demonstrate the use of our solver we used Comsol 3.2 to setupa set of meshes of

100µm by 100µm, 2µm thick proof mass. The maximum panel size was set to 1µm in

order to guarantee that, even at a close distance to the substrate, the discretization would be

fine enough to represent the solution using constant strength panels. To study the effect of

the size and number of holes on the drag we used Comsol 3.2 to generate meshes with 1,

4, 9, 25 and 100 equally distributed cylindrical holes with aradius of 1µm, 2µm and 4µm.

The proof masses were set at a 4µm and 1µm above the substrate. In all cases the proof

mass velocity was 1mm/s moving towards the substrate. For comparison, the drag on a

proof mass with no holes was also calculated. The results aresummarized in Table 4.4. To

further emphasize the effect of the hole radius on the force distribution on the proof mass,

we present the vertical force on the bottom of a proof mass with 25 regularly space holes

for holes with a radius of 1µm, 2µm and 4µm in Figure 4-7.

Figure 4-7: Force on the bottom of a 100µm by 100µm by 2µm tile moving at 1µm above the
substrate moving towards it at a velocity of 1mms−1 in a fluid with viscosityµ = 1.843× 10−5Pa.s.
The tiles on the figure have 25 equally spaced holes with a radius of 1µm, 2µm and 4µm.
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num h. r. gap p. r. num memory full GMRES GMRES drag
holes [µm] [µm] [µm] panels [MB] time [s] time [s] iterations [nN]

0 4 0.56 74128 2138.5 2049.7 555.0 103 14.88
1 1 4 0.56 74314 2144.7 2070.6 579.4 103 14.83
4 1 4 0.56 74408 2148.8 2031.0 545.7 103 14.80
9 1 4 0.55 79192 2339.8 2203.0 580.6 104 14.70
25 1 4 0.55 75930 2207.6 2147.1 588.3 104 14.47
100 1 4 0.55 78454 2319.6 2524.9 817.6 137 13.39
1 2 4 0.56 74180 2140.4 2237.1 749.3 131 14.35
4 2 4 0.56 74486 2149.6 2240.4 747.9 131 13.98
9 2 4 0.56 74554 2154.1 2230.8 733.6 132 13.19
25 2 4 0.56 75406 2181.2 2241.2 721.3 132 11.07
100 2 4 0.55 77542 2250.0 2333.9 718.7 134 6.29
1 4 4 0.56 74060 2137.3 2263.2 745.2 130 12.10
4 4 4 0.56 73426 2125.0 2169.0 696.5 123 10.29
9 4 4 0.56 72494 2108.0 2176.6 710.9 129 7.56
25 4 4 0.56 69162 2040.3 2025.6 617.3 122 3.83

0 1 0.56 74128 2138.5 2048.5 569.0 107 820.67
1 1 1 0.56 74314 2144.7 2042.0 557.6 105 734.05
4 1 1 0.56 74408 2148.8 2063.1 575.4 108 685.26
9 1 1 0.55 79192 2339.8 2214.1 587.4 105 571.56
25 1 1 0.55 75930 2207.6 2077.8 532.9 100 386.42
100 1 1 0.55 78454 2319.6 2723.3 811.7 107 145.15
1 2 1 0.56 74180 2140.4 2267.1 708.0 124 618.38
4 2 1 0.56 74486 2149.6 2233.3 738.3 129 507.10
9 2 1 0.56 74554 2154.0 2265.7 761.4 134 342.78
25 2 1 0.56 75406 2181.3 2098.5 560.6 105 148.38
100 2 1 0.55 77542 2250.1 2092.3 474.6 93 30.03
1 4 1 0.56 74060 2137.4 2685.6 995.1 123 535.79
4 4 1 0.56 73426 2125.0 2236.8 755.6 133 380.58
9 4 1 0.56 72494 2108.0 2067.3 602.9 110 206.26
25 4 1 0.56 69162 2040.3 1919.5 508.3 102 59.08

Table 4.4: Drag force on a square 100µm by 100µm tile, 2µm thick tile moving towards the sub-
strate at a velocity of 1mms−1 in a fluid with viscosityµ = 1.843 × 10−5kg/ms. Aboveh.r. stands
for hole radius andp.r. stands for panel radius.
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To validate the results obtained using our solver we compared them to those produced

using the Comsol 3.2 finite element code, which uses a relatively coarse volume mesh with

quadratic elements. The proof mass with 4 holes with a radiusof 2µm was chosen at

random to perform this comparison. For the randomly chosen example, the drag calculated

using Comsol 3.2 was 13.98nN for a separation distance of 4µm and 507nN for a separation

distance of 1µm, which is is clearly consistent with the results reported in Table 4.4.

4.4 Conclusions and future work

A precorrected FFT accelerated algorithm for solving Stokes flow problems in the presence

of a substrate was developed and demonstrated. The algorithm was validated against known

theoretical, experimental and computational results and its performance was compared with

previously published results.

Overall the following conclusions were drawn: the pFFT accelerated results closely match

exact analytical results and results previously reported in the literature. Using the implicit

substrate representation produces more accurate results with less memory and significantly

less time than explicitly representing the substrate. Using the implicit substrate represen-

tation produces more accurate results because it accounts for the presence of the substrate

exactly. Using the implicit substrate representation is more efficient because it requires

fewer panels and because the domain that the pFFT grid must cover is much smaller than if

the substrate were to be explicitly discretized. Using an implicit substrate introduces more

scalar kernels, 20 instead of 6, but the speed gain obtained by eliminating the substrate and

reducing the size of the pFFT grid overcomes this cost. The techniques used to extend the

applicability of the pFFT algorithm to non-translation invariant kernels can be exploited in

other applications.

What was a surprising and disappointing outcome of this study, which is further detailed

in Chapter 5 is that out-of-plane motion excites equation modes that reveal the need to

refine the structure discretization as the distance to the substrate decreases. Simulation of

out-of-plane motion also revealed that, when using an explicit substrate, the substrate dis-
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cretization must be refined faster than than structure discretization for results to match the

results obtained using implicit substrate discretization. So implicit substrate representa-

tion has benefits but does not entirely decouple structure discretization from distance to the

substrate.

As future work we propose supporting higher order panel force distributions to reduce the

number of panels and improve convergence.
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Chapter 5

A surprising result

The Stokes substrate Green’s function can be used to implicitly represent the substrate.

By using the Stokes substrate Green’s function, a boundary integral formulation involving

only the structures above the substrate can be produced. Theboundary integral equations

are discretized by approximating the geometry of the problem by a set of flat panels; by

limiting the solution space to only constant force distributions on each panel and by testing

the equations only at the centroid of each panel.

By removing the need to explicitly represent the substrate itwas expected that, unless

the solution became more complicated, the panel discretization for the structures above

the substrate would not need to be refined as the distance between the structures and the

substrate decreases. In this chapter, using a very simple example, we demonstrate that

vertical motion activates modes of the equation that require the discretization to be refined,

regardless of the smoothness of the solution.

In the following, the example of a cylinder with a radius of 10µm over a substrate is used

to study the effect of discretization refinement on the accuracy of the calculated drag force

for both horizontal and vertical motion.

To study the effect of the cylinder discretization and distance to the substrate on the accu-

racy of the calculated drag force a set of cylinder discretizations were constructed using

Comsol 3.2. Each cylinder mesh was then placed at a distance of5µm, 2µm, 1µm and

0.5µm from the substrate and the drag force was calculated. The solutions calculated for
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the finer cylinder discretizations, with a median panel radius of 0.14µm, were used as refer-

ence. For the gap size of 0.5µm, a finer discretization of the cylinder, with a median panel

radius of 0.07µm, was used to calculate the reference drag forces.

5.1 Lateral motion

For a cylinder moving in a direction parallel to the substrate, the drag force is largest on the

bottom of the cylinder. For a small enough gap, the drag on thebottom of the cylinder can

be accurately predicted using the Couette flow model and is given by

F = V µa2/h,

whereV is the velocity,µ is the fluid viscosity,a is the cylinder radius andh is the gap

between the cylinder and the substrate.

The error of the computed drag force on the bottom of the cylinder, as a function of the

median radius of panels used to represent the cylinder is illustrated in Figure 5-1. For these

computations, the Green’s function in (2.16) is used to implicitly represent the substrate.

Note that as the discretization is refined, the relative error is reduced at roughly the same

rate, regardless of the gap between the cylinder and the substrate.
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Figure 5-1: Relative error of the drag force calculated for a cylinder moving parallel to asubstrate
for several cylinder discretizations for several gap sizes. The substrate was represented implicitly.
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5.2 Vertical motion

For a cylinder near the substrate that is moving with a velocity normal to the substrate, the

dominant force is the pressure on the bottom of the cylinder.For a small gaph between the

cylinder and the substrate, the pressure on the bottom of thecylinder of radiusa moving at

a velocityV in the direction normal to the substrate can be approximatedas

P (r) = 3µV h−3(η2 − a2) (5.1)

i.e. a quadratic function ofη, the radial distance to the cylinder’s axis, that is scaled by

a factor that is inversely proportional to the cube of the gap[2]. Through our numerical

experiments we have observed that (5.1) is a very good approximation to the pressure on

the bottom of a cylinder, except very near the cylinder edges. Moreover, (5.1) becomes

more accurate as the gap between the cylinder and the substrate shrinks. Therefore, since

the solution is approximately a quadratic scaled by a size dependent factor, it is expected

that a constant force panel discretization should represent the solution to the same relative

accuracy independent of the gap size. Surprisingly, this isnot the case. To accurately match

the reference solution, the cylinder discretization must be made finer as the gap shrinks.

Such a result is surprising because the need to refine the discretization with the reduction

of the gap size isnot driven by the need to more accurately represent the solution. This can

be observed in Figure 5-2, where the error of the vertical force on the cylinder is plotted

as a function of the median radius of the panels. Contrary to the result in Figure 5-1, the

relative error for the smaller gaps is much larger than the relative error for the larger gaps.

For the smaller gap of 0.5µm a very fine discretization was necessary to accurately match

the reference solution. Moreover, for a given discretization, as the gap size is reduced, the

number of GMRES iterations required to achieve a given convergence tolerance increases.

This increase in the number of iterations suggests that the discretized system’s condition

number is rising.

Since the need to make the discretization finer is not driven by the need to more accurately

represent the solution, one possible explanation for the need to increase the number of pan-
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Figure 5-2: Relative error of the drag force calculated for a cylinder moving parallel to asubstrate
for several cylinder discretizations for several gap sizes. The substrate was represented implicitly.

η/h

z/
h

0 0.5 1 1.5 2
0

0.5

1

1.5

2

For z/h (inplane
source and target)
the zero occurs
for η/h≈0.888

0.5 1 1.5 2
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

η/h

G
zz

Figure 5-3: Velocity along thez direction due to a force along thez direction located at(0, 0, h)
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evaluation point. The figure on the left illustrates the vertical velocity field; the darker line marks
the points where the vertical velocity changes sign. The figure on the rightillustrates the vertical
velocity as a function of radial position for evaluation points in the same plane asthe source.

els as the gap size is reduced is the “behavior” of the Green’sfunction. A possible source

for the behavior is the way that the velocity due to a constantvertical force distribution on

a flat panel changes as the separation distance between the panel and the substrate is re-

duced. The vertical velocity due to a vertical force appliedat a distanceh above a substrate

behaves as illustrated in Figure 5-3, the velocity is positive near the point where the force is

applied but becomes negative at a radial distance of about 0.888h. For a constant strength

panel of a given size, ash is reduced and becomes smaller than the panel size, the velocity
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due to a force on one part of the panel will cancel out the velocity due to the force on other

parts of the panel. This effect is clearly illustrated in Figure 5-4 where, for the larger panel

size and smallh, the velocity field due to a constant strength panel is greatly reduced and

exhibits a very sharp and complicated behavior. On the otherhand, the velocity fields pro-

duced by smaller panels, not subject to self-cancellation at the separation distances in the

figure, keep the smooth shape. The effect is further illustrated in Figure 5-5 where, for a

gap ofh = 0.25µm, the vertical velocity field due to each panel is plotted in the same scale

for easier comparison.
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Figure 5-4: This figure illustrates the self-cancellation that occurs for larger panel sizes at smaller
gaps by depicting the vertical velocity generated by a constant force panel for three square panels
of varying sizes placed at three gap distances from the substrate. The results on the first row cor-
respond to a gap size of 4µm, on the second row the gap is 1µm and on the third row the gap is
0.25µm. The results on the left column correspond to a panel side of 1µm; on the middle column to
a panel side of 0.25µm and on the right column to a panel side of 0.1µm.
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Figure 5-5: This figure illustrates the self-cancellation that occurs for the vertical velocitydue to a
uniform vertical force on panels above a substrate. The panels on the three figures where placed at
a distance of 0.25µm from the substrate.

5.3 Observations

Several observations can be made from the results presentedin the cylinder example. First,

for lateral motion of a simple body like the cylinder, coarseobject discretization achieves a

reasonable accuracy. Second, for objects moving vertically, accurate results are produced

only if the discretization is refined as the gap is reduced,even though the force distribution

smoothness is unchanged. This behavior is observed regardless of whether the substrate

is represented implicitly or explicitly. The practical impact of this observation is that rep-

resenting the substrate implicitly has many benefits but unfortunately doesnot completely

decouple discretization fineness from distance to the substrate.
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Chapter 6

Time domain simulation

The simulation of objects moving in Stokes or creeping flow isa convenient tool for the

design of microfluidic devices such as cell traps [21, 22, 23,24] and micromixers [25]. The

time domain simulation MEMS devices is also very important for the design of devices

such as micromirrors [26].

As was reviewed in Chapter 2, for problems where the length scale, L, the characteristic

velocity,V , the fluid viscosityµ and the fluid densityρ are such that the Reynolds number

Re=LV ρ/µ is much smaller than one, the inertial terms of the Navier Stokes equations can

be neglected and the Stokes equations can be used.

The Stokes equations state that the pressure, viscous forces and body forces are at balance

regardless of the history of flow, even though the boundariesof the flow maybe changing in

time [1]. The Reynolds number, Re, is the ratio between the timeconstant for the diffusion

of momentum in the fluidτD = ρL2/µ and the time constant for convectionτC = L/V .

When the Reynolds number is small, and there are no abrupt changes in the fluid velocity,

momentum diffuses throughout the fluid domain much faster than the configuration of the

flow is changing due to the evolution of its boundaries [1]. Therefore, in these conditions,

a quasi-static approach for analyzing the time evolution ofthe system is appropriate [25].

Several methods exist for the calculation of drag forces on objects immersed in Stokes

flow: finite differences [8], immersed boundary methods [9],the finite element method

[10] and the boundary element method [1]. Since, for Stokes flow, the fluid structure only
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depends on the boundary configuration at the time point of interest, the boundary element

method is a particularly suitable approach. Moreover, for problems where one is interested

in the time domain evolution of a system, the boundary element method has the advantage

that remeshing the domain at each step is not necessary. Furthermore, using the boundary

element method with appropriate Green’s functions it is often possible to drive the motion

of the objects in the flow by specifying a background flow without having to explicitly

discretize the surface of the microfluidic channel or other boundaries that, in other methods,

would just be used to drive the bulk fluid.

It would therefore seem that, to simulate the motion of objects in Stokes flow one would

simply need to use a boundary element solver to calculate thedrag force on each object

in the fluid and to use these forces to update the velocity and position of the objects by

integrating the equations of motion. However, for small length scales, such as those present

in MEMS and microfluidic devices, the ratio of the drag force and the mass of the bodies is

such that the time constant associated with transferring momentum between an object and

the surrounding fluid is very small. For typical geometries,the time scale for momentum

transfer between the objects and the fluid is much smaller than the timescale at which the

objects move through the devices, which is usually the time scale of interest in simulation.

The existence of this very small time scale makes the problemstiff and severely limits the

step sizes that explicit time integration schemes can use. Constrained to using very small

time steps, even though the actual solution of interest is smooth, the simulation of realistic

problems becomes too expensive, even if efficient accelerated boundary element methods

are used.

Typically, stiffness is dealt with by using implicit time integration methods. However, since

the forces on the surface of the objects depend on the position, orientation and velocity of

the objects, using an implicit time integration method would require solving a possibly

large boundary element problem involving a non-linear dependence of the forces of the

object on the object position. In this chapter, we demonstrate that the small time constants

that limit the time steps that can be used by explicit time integration methods are due to the

relation between the velocity of the objects and the drag force on their surfaces and not to
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the rate at which the fluid structure changes as the objects are convected through the fluid.

To deal with stiffness without incurring in the excessive cost of solving a non-linear equa-

tion for the forces on the surface of the object at each time step, we introduce a method to

couple a time-stepping scheme that updates the velocity implicitly and the position explic-

itly with a boundary element solver for Stokes flow. The velocity implicit time stepping

scheme enables the simulation of the motion of objects usinglarge time steps. We demon-

strate the stability of our method and apply it to a set of microfluidic applications. To deal

with problems involving collisions, contacts and frictionwe coupled our velocity-implicit

time integration method with the freely available rigid body physics library ODE [27].

This chapter is structured as follows: first, in Section 6.1,the boundary integral equation

formulation of the Stokes flow problems presented in Chapter 2is extended to support the

definition of background flows and problems involving structures protruding above a sub-

strate or holes on a substrate; in Section 6.2 and Section 6.3the issue of stiffness in Stokes

flow is illustrated for the case of a sphere in infinite flow; in Section 6.4, the time-integration

schemes presented in Section 6.3 are coupled with rigid bodymechanics and a boundary

element solver for the Stokes drag force; in Section 6.5 details about the algorithm and of

how collisions and friction are dealt with are presented; inSection 6.6 optimizations aim-

ing to reuse part of the pFFT solver structures from step to step are presented; finally in

Sections 6.7 and 6.8 results presented and discussed, conclusions are drawn and directions

for future work are proposed.

6.1 Boundary integral formulation

This section is an extension of the presentation in Section 2.1. In this section we describe

how to formulate boundary integral equations for calculating the drag force on objects in

Stokes flow in the presence of a background flow for three special cases that are of special

interest for the simulation of objects moving in microfluidic systems. First, in Section 6.1.1

a boundary integral equation for the drag force on an object immersed in a background flow

is described. In Section 6.1.2 a formulation for calculating the drag on objects immersed in
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Figure 6-1: Stokes flow around a rigid body. In the figureu
∞ represents the flow in the absence of

Vb. Vf is the fluid volume,Vb is the volume of the rigid body, Sb is the boundary between the fluid
and the rigid body,S is the substrate andSout represents a surface in the fluid that is considered to
be arbitrarily distant from the other features. The source pointx0 is represented inside the fluid.

a background flow over over a substrate with protuberant structures is presented; Finally,

in Section 6.1.3 we introduce a formulation for the drag force on objects immersed in a

background flow near a hole in a substrate.

6.1.1 Background flow

A natural way to drive the motion of an object in a flow it is to introduce a background

flow. The background flow is the solution of the Stokes flow problem in the absence of the

perturbation introduced by the presence of the object. By using the linearity of the Stokes

equations a boundary integral equation for the drag on an object moving in a background

flow can be obtained combining a boundary integral equationsfor the background flow

itself and a boundary integral equation for the perturbation flow [1].

To derive the Stokes flow boundary integral equations for themotion of a rigid bodyVb in

the presence of a background flowu∞ as illustrated in Figure 6-1. We will first assume

that the source point,x0, for the Stokes Green’s function is inside the fluid volumeVf as

illustrated in Figure 6-1 , we will then consider the case wherex0 is onSb, the boundary of

the object.

First we integrate the Lorentz reciprocity identity for theperturbation flow identity overVf

excluding an infinitesimal sphere around the source pointx0 in Vf and get the boundary

integral equation

∫

Sb

G(x,x0)f
DdS(x) − µ

∫

Sb

T(x,x0)(−nf (x))uD(x)dS(x) = −8πµuD(x0). (6.1)
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Due to the no slip boundary condition, the velocity onSb isu(x) = u∞+uD = ub+ωb×x,

whereub andωb are the linear and angular velocity of objectb. Sinceu is a rigid body

motion and we are excluding an infinitesimal spherical region of fluid aroundx0, the double

layer integral in (6.1) becomes

∫

Sb

T(x,x0)(−nf (x))uD(x)dS(x) = −
∫

Sb

T(x,x0)(−nf (x))u∞(x)dS(x)

yielding

∫

Sb

G(x,x0)f
D(x)dS(x) − µ

∫

Sb

T(x,x0)(−nf (x))u∞(x)dS(x) = −8πµuD(x0).

By integrating the Lorentz reciprocity identity for the background flow on the interior of

the body,Vb, we get

∫

Sb

G(x,x0)f
∞(x)dS(x) − µ

∫

Sb

T(x,x0)(−nf (x))u∞(x)dS(x) = 0

where there is no free term in the velocity because the sourcepoint is in Vf and we are

integrating overVb. The negative sign preceding the normal is meant to emphasize the that

the integral outer normal is−nf .

Adding the two equations yields

∫

Sb

G(x,x0)(f
∞ + fD)(x)dS(x) = −8πµuD(x0) = −8πµ(ub + ωc × x0 − u∞(x0))

that can simply be written as

∫

Sb

G(x,x0)f(x)S(x) = −8πµ(ub + ωc × x0 − u∞(x0)) (6.2)

This equation is also valid in the more interesting case whenx0 is onSb . To prove this

consider the two integration regions illustrated in Figure6-2.

Integrating the Lorentz reciprocity identity overVf with x0 onSb for the perturbation flow
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Figure 6-2: Integration region with source pointx0 on the boundarySb. The exclusion region is an
infinitesimal hemisphere.

yields

∫

Sb

G(x,x0)f
Dd(x)S(x) − µ

∫ PV

Sb

T(x,x0)(−nf (x))uD(x)dS(x) = −4πµuD(x0).

Since the source point is on the boundary and the velocity is rigid body we have

∫ PV

Sb

T(x,x0)(−nf (x))(u−u∞)(x)dS(x) = −
∫ PV

Sb

T(x,x0)(−nf (x))u∞(x)dS(x)−4πµu(x0),

which, foru(x) = ub + ωb × x, yields

∫

Sb

G(x,x0)f
D(x)dS(x) + µ

∫ PV

Sb

T(x,x0)(−nf (x))u∞(x)dS(x) =

−4πµuD(x0) − 4πµ(ub + ωc × x0)

(6.3)

Integrating the Lorentz reciprocity identity for the background flow overVb, when the

source point is onSb, yields

∫

Sb

G(x,x0)f
∞(x)dS(x)−µ

∫ PV

Sb

T(x,x0)(−nf (x))u∞(x)dS(x) = 4πµu∞(x0) (6.4)

Adding (6.3) and (6.4) produces (6.2), that only differs from the boundary integral equation

without a background flow because of theu∞ term on the right hand side.

6.1.2 Protuberances on substrate

For the case of microfluidic devices such as the pachinko celltraps [21][22][23], the moving

objectsSc and the fixed structuresSp are close to the bottom of a microfluidic channel but
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far enough from the other device walls that the flow field near these walls is not significantly

affected by the presence ofSc andSp. In these conditions, the flow field nearSc andSp can

be represented by the sum of a background flowu∞, the Stokes flow solution in the absence

of Sc andSp, and a perturbation flowuD that, added tou∞ satisfies the no-slip velocity

boundary conditions on the surface ofSc andSp. SinceSc andSp are near the bottom

of the microfluidic device,S, the problem geometry is locally similar to the semi-infinite

problem illustrated in Figure 6-3. When dealing with structures over a substrateS, the

Stokes substrate Green’s function [1, 45] can be used to represent the substrate implicitly.

By using the Stokes substrate Green’s function only the structures above the substrate need

to be discretized greatly reducing the memory and time required for calculating the drag

force on the objects moving in the flow [45].

To formulate a set of boundary integral equations for the forces onSc andSp we will first

consider onlySp and then merge the resulting equation with (6.2). We will first consider

the case wherex0 is in the fluid volumeVf and afterwards will consider the case wherex0

is onSp.

Integrating the Lorentz reciprocity identity for the perturbation flow overVf excluding a

spherical region aroundx0 we get

∫

Sb

S

S

G(x,x0)f
DdS(x) − µ

∫

Sb

S

S

T(x,x0)(−nf (x))uD(x)dS(x) = −8πµuD(x0).

SinceuD = −u∞ onSp anduD = u∞ = 0 onS, the equation can be written as

∫

Sb

S

S

G(x,x0)f
DdS(x) − µ

∫

Sb

S

S

T(x,x0)nf (x)u∞(x)dS(x) = −8πµuD(x0). (6.5)

Integrating the Lorentz reciprocity identity for the background overVp yields

∫

S

G(x,x0)f
D(x)dS(x) +

∫

Sb

G(x,x0)f
∞(x)dS(x)

+

∫

Sp

G(x,x0)(f
∞ + fD)(x)dS(x) = −8πµuD(x0)
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If G is the Stokes substrate Green’s function the first two integrals are zero and we get

∫

Sp

G(x,x0)f(x)dS(x) = −8πµ(u(x0) − u∞(x0)), (6.6)

which is equivalent to (6.2). The same identity holds whenx0 is onSp (the proof is similar

to the corresponding proof in the previous section).

A boundary integral equation for the force onSc andSp is given by

∫

Sp

S

Sc

G(x,x0)f(x)dS(x) =







−8πµ(ub + ωc × x0 − u∞(x0)) for x0 onSc

8πµu∞(x0) for x0 onSp

(6.7)

Figure 6-3: Stokes flow around a protuberance on the substrate.u
∞ represents the flow in the

absence of the protuberance.Vf is the fluid volume,Vp is the volume of the protuberance,Sp is
the boundary between the fluid and the protuberance,S is the substrate, except for the part that is
covered by the protuberance,Sb is the part of the substrate that is covered by the protuberance,Sc

is the surface of a rigid body moving in the flow andSout represents a surface in the fluid that is
considered to be arbitrarily distant from the other features. The source point is not represented in
this figure.

6.1.3 Holes in the substrate

Other microfluidic trap geometries, such as the microwell cell traps presented in [24], can

be described as ”holes” in the bottom of a microfluidic channel as illustrated in Figure 6-4.

Since discretizing a significant portion of the substrate near the hole would be expensive

and there would be no way to impose a ”natural” background flowbecause the structures

of interest are in a region where the background flow (e.g. fully developed channel flow) is

not defined, it became necessary to explore alternative formulations.

As in the case for protuberances over a substrate, a formulation using the Stokes substrate
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Green’s function can be used to eliminate the need to explicitly discretize the substrate.

Such a formulation can be obtained by separating the probleminto an interior regionVi

and an exterior regionVf as illustrated in Figure 6-4. Applying the Lorentz reciprocity

Figure 6-4: Integration regions for the formulation of boundary integral equations for aproblem
involving traps formed by a hole on a substrate and objects moving in a background flow.

identity on the exterior regionVf , yields a boundary integral equation onSi for the force

on the interface an the fluid velocity. A background flow can beintroduced in the exterior

region, where it is a valid solution of the Stokes flow problem. The equations for the

exterior region are coupled to the equations for the interior region by equating the velocity

and force on both sides ofSi. The boundary integral equations for the interior regionVi use

the free-space Stokes Green’s function and do not consider the background flow explicitly.

The resulting system of boundary integral equations is

−µ

∫

Si

T(x,x0)u
∞(x)dS +

∫

Si+h+c

G(x0,x)f(x)dS =







−4πµu∞(x0) for x0 onSi

−8πµuc(x0) for x0 onSc

0 for x0 onSh

−µ

∫

Si

TW (x,x0)u(x)dS +

∫

Si

GW (x0,x)f(x)dS = −4πµ(u(x0) − u∞(x0)) for x0 onSi

(6.8)

Even though (6.8) accurately accounts for the background flow and the presence of the

substrate, this formulation requires introducing an arbitrary boundary in the fluid and uses

the Stokes substrate double layer Green’s function. Implementing a solver (6.8) would

require a significant implementation and computational effort because the Stokes substrate

double layer Green’s function has many, relatively complicated scalar entries. Accelerating
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Figure 6-5: Integration regions for formulation of problem with hole on a substrate using the free
space Stokes flow Green’s function. The surfaceSi is expected to be far enough fromSh andSc that
the velocity atSi is very close to the background velocity.

the matrix vector products involving the Stokes substrate double layer Green’s function

using the pFFT algorithm can use exactly the same modified projection and interpolation

schemes described in Chapter 4 but, in the absence of some automation or code generation

step, manually accounting for the large number of of kernelsthat would result from such

the decomposition scheme used for the single layer Green’s function would prove to be

quite cumbersome and error prone.

Alternatively, an approximate solution can be obtained by imposing velocity boundary con-

ditions onSi stating that the velocity onSi is the background flow velocityu∞. This ap-

proximation is valid ifSi is far enough fromSh andSc that the velocity atSi is very close to

the background velocity. Due to the short development length for Stokes flowSi does not

need to be at avery large distance fromSh andSc for this approximation to be valid. The

integration region for this approximate formulation is illustrated in Figure 6-5. Integrating

the Lorentz reciprocity relation overVi yields

µ

∫

Si

T(x,x0)u
∞(x)dS +

∫

Si+h+c

G(x0,x)f(x)dS =







−4µπu∞(x0) for x0 onSi

−8µπuc(x0) for x0 onSc

0 for x0 onSh

(6.9)

whereuc represents the rigid body velocity on the surfaceSc. The integration region for

this simplified problem is limited toVi and no exterior region is considered.

If the integral of the background flowu∞ overSi is zero, which is true as long asu∞ is an

incompressible flow, the double layer integral overSi can be eliminated by integrating the
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Lorentz reciprocity identity overVf andVs and subtracting the resulting boundary integral

equations from (6.9) results in

∫

Si

G(x0,x) (f(x) − fout
i (x))

︸ ︷︷ ︸

f̂i(x)

dS+

∫

Sh+c

G(x0,x)f(x)dS =







−8πµu∞(x0) for x0 onSi

−8πµuc(x0) for x0 onSc

0 for x0 onSh

(6.10)

that can be solved for̂f on Si and forf on Sh andSc. Note that, because of the method

used to eliminate the double layer kernel, the forcef̂ on Si is not the the same forcef that

is obtained by solving (6.9). Fortunately, the forces onSc andSh, which are the forces of

interest for calculating the time evolution of the system, are not affected.

6.1.4 Boundary element method

Except for very simple geometries and boundary conditions,there are no analytical solu-

tions for the boundary integral equations (6.2), or (6.7), or (6.10). These boundary integral

equations can be solved approximately by discretizing the surfaces, constraining the so-

lution to be lie in a finite dimensional vector space, and enforcing the satisfaction of the

equations at a finite number of points, collocation, or enforcing that the integral of the

residue, multiplied by test functions, be zero over the discrete elements, Galerkin. Hav-

ing discretized the surface of the problem intonp elements, a straightforward implemen-

tation of the boundary element method would require the calculation of the interactions

between thenp panels requiringO(n2
p) storage, which becomes prohibitively expensive in

both computation time and memory when applied to large engineering problems. Acceler-

ated boundary element methods using the multipole method [16][17][20], the multiresolu-

tion wavelet method [19] and the precorrected FFT method [18][6] have been applied to the

calculation of drag forces in Stokes flow. Accelerated boundary element solvers that use

specialized Green’s functions to save time and memory have also been developed [45] and

were presented in Chapter 4. These solvers produce the instantaneous force on the surface

of objects immersed in Stokes flow given the velocity of thoseobjects at a given time. In

the following we use the solver described in Chapter 4 but the methods that are presented
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in this chapter can be integrated with any other boundary element solver for Stokes flow.

For a matter of notational convenience, letF describe the vector of forces on the panels

representing the objects in the fluid and letV represent the vector of velocities on these

panels, possibly weighted or integrated over the panel areas or multiplied by test functions,

depending on the testing scheme that is used. Moreover, letV∞ a vector of background

flow velocities also evaluated in the object panels according to the discretization of the

boundary integral equations that is being used. LetX represent the configuration of the

objects in the flow. For the case of rigid body motionX is a vector containing the position

and orientation of each object in the flow. In the following wewill assume that, a boundary

element solver exists that can solve the equation

G(X)F = −V + γ(X)V∞ (6.11)

whereγ is a matrix that maps the background velocity vectorV∞ to the appropriate values

on the right hand side of (6.11).

6.2 Time constants and scaling

It would seem that, to simulate the motion of objects in Stokes flow one would simply need

to solve (6.11) forF, calculate the force on each object and use these forces to update the

velocity and position of the objects by integrating the equations of motion. However, for

small length scales, such as those present in MEMS and microfluidic devices, the ratio of

the drag forces and the mass of the bodies is such that the timeconstant associated with

transferring momentum between an object and the fluid is verysmall. In this section we

illustrate the small time scale issue by using the trivial example of Stokes flow on a sphere

moving in infinite Stokes flow with uniform velocityv∞.
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6.2.1 Stiffness

Consider a sphere of radiusa and densityρ moving with linear velocityv in an infinite

fluid domain with viscosityµ and a background velocityv∞ along the direction ofv. Due

to symmetry, the position of the sphere,x, and its velocity,v, can be represented by scalar

values. In these conditions, the Stokes drag on the sphere is−6πµa(v − v∞) and the

position and the velocity of the sphere satisfy




ẋ

v̇



 =




0 1

0 −9
2

µ
ρa2





︸ ︷︷ ︸

A




x

v



+




0

9
2

µ
ρa2



 v∞ (6.12)

The matrixA has eigenvaluesλ0 = 0 andλl = 9
2

µ
ρa2 that correspond to time constants of

τ0 = ∞ andτl = 2
9

ρa2

µ
. Given an initial positionx0 and the initial velocityv0 the solution

of (6.12) is

v(t) = v∞ + (v0 − v∞) exp(−t/τl)

x(t) = x0 + v∞t − (v0 − v∞)τl(exp(−t/τl) − 1)
(6.13)

For a sphere with a 10µm radius with densityρ = 103kg/m3 in a fluid with viscosity

µ = 8.9 × 10−4Pa.s the time constantτl is roughly 25µs. On the other hand, we are

interested in tracking the motion of the sphere, the time scale of interest is determined by

ration betweenv∞ and the lengthscale of interest for the device, i.e. the convective time

scale, which in microfluidic devices can be on the order of seconds or minutes. It is clear

from (6.12) and (6.13) that the small timescaleτl exists due to the relation between the

velocity of the sphere, its mass, and fluid drag force on its surface and that this value is not

dependent on the actual position of the object.

The position and velocity in (6.13) are the superposition ofa smooth, steady state solution,

and a rapidly decaying homogeneous solution. Except for an initial transient, while the

velocity of the sphere does not yet match the velocity of the background flow, the behavior

of (6.13) is very smooth. However, it will be shown in Section6.3 that, regardless of how
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closev is to v∞, if an explicit time integration algorithm is used, very small time steps are

needed to maintain stability.

The existence of a small time scale associated with the transfer of momentum from a body

to the surrounding Stokes flow is not limited to the case of a sphere translating in infinite

flow. The rate at which angular momentum is transfered between a rotating sphere and a

background flow is also very high. Moreover, if the sphere, orother object, is close to any

other fixed structure in the fluid, such as the bottom of a microfluidic channel, the drag

force will increase and the time constant associated with the momentum transfer due to

Stokes drag will decrease. In a quiescent fluid, the Stokes drag force will always oppose

the motion of the objects moving in the fluid, extracting momentum from the objects and

dissipating it in the fluid, or transmitting it to other objects in the fluid.

If only a single object is present in the fluid, the work done bythe object on the fluid is

entirely dissipated, the fluid does not accumulate kinetic energy. This is demonstrated in

Appendix A, at the end of this chapter.

Note on stiffness and volume discretization methods

In the finite element method as well as in the finite differenceand finite volume methods,

the fluid domain is discretized into a set of small elements. The scaling of volume and area

of these elements is such that the time constant associated with momentum transfer through

viscous forces on the surface of each element is small, even compared to the time scale of

momentum transfer from the bodies immersed in the fluid (which are usually larger than

the fluid elements). Therefore, explicitly discretizing the fluid volume and accounting for

the momentum in its interior will generate yet another, smaller, lengthscale that the time

integration algorithm must deal with.

6.3 Time stepping schemes

This section contains a brief review of a few basic time stepping schemes illustrating the

issues associated with numerically integrating the equations of motion (6.12) for a sphere

77



0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

time/τ
l

x 
[u

m
]

 

 

analytical

F.E./F.E. ∆t=0.5τ
l

F.E./F.E. ∆t=τ
l

F.E./F.E. ∆t=1.9τ
l

F.E./F.E. ∆t=2.1τ
l

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

time/τ
l

x 
[u

m
]

 

 

analytical

F.E./F.E. ∆t=0.5τ
l

F.E./F.E. ∆t=τ
l

F.E./F.E. ∆t=1.9τ
l

F.E./F.E. ∆t=2.1τ
l

Figure 6-6: Forward Euler, explicit, numerical time integration of equations of motion fora per-
fectly buoyant sphere with 10µm radius translating in a fluid with viscosityµ = 8.9×10−4Pa.s and
density 1000kg/m3 domain with a background velocity ofv∞ = 1mm/s.

translating in a fluid with with background flowv∞.

6.3.1 Forward Euler

If (6.12) is integrated using the Forward Euler method with atime step∆t, the following

iteration is produced




xk+1

vk+1



 =




1 ∆t

0 1 − ∆t/τl








xk

vk



 . (6.14)

This iteration is unstable for∆t > 2τl. Therefore, regardless of accuracy concerns, sim-

ulating the motion of a 10µm sphere with density1000kg/m3 in a fluid with viscosity

µ = 8.9 × 10−4Pa.s, would require taking time steps smaller than 50µs. The stability

threshold is independent ofv∞.

The position of the sphere was calculated using (6.14) with an initial velocity of v = 0m/s

using different values of∆t. The results are illustrated in Figure 6-6, together with (6.13)

clearly demonstrating the issue with stability.
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6.3.2 Velocity implicit method

Since the small time scaleτl is associated with the update of the velocity, it is reasonable

to expect that using an implicit time integration scheme forupdating the velocity update

can result in a stable scheme for integrating the equations of motion (6.12). The simplest

form of the velocity implicit method replaces the Forward Euler update for the velocity by

a Backward Euler update




1 0

0 1 + ∆t/τl








xk+1

vk+1



 =




1 ∆t

0 1








xk

vk



+




0

∆t/τl



 v∞

that yields the iteration




xk+1

vk+1



 =




1 ∆t

0 (1 + ∆t/τl)
−1








xk

vk



+




0

(1 + ∆t/τl)
−1∆t/τl



 v∞ (6.15)

which is stable for all∆t. This method is also known as the symplectic Euler method (see

[46], chapter 5).

A more accurate scheme can use the trapezoidal rule for the position update




1 −∆t

2

0 1 + ∆t/τl








xk+1

vk+1



 =




1 ∆t

2

0 1








xk

vk



+




0

∆t/τl



 v∞

yielding the iteration




xk+1

vk+1



 =




1 ∆t

2
(1 + (1 + ∆t/τl)

−1)

0 (1 + ∆t/τl)
−1








xk

vk



+




(1 + ∆t/τl)

−1∆t2/2τl

(1 + ∆t/τl)
−1∆t/τl



 v∞

(6.16)

which is stable for any∆t.

A more accurate scheme can use the trapezoidal rule for the position update and the velocity
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Figure 6-7: Numerical time integration of equations of motion for a perfectly buoyant sphere with
10µm radius translating in a fluid with viscosityµ = 8.9×10−4Pa.s and density 1000kg/m3 domain
with a background velocity ofv∞ = 1mm/s. F.E. stands for Forward Euler; B.E. for Backward Euler
and TR for the trapezoidal method. For example F.E./B.E. means that the Forward Euler method
was used to discretize the position update equation and Backward Euler wasused to discretize the
velocity update equation.

update.




1 −∆t

2

0 1 + ∆t
2

1
τl








xk+1

vk+1



 =




1 ∆t

2

0 1 − ∆t
2

1
τl








xk

vk



+




0

∆t/τl



 v∞

yielding the iteration




xk+1

vk+1



 =




1 ∆tτl

τl+∆t/2

0 2τl−∆t
2τl+∆t








xk

vk



+




(1 + ∆t/τl)

−1∆t2/2τl

(1 + ∆t/τl)
−1∆t/τl



 v∞ (6.17)

which is also stable for any∆t.

The position of the sphere used in the previous example was calculated using (6.14), (6.15),

(6.16), and (6.17) with a time step of∆t = 5τl. The results are illustrated in Figure 6-7

where it can be observed that (6.15), (6.16), and (6.17) are stable while (6.14) is clearly

unstable for∆t = 5τl.

The local position and velocity truncation errors for the first step of (6.14), (6.15), (6.16)

was calculated for several∆t and is illustrated in Figure 6-8 where it can be observed that
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Figure 6-8: Truncation error for first time step of each numerical integration schemeas a function
of the time step. The figure on the left represents the truncation error for theposition; the figure on
the right represents the truncation error for the velocity.

the position and velocity truncation error for (6.14), (6.15) areO(∆t2), that the velocity

truncation error for (6.15) is alsoO(∆t2) and that the position truncation error for for

(6.16) and (6.17) isO(∆t3).

There exists an enormous number of integration schemes for ordinary differential equations

[46]. The purpose of this chapter is not to review all the possible time integration schemes

but to show how they can be coupled efficiently with a boundaryelement solver for Stokes

flow.

6.4 Coupling the Stokes BEM solver and rigid body dy-

namics

In this section a stable time integration algorithm that couples the Stokes drag forces calcu-

lated using a boundary element solver with a rigid body modelfor the objects in the flow is

presented. In the following, we consider that objects in theflow are rigid objects of uniform

density that are described by a mesh of flat panels. To model more interesting behavior of

objects such as cells and vesicles in the flow it is necessary to account for the properties of

the membranes of these objects (for details on membrane and capsule simulation see [1],
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[47] and [26]). However, the focus of this chapter is to introduce a technique to couple a

boundary element solver and a semi-implicit time integration scheme and our discussion is

limited to rigid body dynamics. Extending the results in this section to the mode general

case of the motion of elastic membranes and shells in flow is left as future work.

First, to introduce some notation and to define relations between the rigid body state and the

panel velocities and position a brief review of some basic principles of rigid body motion

is presented. Then, in Section 6.4.1, a simple explicit timestepping scheme is presented.

Finally, in Section 6.4.2, a more stable velocity-implicittime stepping scheme is presented.

Rigid body motion and notation

To calculate the motion of a rigid body one can use the conservation of linear momentum

P = mv and angular momentumL = Iω , wherem is the mass of the body,v is its linear

velocity, I is its inertia tensor andω is its angular velocity. In the following, for conve-

nience, we also useq = [vT
ω

T ]T . The spatial configuration of a rigid body is determined

by the position of its center of mass,x and by its orientation, which can be represented by

a rotation matrix,R, mapping positions in the body’s local coordinate system tothe global

coordinate system, or by unit quaternionQ [48]. In the following,X is used to represent

the set of positions and orientations of the rigid bodies in the flow, i.e. the current configu-

ration of the system. The body’s inertia tensor is a functionof its orientation and is given

by I(X) = RI0R
T whereI0 is the inertia tensor in the body’s local coordinate system.The

center of mass and inertia tensorI0 for any constant density object defined by a flat panel

mesh can be calculated using the algorithm proposed in [49].

Linear and angular momentum conservation state thatṖ = f and L̇ = T wheref and

T are the total force and torque applied to the object. From momentum conservation it

follows (see [50]) that the velocity and angular velocity ofa rigid body satisfy the following

equation

q̇ =




v̇

ω̇



 =




13m

−1 0

0 I(X)−1





︸ ︷︷ ︸

M(X)−1




f

T + L × ω



 (6.18)
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where13 is the 3 by 3 identity matrix. For spherical objectsL × ω is zero.

Given a rigid body described by a set ofnp flat panels, if the Stokes drag force is given by

F ∈ R3np the Stokes drag force on the object is

fS =

np∑

k=1

akF3(k−1)+(1:3) (6.19)

whereak is the area of panelk. The total torque due to Stokes drag on the object is

TS =

np∑

k=1

ak(xk − x) × fk (6.20)

wherexk is the centroid of panelk. This projection operation, from the panel forcesF to

the total force (6.19) and total torque (6.20), is represented in matrix form by a 3np by 6

matrixB(X) such that



fS

TS



 = BT (X)F.

whereB(X) is a function of the orientation of each object.

To calculate the Stokes drag on an object using a boundary element solver with a collocation

testing scheme, represented generically by (6.11), a vector V ∈ R3np with the velocity on

the centroid of each panel is needed. The vectorV is given by

V3(k−1)+(1:3) = vk = ω × (xk − x) + v.

This expansion operation is represented in matrix form by a 3np by 6 matrixA(X) such

that

V = A(X)




v

ω



 = A(X)q

If the BEM solver is using a Galerkin testing scheme, instead of the vector of velocities on
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all panels it will need a vector of fluxeŝV. The vector of fluxeŝV is given by

V̂ = B(X)




v

ω



 = B(X)q

6.4.1 An explicit coupled solved

Using the notation defined in the previous section, the following system of equations rep-

resenting an explicit time integration algorithm couplingthe boundary element solver to

rigid body dynamics can be written




16 −∆tM−1(Xk)B(Xk)

T

0 G(Xk)








qk+1

F



 =




16 + ∆tK(Xk) 0 ∆tM−1(Xk)

−A(Xk) γ(Xk) 0















qk

V∞

fext

Text











(6.21)

wherefext andText represent the total externally applied force and torque and

K(Xk) =




0 0

0 L(Xk)
∗



 and L∗ =








0 −L3 L2

L3 0 −L1

−L2 L1 0








.

The system of equations (6.21) is a block upper triangular system of equations that can be

solved forF by using a boundary element solver. The resultingF is then used to produce

qk+1, which in turn is used to calculatexk+1 andQk+1 according to

xk+1 = xk + ∆t(vk + vk+1)/2

Qk+1 = (∆t/2ωk+1) ∗ (∆t/2ωk) ∗ Qk

(6.22)

yielding Xk+1. Note that, for numerical stability, the orientation of each object is repre-

sented by a unit quaternion that is updated using finite rotations, instead of incrementally.
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6.4.2 Velocity implicit coupled solver

From the results and examples presented in sections 6.3 and 6.2, it is clear that a stable

solver will require that the Stokes drag force be calculatedin an implicit manner consistent

with the velocity updating scheme. An implicit scheme can beobtained by modifying

(6.21) such thatF depends not only onqk but also onqk+1 i.e.




16 −∆tM−1(Xk)B(Xk)

T

α0A(Xk) G(Xk)








qk+1

F



 =




16 + ∆tK(Xk) 0 ∆tM−1(Xk)

−α1A(Xk) γ(Xk) 0















qk

V∞

fext

Text











(6.23)

where, for “Backward-Euler” type update,α0 = 1 andα1 = 0 and, for a “Trapezoidal”

type update,α0 = 1/2 and α1 = 1/2. Note that, regardless of the value used forα0

andα1, the update for the velocity is not entirely implicit because the gyroscopic term

L×ω = (Iω)×ω, introduces a non-linear dependence onω. For example, for a Backward

Euler update one would need to solve

ωk+1 = ωk + ∆tTk+1 + ∆tIkωk+1 × ωk+1.

The system of equations (6.23) is not block upper triangularlike (6.21) but it can be solved

using GMRES. Alternatively, (6.23) can be reduced to a block upper triangular form by
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applying a step of Gaussian elimination yielding




16 −∆tM−1(Xk)B(Xk)

T

0 G(Xk) + α0∆tA(Xk)M(Xk)B(Xk)
T








qk+1

F



 =




16 + ∆tK(Xk) 0 ∆tM−1(Xk)

−A(Xk)(16 + α0∆tK(Xk)) γ(Xk) −∆tA(Xk)M
−1(Xk)















qk

V∞

fext

Text











(6.24)

In our implementation use the form (6.24) is used and a solution for

(
G + α0∆tAM−1BT

)
F = −A(16+α0∆tK)qk−∆tAM−1

[
fT
ext TT

ext

]T
+γV∞ (6.25)

is computed using GMRES and the pFFT accelerated representation of G described in

Chapter 4 and a rank 6 update for each rigid object moving in thefluid. Then the calculated

forceF is used to calculateqk+1 in a consistent manner that is stable for∆t much larger

thanτl. If G does not change withx this scheme is stable for all∆t, if G changes withx

it might be possible to construct an example where the iteration scheme becomes unstable

but we have not encountered any case where this happens. Regardless of stability,A, B, G

andK are functions ofXk so the time step∆t is still limited by accuracy concerns i.e. by

the requirement that these matrices be a reasonable approximations to their actual values

for the path fromXk to Xk+1.

External forces

Many interesting problems involve not only fluid drag forcesbut also forces such as gravity

and electrical forces. Often the relation between the external forces and the mass of the

objects that are to be simulated is such that taking a time step considering the acceleration

due to these forces, without considering the immediate response of the Stokes drag, would

make the simulated object, wrongly, leave the domain of interest. For a simple example

illustrating this problem, consider a spherical bead with adiametera = 10µm and a density
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of ρb = 1010kg/m3 in an infinite quiescent fluid with densityρ = 1000kg/m3 and viscosity

µ = 8.9× 10−4Pa.s. The balance between the Stokes drag force and the gravitational force

imply that the bead’s terminal velocity will satisfy4/3(ρb − ρ)πa3g − 6πµaVz = 0 i.e.

Vz = 8(ρb − ρ)a2g/µ, whereg = 9.8m/s2 is the gravitational acceleration. The analytical

solution, for the case where the bead starts from rest isv(t) = Vz ∗ (1−exp(−t/τl)) where,

for this example,Vz ≈ 88.1µm/s andτl ≈ 25µs. For a time step of 0.1s, the analytical

solution will move at most8.1µm, on the other hand, if the acceleration due tog was

considered separately and a time step of 0.1s was taken, the bead would have been moved

by 485.15µm.

To avoid having to use very small time steps, external forces, fext, and torques,Text, should

be calculated at the beginning of each iteration and the resulting acceleration on the objects

in the flow should be considered by the Stokes flow solver so that an appropriate drag force

can be calculated as in (6.25). An exception to this rule are user computed constraint forces

whose calculation requires access to the total force and torque on each object [51][52][50].

6.5 Interaction with structures

Since the objects moving in the fluid may collide with each other and with fixed structures

in the fluid, collisions, friction and contacts must be modeled. To deal with these issues the

freely available library ODE [27] was integrated with the simulator.

Before each time step, our time integration algorithm checksfor collisions between the

objects. To detect collisions and penetrations our algorithm uses the libraries OPCODE or

GIMPACT that are associated with the ODE library.

At the beginning of each stepF is calculated for the candidate time stept + ∆t by solving

(6.25). The force and torque on each object is then calculated from F and is used to generate

a candidate state for timet + ∆t.

If a collision was detected at the beginning of the time step,ODE is used to generate a

step candidate that integrates the equations of motion considering not only the forces and
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torques due to fluid drag, calculated fromF, and external sources, but also contact, friction

and collision forces [27].

If no collision was detected at the beginning of the time step, a candidate state for time

t + ∆t is computed using (6.24) and (6.22).

The candidate state is checked for penetrations and contacts. If there is any penetration

that exceeds a user-defined limit, the candidate state is rejected and the time step size is

reduced. If no excessive penetrations were detected, the candidate state position of each

object is compared against a polynomial prediction based onthe position at previous time

steps; if the difference between the two values exceeds a user-defined threshold the step is

rejected. The step size is adjusted using the following criteria [53]

∆tnew = ∆toldγ

(
Errormaximum

Errorestimate

)n+1

wheren is the order of the integration scheme and the polynomial predictor; Errorestimate

is a user defined tolerance (in meter);Errorestimate is the absolute value of the difference

between the predicted position value and the correspondingcandidate state position value;

and is chosen to be about 0.9 to reduce the number of rejected steps. To avoid very large

step variations∆tnew/∆told is constrained to be within 0.5 and 2.

After each time step, the time integration routine calls a visitor functor with the state of

each object in the flow and the current simulation time. The visitor functor indicates if

the simulation is to continue or if it should be terminated. Bydefault, the visitor does not

terminate the simulation and the time integration routine finishes only when the end time

specified for the simulation is reached.

Note that when a step is rejected the calculation ofF(t + ∆t) for the new step size does

not require setting up a new Stokes flow boundary element operator; only the rank 6 update

operator for each object and the right hand side of (6.25) need to be recalculated.
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a) No reuse. Full update.

b) Reusing grid data and precorrection entries between fixed structures.

Figure 6-9: pFFT matrices and the updates that must be made from iteration to iteration as the
time integration algorithm is executed. In the figure above the pink color represents sparse storage
or low effort required; red represents high storage or computational effort and white represents no
computational effort (due to reuse). In the figureF stands for fixed andM for movable.

6.6 Updatable solver

A significant part of the computational cost of solving (6.25) is setting up the precorrected

FFT representation ofG at each iteration. A large part of this cost is due to the calculation

of the nearby interactions and the precorrection matrix entries. However, in the examples

that are of interest there are usually a few large fixed structures and one or more smaller

moving objects. The interactions between the panels of the fixed structures don’t change

from iteration from iteration and can be reused. Also, if from iteration to iteration the FFT

grid spacing is kept constant and the grid is moved and resized by increments of this grid

spacing, the precorrection matrix elements for the fixed structures also don’t need to be

recalculated. Reusing the nearby and precorrection for the fixed structures from iteration to

iteration can have large performance benefits. This updatable solver can be implemented

by decomposing the precorrected FFT data structures into a set of block sparse matrices

separated by fixed,F , and movable,M , as illustrated in Figure 6-9.
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If there are fixed objects in the simulation and the grid spacing is not changed from iteration

to iteration, the columns in the projection matrix and the rows in the interpolation matrix

associated with the fixed objects don’t need to be recalculated. More importantly, the

elements of the matrices containing the accurate values forthe nearby interactions between

elements of the fixed objects,ED, and the precorrection entries, used to cancel out the

inaccurate interactions calculated using the grid,EP , do not need to be updated. If the grid

size doesn’t change, the kernel transformsG can also be reused.

For problems where the substrate is not represented implicitly and the free space Stokes

Green’s function is used, the nearby interactions between the panels of the same moving

rigid object can be reused from iteration to iteration by wrapping the nearby interaction

matrix in appropriate rotation operators. However, since the objects are moving along the

pFFT grid, the precorrection matrix must still be recalculated. To reuse the previously

calculated nearby interactions, the storage for the nearbyinteractions must be separated

from the storage for the precorrection term.

6.7 Results

In this section, the stability and effectiveness of the timeintegration scheme that was in-

troduced in this Chapter is demonstrated by simulating a set problems involving cell traps.

The first set of examples uses a microwell trap and the formulation introduced in Sec-

tion 6.1.3; the second set of examples compares four models of pachinko cell traps and

uses the formulation described in Section 6.1.2 and the Stokes substrate Green’s function.

For the examples reported in this section, we used ODE’s contact models withdContact-

Approx1 anddContactBounce, mu=1, bounce=0.5, soft_cfm=0 andsoft_erp=0.9. The

relative tolarence for the GMRES linear system solver was setto 10−5. The nullspace was

removed from the GMRES search space at each iteration step anda right block diagonal

preconditioner was used.
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6.7.1 Microwell trap

The approximate formulation presented in Section 6.1.3 wasused to simulate the behav-

ior of objects trapped in a microwell cell trap such as those described in [24]. For the

examples presented in this section a trap with a diameter of 30µm and a depth of 35µm

was used. The fluid density was set toρf = 1000Kg/m3 and the fluid viscosity was set

to µ = 8.9×10−4Pa.s. The trap and fluid geometry were represented by a triangular mesh

generated using Comsol 3.2. The mesh is composed of 1345 panels for the hole walls, 1012

panels for the substrate and 3595 panels for the fluid boundaries. The discretized geometry,

and a sample trajectory for a bead moving in the trap, are presented in Figure 6-10. The

bead, with densityρ, is represented by an icosphere with 1280 panels. The velocity on the

fluid boundary was set to that of a fully developed rectangular channel flow for a 3mm wide

and 200µm high channel with a flow rate ofF . To study the effect of changing the flow

rateF and the bead densityρ on the trapping behavior and to analyze the performance of

the transient solver, the flow rateF was set to the values of 100pL/s, 200pL/s and 400pL/s

while the bead densityρ was set to 1000kg/m3, 1010kg/m3, 1050kg/m3 and 1100kg/m3

generating a set of 12 simulations. In each case the bead started from rest, in the trap, at

the positionx = −5µm, y = 0µm andz = −10µm. The simulations were terminated at

time 60s or when a bead escaped the trap and reached the boundary of the computational

domain.

Simulation results

The results for sweeping the bead density with a fixed flow rateare illustrated in Fig-

ure 6-11; the results for fixing the bead density and sweepingthe flow rates are presented

in Figure 6-12. The trajectories for the lower flow rates are shorter because the simulations

were ran to the same end time. From both figures it is clear that, as expected, heavier beads

get captured more easily and that higher flow rate can releaselighter beads. However, it

is also clear from the figures that the beads trajectories canbe somewhat complicated and

that they depend strongly on the flow rate and on the bead density.
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Figure 6-10: Trajectory of a spherical bead moving inside, and then escaping, a cylindrical mi-
crowell with a diameter of 30µm and a depth of 35µm. The bead and fluid density were set to
ρ = 1000kg/m3 and the fluid velocity on the boundaries of the fluid domain was set to the profile
of a fully developed rectangular channel flow for a 3mm wide and 200µm high channel with a flow
rate of 400pL/s. The fluid viscosity was set toµ = 8.9 × 10−4Pa.s. In the figure the bead is drawn
at its initial position, inside the trap, and at its final position, outside the trap. The surface of the
microwell and the substrate, where the fluid velocity is zero due to the no-slipboundary condition,
is colored light yellow.
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Figure 6-11: Each figure illustrates the trajectory of the center of mass of a bead for a given flow
rateF and for a set of bead density values. The bead is moving inside a cylindrical microwell with
a diameter of 30µm and a depth of 35µm (the side view of the trap walls is depicted in light gray).
The sphere of radius 5µm, in light yellow, started its motion from rest.
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Figure 6-12: Each figure illustrates the trajectory of the center of mass of a bead for a given bead
densityρ and for a set of flow ratesF . The bead is moving inside a cylindrical microwell with a
diameter of 30µm and a depth of 35µm (the side view of the trap walls is depicted in light gray).
The sphere of radius 5µm, in light yellow, started its motion from rest.
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Performance analysis and solver behavior

The 12 simulations were ran on an Intel Xeon 3GHz workstationwith 2Gb of RAM and

took from 40 minutes to 3 hours to run, depending on the trajectory followed by the bead

and the number of collisions that occurred. For each simulation, the precorrected FFT

solver used a 48 by 48 by 48 FFT grid and a maximum of 227Mb of memory.

The median time for setting up the precorrected FFT solver was 9.6s. The maximum time

for setting up the precorrect FFT solver was 67.2s, corresponding to the first iteration, when

the interactions and precorrection terms between the nearby fixed panels are calculated. A

histogram with the distribution of setup times for generating the step candidates is presented

in Figure 6-13 clearly illustrating the performance benefits due to the selective update of

the precorrected FFT data structures. Figure 6-13 also presents a histogram for the GMRES

solve times. The median time for solving (6.25) using GMRES was 22.3s; a smaller value

might have been obtained by using a coarser FFT grid, at the cost of a larger number of

nearby interactions. The median time for generating a step candidate was 33.49s.
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Figure 6-13: Histogram for the precorrected FFT setup time, on the left, and for the GMRES solve
time, on the right, for each step candidate. The figures illustrate compounded results from 1951 step
candidates, produced by the 12 simulations that were performed for the bead density and flow rate
sweep for the microwell.

It was observed that, as expected, the step rejection rate and the median step size taken

by the time integration algorithm were greatly influenced bythe presence or absence of
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collisions. In the presence of collisions a much larger number of step rejections occurred

due to excessive penetration or to excessive integration error. Moreover, as illustrated in

Figure 6-14, in the presence of collisions and step rejections, the median step size for the

simulations decreases substantially.
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Figure 6-14: Effect of collisions on step candidate rejection rate, on the left, and on the time inte-
gration step size, on the right. The figures illustrate compounded results from 1951 step candidates,
produced by the 12 simulations that were performed for the bead density and flow rate sweep for
the microwell.

A larger number of step candidate rejections and the use of smaller step sizes leads to larger

run times for the simulations as illustrated in Figure 6-15.
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Figure 6-15: Effect of collisions on the simulation run time. The results in this figure correspond to
the 12 simulations that were performed for the bead density and flow rate sweep for the microwell.
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b) ρ = 1025Kg/m3, F = 400pL/s

Figure 6-16: Trajectory of a pair of spherical beads moving inside a cylindrical microwell with a
diameter of 30µm and a depth of 35µm. The fluid density was set toρ=1000Kg/m3 and the fluid
viscosity was set toµ = 8.9 × 10−3. Each bead has a diameter of10µm and was at rest in the
beginning of the simulation. The surface of the microwell and the substrate,where the fluid velocity
is zero due to the no-slip boundary condition, are depicted in light gray.

Pair of beads in a microwell

Simulating the trapping of two of more beads is no more complicated than simulating

the trapping of a single bead. However, the presence of more than one bead in the trap

can lead to a larger number of collisions that will result in smaller time steps and longer

simulation run times. The simulation of the pair of beads with ρ = 1010kg/m3, illustrated

in Figure 6-16, took 4.4 hours to run and used 263.8Mb of memory on an Intel Xeon 3GHz

workstation with 2Gb of RAM. In this simulation the beads initially collide, one of the

beads rotates around in the trap, collides with the trap walland is released. The simulation

of the pair of beads withρ = 1050kg/m3 took 4.6 hours to run until it reached a state where

the pair of beads was trapped, lying on the bottom of the hole at the simulation time of

60s, as illustrated in Figure 6-16. However, after this state was reached, the simulation

continued on with smaller time steps and many collisions; atthe simulation time of 90s

the simulation had ran for roughly 11 hours taking very smalltime steps as the two beads

collided with each other and with the bottom and side of the trap.

The small time step issues associated with dealing collisions and contacts seem to suggest

that it would be useful to find a more efficient way to deal with persistent contacts, such
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as those that occur when a bead is trapped. However, delving more deeply into the simu-

lation of contacts, collisions and friction is not the focusof this thesis and finding a freely

available implementation of the collision detection algorithms or the rigid body dynamics

library that is more robust than the ODE package [27] has proved to be quite hard.

6.7.2 Pachinko trap

In this section we present simulation results for protruding cell trap geometries such as

those described in [21] using the boundary integral formulation presented in Section 6.1.2.

This formulation uses the Stokes substrate Green’s function which has the advantage that

it only requires discretizing the structures above the substrate as illustrated in Figure 6-17.

In the following we present results obtained by using four different trap geometries and

different settings for the background flow velocity and for the bead density. The four trap

geometries are illustrated in Figure 6-18 where it can be observed that the shape of the

trapping region itself was kept constant while the shape of the trap support was changed.

A triangular mesh for each trap model was generated using Comsol 3.2: trap model 1 is

represented by 2810 panels; trap model 2 by 1820 panels; trapmodel 3 by 2400 panels;

and trap model 4 is represented by 2736 panels. All the traps models are 20µm high. The

simulations were ran with a bead represented by an icospherewith 1280 triangular panels.

The simulations were terminated when the simulation time reached 15s.

The following observations were made. In the absence of an effective gravitational force,

i.e. when the bead density was set to the same value as the fluiddensity, changing the

flow rate does not change the trajectory of the beads. This result is illustrated in Fig-

ure 6-19a) and is expected because, in the absence of gravity, due to the linearity of the

Stokes equations, multiplying the flow rate by a given factorchanges the drag forces and

the accelerations by the same factor and hence the objects follow the same trajectory except

they do so at a velocity that is multiplied by that same factor. If the bead density is set to a

value different than that of the fluid density, the gravity has an effect on the trajectory and,

given the initial position of the bead, the relation betweenthe bead density and the flow

rate greatly influences if the bead will be captured or if it will escape. The effect of the
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Figure 6-17: Trajectory of a bead released near a pachinko type trap. On the the trap model is
1 and the bead density was 1050kg/m3; on the right the trap model is 2 and the bead density was
1050kg/m3. Note that the edges on the corners on the structures are just an artifact of the algorithm
used to render the figures.
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Figure 6-18: Top view of the 4 pachinko type cell traps used to demonstrate the time domain
simulator. Each trap protrudes 20µm above the substrate.

flow rate on the trapping behavior is illustrated in Figure 6-19b) where a bead with density

ρ = 1050kg/m3 is captured with a flow rate of 100pL/s while it escapes for a flow rate of

200pL/s.

Another interesting observation that was made from our numerical experiments was that

changing the trap model by changing the shape of the trap support while keeping the actual

trapping region the same does not significantly change the trajectory of the bead. This is
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Figure 6-19: Trajectory of the center of mass of a bead released near a model 1 pachinko trap. The
figures in the background of the plots represent the edges of the trap seen from the top and from the
side.

clearly illustrated in Figure 6-20 for a bead with densityρ = 1050kg/m3 and for a flow rate

of 100pL/s and a flow rate of 200pL/s. For the lower flow rate, the bead is capture by all

of the traps; for the higher flow rate, the bead escapes all of the traps. For either flow rate

the trajectory that the bead follows is very similar. This result seems suggests that, at least

for beads starting near the trapping area, and aligned with the center of the trapping region

y = 0, the Stokes drag force on the bead is not greatly influenced bythe shape of the trap’s

support.

Running each of the simulations took from 20 minutes to about 2hours and used a max-

imum of 400Mb of memory on an Intel Xeon 3GHz workstation with2Gb of RAM. The

simulation time was influenced by the number of collisions but also by the size of the FFT

grid. For cases where the bead escaped the trap, the FFT grid had to be enlarged; enlarging

the FFT grid requires recalculating the kernel transforms and makes the GMRES iterations

become more expensive. The median time for generating a stepcandidate was 56.31s; the

median time for setting up the precorrected FFT operator was20.33s; the median time for

solving (6.25) using GMRES was 37.9s.
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Figure 6-20: Trajectory of the center of mass of a bead with a diameter of 10µm and density
ρ = 1050kg/m3 released atx = −5µm, y = 0µm andz = 7µm. The background flow was set to
that of a 3mm by 200µm channel.

Trapping region

To further compare the trapping efficiency of the trap modelsand to demonstrate the use of

our solver, we setup a set of simulations where a bead was released starting atx = −10µm

andz = 6µ for several values ofy. The density of the bead was set toρ = 1000kg/m3 and

ρ = 1050kg/m3 and the flow rate was set toF = 100pL/s,F = 150pL/s andF = 200pL/s.

In this example only trap models 1 and 4 were considered. The simulations were terminated

when the simulation time reached 30s or when the bead position exceeded25µm along the

x direction. The sweep consisted of 60 simulations which ran from 15 minutes to about 1.5

hours (the average run time was 45 minutes) and used a maximumof 288Mb of memory on

an Intel Xeon 3GHz workstation. The sweep generated 3632 step candidates. The median

time for setting up the precorrected FFT operator was 18.5s;the median time for solving

(6.25) using GMRES was 29s.

The more interesting simulation results are illustrated inFigure 6-21 where it is clear that,

even though the trajectory fory = 0 is similar for trap model 1 and trap model 4, there

are some differences between the trapping behavior for “off-center” beads since, forF =

200pL/s, trap model 1 was able to capture some beads that trap model 4 was not able to

catch.
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Figure 6-21: Characterization of the trapping region for pachinko trap model 1, on the left, and
pachinko trap model 4, on the right. The curves in red, with the dot marker, represent situations
where the bead was trapped; the curves in blue, with the cross marker, represent situations where
the bead was not captured.
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Figure 6-22: Effect of collisions on step candidate rejection rate, on the left, and on the time inte-
gration step size, on the right. The figures illustrate compounded results from 3632 step candidates,
produced by the 60 simulations that were performed for bead initial position,density and flow rate
for the pachinko trap models 1 and 4.

To illustrate the relation between the number of collisionsand the step rejection ration and

the step size, the percentage of the step candidates that were rejected and the step size as a

function of the percentage of step candidates with collisions are illustrated in Figure 6-22.

In Figure 6-22 it can be observed that for all the simulationsa large percentage of the steps

had collisions. It can also be observed that simulations associated with the bead being

captured (and staying in a region with slower moving fluid), had less rejections and larger

step sizes. The median run time for the simulations that leadto a captured bead was 1536s

while the median run time for the simulations where the bead was released was 3134s.

6.8 Conclusions and future work

A stable velocity implicit time stepping scheme coupling the precorrected FFT solver pre-

sented in Chapter 4 with rigid body dynamics was introduced and demonstrated. The ODE

library [27] was integrated with the solver to enable the simulation of situations involving

collisions, contacts and friction. Several techniques forspeeding up the calculation of each

time step were presented and tested. The time integration algorithm was found to produce

reasonable results.
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However, it was found that some work still needs to be done to improve the robustness of

the support for collisions and contacts of moving objects described by arbitrary meshes.

It was also found that, for the application examples, the distribution of panels is not very

homogeneous and that, in this context, using the precorrected FFT may not be an optimal

solution and that other acceleration schemes may be more advantageous. Nevertheless, the

current version of the solver was still found to produce reasonable results in a reasonable

amount of time and, more importantly, the velocity implicittime stepping scheme can easily

be used with any other boundary element method for calculating the Stokes flow drag.

In the future, it would be worthwhile to use the updatable solver implementation to enable

running parametric sweeps efficiently and to support shape optimization.

In the future it would be interesting to couple membrane models such as those described

in [47], [26] and [1] with the velocity-implicit scheme and the pFFT accelerated Stokes

boundary element solver.

It would be very interesting to extend this work to support slip flow boundary conditions

for low Knudsen numbers (see [26]).

Appendix A - rate of energy dissipation in the fluid volume

Let Sb represent the surface of a body in an infinite quiescent fluid.Let V represent the

fluid volume, bounded by the surface of the body and a surfaceS∞ at an ”infinite” distance
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from the object where the fluid is at rest,
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Sb
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(6.26)

Sincen is the normal pointing into the body and away from the fluid,f = −σn is the force

applied to the object and the work done on the object by the Stokes drag force is

∫

Sb

uT fdS = −
∫

Sb

uiσiknkdS = −2µ

∫

V

eikeikdV = −µ

∫

V

ΦdV (6.27)

which is the negative of the power dissipated in the fluid volume. In other words, the work

that the body does on the fluid is dissipated in the volume.

If the body is rigid, then the velocity onSb is given byu(x) = vb + ωb × (x − xb) and

∫

Sb

uT fdS = vb ·
∫

Sb

fdS + ωb ·
∫

Sb

(x − xb) × fdS = vb · f + ωb · T = −µ

∫

V

ΦdV

holds, which basically states that the drag force and torqueon the object oppose its motion.

This statement also implies that, according to the Stokes flow model, the fluid does not

accumulate kinetic energy. In the Stokes flow model, the energy that a body transmits to

the fluid either dissipates due to viscosity or is transmitted to other bodies in the fluid.
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Chapter 7

Implementation details

In this chapter some details regarding the implementation of the precorrected FFT boundary

element solver are presented.

7.1 Projection and interpolation

The projection and interpolation steps in the precorrectedFFT algorithm were reviewed in

Section 4.1.1. In this section we present how to actually calculate the coefficients of the

projection and interpolation matricesP andI.

Recall thatPp,s =
∫

Ss
Ls,p(xs)dS and thatIt,i = Lt,i(xt), for collocation testing, andIt,i =

∫

St
Lt,i(xt)dS, for Galerkin testing. WhereLs,p is an interpolating Lagrangian polynomial

on the projection stencil associated with the source panelSs andLt,i is an interpolating

Lagrangian polynomial on the interpolation stencil associated with the test panelSt.

For practical reasonsPt,i = Lt,i(xt) is calculated in two steps. In the first step, a set of

monomials of thext minus the center of the interpolation stencil associated with the test

panelt are calculated. In the second step, the values of the monomials are combined to

produceLt,i(xt). Note that the monomial coefficients for the interpolating polynomials,

which are used to combine the monomials intoLt,i(xt), do not depend onxt and are a

function of only the interpolation stencil and the grid spacing. If the same type of inter-
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polation stencil is used for all the targets, these coefficients can be computed once and

then reused for the calculation of all theLt,i(xt) entries. If Galerkin testing is being used,

Pt,i =
∫

St
Lt,i(xt)dS and, in the second step, rather than combining monomial function

values, the algorithm uses the same method to combine the appropriate moments overSt

(note that these moments are centered on the interpolation stencil associated with the test

panelt). The same process is used to calculatePp,s.

The monomial coefficientsc∗,i for the interpolating polynomialL∗,i can be calculated by

solving, in the least squares sense, a linear systemAc∗,i = ei, where

Aj,k = (xj − x0)
mk(yj − y0)

nk(zj − z0)
pk (7.1)

wherexj is thejth stencil point andx0 is the stencil center; andei
j = δi,j. Since (7.1)

is a Vandermonde-like matrix its condition number will deteriorate rapidly withm, n and

p. Moreover, if the entries inA are not rescaled, solving the linear system (7.1), even

using SVD based methods, will not yield accurate values forc∗,i and will instead produce

a low order approximating polynomial that will significantly compromise the accuracy of

the pFFT algorithm. Because it does not lead to an immediate catastrophic failure of the

pFFT algorithm, the loss of accuracy due to failing to rescaleA, can be a very hard to find

bug.

A version of our implementation of the projection/interpolation algorithm is included in

Listing 7.1 and Listing 7.2.

Listing 7.1: Functor used for projection and interpolation using monomial basis functionsand
panel moments.
template <class Grid, class operation_tag>
struct project_on_grid_functor_impl
{

typedef geometric_element::moment_container moment_container ;

template <class Stencil>
project_on_grid_functor_impl(Grid const & grid, Stencil const & stencil)
: _grid(grid), _moments(new moment_container())

{
position center_point = grid.position_from_grid_coordinates(stencil.center()) ;
vector<position> stamp_point_positions ;
for (typename Stencil::stamp_iterator stamp_it = stencil.stamp_begin() ;

stamp_it != stencil.stamp_end() ; ++stamp_it)
{

vector<int> stamp_coordinates = *stamp_it ;
for (unsigned dim = 0 ; dim != 3 ; ++dim)
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stamp_coordinates[dim] += -stencil.bounds()[dim].first ;

stamp_point_positions.push_back(
grid.position_from_grid_coordinates(stamp_coordinates) - center_point) ;

}

// Calculate monomial values on the stencil points
// establishing a basis_values_on_stencil matrix.
f_monomials interpolating_function(

stencil.span()[0], stencil.span()[1], stencil.span()[2]) ;

ublas::matrix<double, ublas::column_major> basis_values_on_stencil =
detail::evaluate_interpolation_functions_on_stencil(

stamp_point_positions, interpolating_function) ;

// SCALE the rows of the basis_values_on_stencil matrix
vector<double> scaling(basis_values_on_stencil.size1(), 0) ;
for (unsigned row = 0 ; row != basis_values_on_stencil.size1() ; ++row)
{

// Determine the maximum value on the column
for (unsigned col = 0 ; col != basis_values_on_stencil.size2() ; ++col)

scaling[row] = max(fabs(basis_values_on_stencil(row, col)),
scaling[row]) ;

// Scale the columns in this row
for (unsigned col = 0 ; col != basis_values_on_stencil.size2() ; ++col)

basis_values_on_stencil(row, col) /= scaling[row] ;
}

// Calculate the pseudo inverse of the scaled matrix
interpolating_polynomial_coefficients_m =

pseudo_inverse(basis_values_on_stencil) ;

// Scale the columns of the pseudo inverse
for (unsigned col = 0 ; col != interpolating_polynomial_coefficients_m.size2() ; ++col)
for (unsigned row = 0 ; row != interpolating_polynomial_coefficients_m.size1() ; ++row)

interpolating_polynomial_coefficients_m(row, col) /= scaling[col] ;

// Resize the storage for interpolating_polynomial_coeff icients
...

// Reorganize the the interpolating_polynomial_coeffici ents
// to facilitate the computation of the projection and inter polation
// coefficients.
_moment_orders = interpolating_function.term_orders() ;
unsigned n_functions = interpolating_function.size() ;
for (unsigned fi = 0 ; fi != n_functions ; ++fi)
{

unsigned const ix = _moment_orders[fi][0] ;
unsigned const iy = _moment_orders[fi][1] ;
unsigned const iz = _moment_orders[fi][2] ;

for (unsigned pi = 0 ; pi != stencil.size() ; ++pi)
interpolating_polynomial_coefficients[pi][ix][iy][iz] =
interpolating_polynomial_coefficients_m(pi, fi) ;

}

// Determine the maximum order of the moments that will be req uired
// to project the sources onto the projection grid using the s tencil.
_max_moment_order = 0 ;
for (unsigned io = 0 ; io != _moment_orders.size() ; ++io)

_max_moment_order = max(_max_moment_order,
_moment_orders[io][0] + _moment_orders[io][1] + _moment_orders[io][2]) ;

// Determine the minimum and maximum positions for the stenc il
// centers (in grid coordinates).
for (unsigned dim = 0 ; dim != 3 ; ++dim) {

_min_grid_coordinates.push_back(-stencil.bounds()[dim].first) ;
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_max_grid_coordinates.push_back((int(_grid.num_points()[dim]) - 1)
- stencil.bounds()[dim].second) ;

}
}

// Calculate the projection or interpolation coefficients for
// a given source or target.
// The function input is a tuple taking
// (geometric_element const * source/target,
// grid_coordinate const & nearest_grid_coordinate,
// projection_coefficient & output).
template <class Tuple>
void operator() (Tuple const & t) const
{

// Extract the tuple components.
geometric_element const * e = boost::get<0>(t) ;
using namespace boost::tuples ;

typedef typename element<1,Tuple>::type grid_coordinate_ref ;
grid_coordinate_ref nearest_grid_coordinates = boost::get<1>(t) ;

typedef typename element<2,Tuple>::type projection_coefficients_ref ;
projection_coefficients_ref projection_coefficients = boost::get<2>(t) ;

// If the nearest grid point is too close to the grid border mov e it
// in such that the projection stencil points are contained i n the grid.
position centroid = e->get_centroid() ;
_grid.grid_coordinates_from_position(centroid, nearest_grid_coordinates.begin()) ;
for (unsigned dim = 0 ; dim != 3 ; ++dim)

nearest_grid_coordinates[dim] = bound_value(
_min_grid_coordinates[dim], _max_grid_coordinates[dim],
nearest_grid_coordinates[dim]) ;

// Determine the location of the projection center grid poin t in world coordinates.
position projection_center = _grid.position_from_grid_coordinates(

nearest_grid_coordinates) ;

// Make sure the moment result container has enough space for the moments we need
// for this source or target type.
typedef typename boost::remove_reference<projection_coefficients_ref>::type

projection_coefficient_container ;
typedef typename projection_coefficient_container::value_type

projection_coefficient_type ;
unsigned const extra_moment_order =
combine_moments_and_stencil_interpolation_coefficients<

projection_coefficient_type>::extra_required_moment_order ;

resize_panel_moment_container(extra_moment_order) ;

// Use the position of the nearest projection grid point as th e center for
// calculating the moments of the source.
e->get_moments(_max_moment_order + extra_moment_order, projection_center, *_moments) ;

// Fill in the projection coefficients
for (unsigned pi = 0 ; pi != interpolating_polynomial_coefficients.size() ; ++pi)

combine_moments_and_stencil_interpolation_coefficients<
projection_coefficient_type>::apply(
_moment_orders, interpolating_polynomial_coefficients[pi],
e, centroid, *_moments, projection_center, projection_coefficients[pi]) ;

}
...

} ;
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Listing 7.2: Function that combines the coefficients for the stencil interpolation polynomials with
the moments evaluated for a given source or target panel to calculate the projection or interpolation
coefficients.
template <>
struct combine_moments_and_stencil_interpolation_coefficients<

...::projection_coefficient_type>
{

enum { extra_required_moment_order = 1 } ;

template <...>
inline static void apply(
MomentOrders const & moment_orders,
StencilInterpolationCoefficients const & stencil_interpolation_coefficients,
GeometricElement const * element,
Centroid const & centroid,
Moments const & moments,
ProjectionCenter const & projection_center,
Coefficient & result)

{
result.clear() ;

// The extra zt or zs moment order term is in absolute
// coordinates so we need to add the base term to the
// local zˆ(p+1) term i.e.
// xˆm * yˆn * zˆp * (Z + z) <-- xˆm * yˆn * zˆ(p+1) + Z * xˆm* yˆn * zˆp.
for (unsigned io = 0 ; io != moment_orders.size() ; ++io)
{

unsigned const ox = moment_orders[io][0] ;
unsigned const oy = moment_orders[io][1] ;
unsigned const oz = moment_orders[io][2] ;
result[0] += stencil_interpolation_coefficients[ox][oy][oz]

* moments[ox][oy][oz] ;
result[1] += stencil_interpolation_coefficients[ox][oy][oz]

* (moments[ox][oy][oz + 1] + moments[ox][oy][oz] * projection_center[2]) ;
}

}
};

7.2 Exploiting kernel symmetries to reduce memory usage

The Stokes flow Green’s functions, as well as many other Green’s functions for physical

problems, have symmetries. If the Green’s function has symmetries and is evaluated on

a regular grid properly aligned with its axis and center of symmetry, its discrete Fourier

transform (DFT) also has the same symmetries and the storagefor the DFT can becom-

pressedaccordingly. Moreover, if the Green’s function is real and it is either symmetric or

antisymmetric along each axis, its transform is either purely real or purely imaginary and

its DFT can be stored using a collection of real values ratherthan a collection of complex

values.

The precorrected FFT algorithm computes the DFT of the Green’s functions to accelerate
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the calculation of the convolution of the Green’s function and the projected forces on a

regular grid. If the Green’s function or the projected forces are real, conjugate symmetry

can also be used to reduce storage. In our implementation thestorage for the DFT of real

signals iscompressedby truncating the DFT such that it has⌊Nz/2⌋ + 1 entries along the

“last” dimension, which we assume to be thez direction for a 3D grid (the truncation could

have been performed along any other axis direction but we useFFTW’s [54]r2c transforms

and thus follow their convention).

The velocities on the regular grid are computed by zero padding the projected forces, cal-

culating the DFT of the zero padded forces on the grid; calculating the pointwise multipli-

cation between the DFT of the zero padded forces on the grid and the DFT of the Green’s

function; and then inverse transforming the result of the pointwise multiplication and re-

moving the padding.

The complicated part of the FFT accelerated convolution is the calculation of the pointwise

multiplication between thecompressedDFT of the Green’s function and thecompressed

DFT of the projected forces, where it is assumed that the projected forces do not have any

symmetries that can be exploited. For that purpose, we present an algorithm in Listing 7.3

that can compute the pointwise multiplication of the DFT of an input signal with the DFT of

a Green’s function with any combination of odd symmetry, even symmetry or asymmetry

along any of the axis function and that works for any number ofdimensions.

Listing 7.3: Function that calculates the pointwise product of a kernel, with symmetries,and a
signal and accumulates the result onto a second signal.
#include "util/get_negated_functor.hpp"

// nd_multiply_accumulate_transform_with_symmetries
template <

class a_it_type,
class a_size_it_type,
class a_stride_it_type,
class a_symmetry_it_type,
class b_it_type,
class b_size_it_type,
class b_stride_it_type,
class out_it_type,
class out_size_it_type,
class out_stride_it_type,
class F>

inline void nd_multiply_accumulate_transform_with_symmetries_impl(
size_t rank,
a_it_type a_it,
a_size_it_type a_size_it,
a_stride_it_type a_stride_it,
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a_symmetry_it_type a_symmetry_it,
b_it_type b_it,
b_size_it_type b_size_it,
b_stride_it_type b_stride_it,
bool signal_is_real,
out_it_type out_it,
out_size_it_type out_size_it,
out_stride_it_type out_stride_it,
F const & f)

{
a_it_type const a_begin = a_it ;
ignore_unused_variable_warning(a_begin) ;

size_t const a_stride = *a_stride_it ;
size_t const b_stride = *b_stride_it ;
size_t const out_stride = *out_stride_it ;

size_t const a_size = *a_size_it ;
size_t const b_size = *b_size_it ;
size_t const out_size = *out_size_it ;

if (rank != 1 && *a_symmetry_it == odd) assert(a_size == (b_size - 1)/2) ;
if (rank != 1 && *a_symmetry_it == even) assert(a_size == b_size / 2 + 1) ;
assert(out_size == b_size) ;

a_it_type const a_end = a_it + a_size * a_stride ;
b_it_type const b_end = b_it + b_size * b_stride ;
out_it_type const out_end = out_it + out_size * out_stride ;
ignore_unused_variable_warning(out_end) ;

// If the kernel is odd it does not store the first value,
// which is zero.
if (*a_symmetry_it == odd) {
b_it += b_stride ;
out_it += out_stride ;

}

if (rank > 1) {
while (a_it != a_end) {

nd_multiply_accumulate_transform_with_symmetries_impl(
rank - 1,
a_it, a_size_it + 1, a_stride_it + 1, a_symmetry_it + 1,
b_it, b_size_it + 1, b_stride_it + 1, signal_is_real,
out_it, out_size_it + 1, out_stride_it + 1,
f) ;

a_it += a_stride ;
b_it += b_stride ;
out_it += out_stride ;

}

// Get a_it back in the data range
a_it -= a_stride ;

if (b_size % 2 == 0) {
// If using symmetry and signal size is even, point a to
// the second to last entry.
if (*a_symmetry_it == even) {

// signal is A B C D E F
// kernel is a b c d c b
// processing E next so must point kernel to c
a_it -= a_stride ;

}
else if (*a_symmetry_it == odd) {

// signal is A B C D E F
// kernel is 0 b c 0 -c -b
// precessing D now so just skip to E
b_it += b_stride ;
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out_it += out_stride ;
}

}
else {

// Nothing to do because:

// if kernel is even:
// signal is A B C D E
// kernel is a b c c b
// b_it should point to D and a_it to c already

// if kernel is odd:
// signal is A B C D E
// kernel is a b c -c -b
// b_it should point to D and a_it to c already

// is kernel is asymmetric:
// signal is A B C D E
// kernel is a b c d e
// b_it should be b_end

}

if (b_it == b_end)
return ;

if (*a_symmetry_it == even) {
// Now go back with the same f
while (b_it != b_end) {

nd_multiply_accumulate_transform_with_symmetries_impl(
rank - 1,
a_it, a_size_it + 1, a_stride_it + 1, a_symmetry_it + 1,
b_it, b_size_it + 1, b_stride_it + 1, signal_is_real,
out_it, out_size_it + 1, out_stride_it + 1,
f) ;

a_it -= a_stride ;
b_it += b_stride ;
out_it += out_stride ;

}
}
else if (*a_symmetry_it == odd) {

typename get_negated_functor_impl<F>::type neg_f(
get_negated_functor(f)) ;

// Now go back with a negated f
while (b_it != b_end) {

nd_multiply_accumulate_transform_with_symmetries_impl(
rank - 1,
a_it, a_size_it + 1, a_stride_it + 1, a_symmetry_it + 1,
b_it, b_size_it + 1, b_stride_it + 1, signal_is_real,
out_it, out_size_it + 1, out_stride_it + 1,
neg_f) ;

a_it -= a_stride ;
b_it += b_stride ;
out_it += out_stride ;

}
}

}
else // rank == 1
{

// This branch has the same structure as the branch for rank > 1
// except that instead of recursively calling this function
// the code calls the functor f or neg_f instead.
while (a_it != a_end) {

f(*out_it, *a_it, *b_it) ;
a_it += a_stride ;
b_it += b_stride ;
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out_it += out_stride ;
}

// Get a_it back in the data range
a_it -= a_stride ;

if (signal_is_real || (b_size % 2 == 0)) {
// If using symmetry and signal size is even, point a to
// the second to last entry.
if (*a_symmetry_it == even) {

// signal is A B C D E F
// kernel is a b c d c b
// processing E next so must point kernel to c
a_it -= a_stride ;

}
else if (*a_symmetry_it == odd) {

// signal is A B C D E F
// kernel is 0 b c 0 -c -b
// precessing D now so just skip to E
b_it += b_stride ;
out_it += out_stride ;

}
}
else {

// Nothing to do for same reasons as in corresponding
// case in the rank > 1 branch above.

}

if (b_it == b_end)
return ;

if (*a_symmetry_it == even) {
while (b_it != b_end) {

f(*out_it, *a_it, *b_it) ;
a_it -= a_stride ;
b_it += b_stride ;
out_it += out_stride ;

}
}
else if (*a_symmetry_it == odd) {

typename get_negated_functor_impl<F>::type neg_f(
get_negated_functor(f)) ;

// Now go back with a flipped f
while (b_it != b_end) {

neg_f(*out_it, *a_it, *b_it) ;
a_it -= a_stride ;
b_it += b_stride ;
out_it += out_stride ;

}
}

}
}

Note that the algorithm presented in Listing 7.3 takes a functor f. The functorf is used, to-

gether withget_negated_functor to enable the flexible and efficient configuration of the

function to be performed. For example, the functorf can be amultiply_accumulate func-

tor, coupled to amultiply_subtract functor byget_negated_functor. Using functors

to represent the fundamental multiply accumulate operation does not incur in any perfor-

mance penalty whereas using a factor of 1 or−1 to multiply the Green’s function would
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be less general and would introduce an unnecessary multiplication. It would have been

possible to avoid using functors and to use expression templates [28, 29] instead to rep-

resent the multiply accumulate and multiply subtract as*out_it += *a_it **b_it and

*out_it -= *a_it * *b_it without incurring in performance loss but we opted for using

functors andget_negated_functor because it was simpler.

To illustrate the use ofnd_multiply_accumulate_transform_with_symmetries_impl,

a driver routine is presented in Listing 7.4 where the appropriate instance of the function

is called depending on the symmetries of the Green’s function and on the signal being

real or not. When the Green’s function is symmetric or antisymmetric along all the direc-

tions and it is stored as a set of real values, depending on thenumber of directions where

the function is anti-symmetric, the transform values will be multiplied by -1 and/or byi.

The multiplication by -1 is achieved at no cost by usingmultiply_subtract instead of

multiply_accumulate. The multiplication byi is achieved at no cost by adapting the

iterator over the transform data such that a special type is returned when the iterator is

dereferenced. Specializations of the multiplication operator for the purely imaginary type

are defined and inlined such that using theimaginary_iterator_adaptor does not result

in a performance penalty.

Listing 7.4: Function that calculates the pointwise product of a kernel, with symmetries,and a
signal and accumulates the result on a second signal
// Driver routine for pointwise kernel signal multiply accu mulate
// operation.
template <

class output_scalar_type,
class kernel_scalar_type,
class input_scalar_type,
class F>

inline void nd_multiply_accumulate_transform_with_symmetries(
nd_signal_transform<output_scalar_type> & accumulator,
nd_kernel_transform<kernel_scalar_type> const & kernel,
nd_signal_transform<input_scalar_type> const & signal,
F const & f)

{
complex<int> symmetry_factor(1, 0) ;

vector<function_symmetry_type> const & kernel_symmetry = kernel.symmetry() ;
size_t const n_dims = kernel_symmetry.size() ;

for (size_t dim = 0 ; dim != n_dims ; ++dim)
if (kernel_symmetry[dim] == odd)

symmetry_factor *= complex<int>(0, -1) ;

bool const negate = (symmetry_factor.real() == -1)
|| (symmetry_factor.imag() == -1) ;

115



bool const use_imaginary_iterator_adaptor = kernel.transform_data_is_real()
&& (symmetry_factor.real() == 0) ;

if (kernel.transform_data_is_real()) {
if (negate) {

if (use_imaginary_iterator_adaptor) {
nd_multiply_accumulate_transform_with_symmetries(
imaginary_iterator_adaptor(kernel.transform_data_as_real()),
begin(kernel.transform_size()),
begin(kernel.transform_stride()),
begin(kernel.symmetry()),
signal.transform_data_as_complex(),
begin(signal.transform_size()),
begin(signal.transform_stride()),
nd_signal_transform<input_scalar_type>::signal_is_real,
accumulator.transform_data_as_complex(),
begin(accumulator.transform_size()),
begin(accumulator.transform_stride()),
get_negated_functor(f)) ;

}
else {

nd_multiply_accumulate_transform_with_symmetries(
kernel.transform_data_as_real(),
... // Commented out repeated parameters
get_negated_functor(f)) ;

}
}
else {

if (use_imaginary_iterator_adaptor) {
nd_multiply_accumulate_transform_with_symmetries(
imaginary_iterator_adaptor(kernel.transform_data_as_real()),
... // Commented out repeated parameters
f) ;

}
else {

nd_multiply_accumulate_transform_with_symmetries(
kernel.transform_data_as_real(),
... // Commented out repeated parameters
f) ;

}
}

}
else {
if (negate) {

nd_multiply_accumulate_transform_with_symmetries(
kernel.transform_data_as_complex(),
... // Commented out repeated parameters
get_negated_functor(f)) ;

}
else {

nd_multiply_accumulate_transform_with_symmetries(
kernel.transform_data_as_complex(),
... // Commented out repeated parameters
f) ;

}
}

}

Please note that, if the input signal is real and the kernel iscomplex, or vice versa, then the

output signal will be complex and the pointwise multiplication algorithm will only work if

the uncompressed transform for the input signal is provided. It is likely that this restriction

can be lifted but it was decided to leave that improvement as future work.
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In our implementation, compressing the DFT for the Green’s function is left to FFTW’sr2c

or r2r routines depending on the Green’s function symmetries. Using ther2r transforms

has the advantage that the Green’s functions only need to be evaluated on a quadrant of the

domain. However, ther2r transforms are only applicable when the function is symmetric

or antisymmetric along all the directions and will not work for the image Green’s functions

because they are not sampled around their center of symmetry. It would have been pos-

sible, and more general, to just use FFTW’sr2c or c2c transforms and to compress the

resulting DFT afterwards. In hindsight, doing so, or using ar2r first along the symmetric

directions and then usingr2c along the non-symmetric directions would have been better

than just relying onr2r to compress storage. Nevertheless, modifying the implementation

is trivial and it is not the focus of this section. Moreover, for planar topologies, the layered

transforms, presented in Section 7.3 do exploit all possible symmetries for both image and

non-image Green’s functions.

7.3 Specializations for planar topologies

Especially for surface micromachined devices, the problemdimensions along thez direc-

tion, normal to the substrate, are usually much smaller thanthe dimensions along thex and

y directions, parallel to the substrate. For these problems,the number of FFT grid points

along the vertical directionNz is much smaller than the number of grid points along the

x andy directions. It turns out that, for small enoughNz, it is faster and more memory

efficient to compute the grid convolution by layers along thez direction and using 2D ac-

celerated convolution for each interacting layer pair, than using a full 3D FFT accelerated

convolution.

In the layered convolution method the input signal and the Green’s function on the grid

are Fourier transformed along thex andy direction but not along thez direction. This has

the immediate advantage that it removes the need for paddingthe input and output signals

along thez direction. On the other hand the layered convolution requiresN2
z layer to layer

2D convolutions, as can be observed in Listing 7.5.
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A major advantage for the layered convolution method when applied to problems involving

image Green’s functions is that, the symmetry along thex andy axis can be fully exploited

and the transform data can be stored a real vector rather thana vector of complex values.

Meanwhile, for the 3D FFT convolution method the image Green’s functions are evaluated

in a way that symmetry along thez direction cannot be used and so the transform data

cannot be stored as a real vector or computed directly using FFTW’s r2r routines.

Another advantage of the layered convolution method is thatcalculating the transform of

the projected image panel source panel distribution on the grid from the transform of the

projected source panel distribution on the grid only requires a simple re-indexing operation.

Listing 7.5: Layered convolution.
template <class scalar_type>
void layered_kernel_transform<scalar_type>::convolve_accumulate(

input_signal<scalar_type> const & from,
output_signal<scalar_type> & accumulator,
scalar_type const & factor) const

{
if (factor == scalar_type(0)) return ;

layered_signal_transform<scalar_type> const * from_p =
boost::polymorphic_downcast<layered_signal_transform<scalar_type> const *>(&from) ;

layered_signal_transform<scalar_type> * to_p =
boost::polymorphic_downcast<layered_signal_transform<scalar_type>*>(&accumulator) ;

// Explicitly perform an Nˆ2 convolution along the layering direction
int const min_from_layer = from_p->min_layer_index() ;
int const max_from_layer = from_p->max_layer_index() ;
int const min_to_layer = to_p->min_layer_index() ;
int const max_to_layer = to_p->max_layer_index() ;

for (int from_layer = min_from_layer ; from_layer <= max_from_layer ; ++from_layer)
for (int to_layer = min_to_layer ; to_layer <= max_to_layer ; ++to_layer)

layer(to_layer - from_layer).convolve_accumulate(
from_p->layer(from_layer), to_p->layer(to_layer), factor) ;

}

Note that the convolution interface provides a virtual mechanism to perform the convolu-

tion which hides the actual implementation. In other words,the user of the convolution

classes does not need to be aware of whether a layered convolution or a full 3D FFT accel-

erated convolution is being used. The convolution interface also takes care of any necessary

padding and unpadding.
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7.4 Precorrection

The precorrection algorithm is responsible for subtracting the grid based interactions be-

tween nearby source-target pairs. However, a naive implementation of the precorrection

algorithm can be very inefficient. In this section the techniques used in our implementation

of the precorrection algorithm are presented. To facilitate the discussion we first introduce

some of the variables and types that will appear below:

• interaction_values is a sparse matrix with entries of typeinteraction_value-
_type. This matrix hasnum_sources columns andnum_targets rows.

• interaction_list is a collection ofnum_sources collections of target indices and
is basically a representation of the sparse structure ofinteraction_values.

• projection_coefficients represent the projection weights that map the source
forces to forces and force moments on the grid. This is a collection of collections of
projection_coefficient_type

• projection_grid_coordinates represent grid coordinates used to map the source
forces to forces and force moments on the grid.

• interpolation_coefficients represents the interpolation weights used to map the
grid velocities and velocity moments to velocities on the target evaluation points, if
collocation testing is being used, or integrals of the velocity over the target panels, if
Galerkin testing is being used. This variable is a collection of collections of elements
of typeinterpolation_coefficient_type.

• interpolation_grid_coordinates represent the grid coordinates used to map the
grid velocities and velocity moments to velocities on the target.

• greens_function(t,s) is a function that takes a target pointt and a source points
and returns the value of the Green’s function of typekernel_value_type.

• projected_kernel_value_type is the result of the product between a projection
coefficient and a kernel value.

• multiply_accumulate(pg,p,g) multiplies p of type projection_coefficient-
_type andg of typekernel_value_type and accumulates the result onto an element
of the typeprojected_kernel_value_type.

• multiply_subtract(iv,i,pg)multipliesi of typeinterpolation_coefficient-
_type by pg of typeprojected_kernel_value_type and subtracts the result from
iv of typeinteraction_value_type.
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A straightforward, but inefficient, implementation of the precorrection algorithm is pre-

sented in Listing 7.6 where, for convenience, it is assumed that the* operator works in a

manner that is consistent with themultiply_accumulate operation between elements of

projection_coefficient_type and ofkernel_value_type.

Listing 7.6: Basic precorrection algorithm.
for si = 1 : num_sources,

for ti = interaction_list{si}
for pci = 1 : length(projection_coefficients(:,si)),

for ici = 1 : length(interpolation_coefficients(:,ti)),
multiply_subtract(interaction_values(ti,si), ...

interpolation_coefficients(ici, ti), ...
projection_coefficients(pci, si) * ...
greens_function(...

position(interpolation_grid_coordinates(:,ici,ti)),...
position(projection_grid_coordinates(:,si,ti)))

end
end

end
end

There are several sources of inefficiency in this implementation. The more important de-

ficiency of the algorithm is that the work done to calculate the kernel projected at a given

point is repeated for multiple panels ininteraction_list(si).

The first source of inefficiency can be addressed by separating the precorrection for each

source into ascatterphase and agather phase. In thescatterphase, the list of the in-

terpolation points associated with the targets in the source’s interaction list is computed.

Then the sum of the projected kernel values due to the source’s projection grid points is

calculated at the interpolation points in the list above. The contributions from all the pro-

jection points at each interpolation point are accumulatedand stored in elements of the

typeprojected_kernel_value_type. In thegatherphase, for each target in the source’s

interaction list, the projected kernel values corresponding to the interpolation points as-

sociated with that target are multiplied by the corresponding interpolation coefficients

and subtracted from the appropriate entry ininteraction_values using the operation

multiply_subtract.

Another source of inefficiency is thatgreens_function(t,s) is evaluated multiple times

for the same(t,s) pair and that the positionst ands are also being repeatedly recalculated.

Dealing with this issue is important if the cost of evaluatinggreens_function and comput-
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ing positions from grid coordinates is high. Unfortunately, cachinggreens_function(t,s)

as a function of botht ands would either require a large amount of memory or would

would use some sort of associative container with a non-trivial access time. However, if

greens_function(t,s) is translation invariant i.e. ifgreens_function(t,s) is the same

asgreens_function(t-s,0) the values ofgreens_function can be reused and accessed

as a function oft-s without requiring an excessive amounts of storage.

In our implementation, presented in Listing 7.7 the following approach for caching and

accessing the values of the Green’s function was used: First, the maximum grid-based

distance between a projection grid coordinate of a source and an interpolation grid coor-

dinate of an interacting target was calculated. Calculatingthe maximum grid-based in-

teraction range benefits significantly from first computing agrid-aligned bounding box

for the projection grid coordinates of each source and for the interpolation grid coordi-

nates of each target. Once the maximum interaction range is computed the values of

greens_function(t-s,0) in that range are calculated and stored in and arraykernel-

_values of kernel_value_type elements. LetRmin,k andRmax,k represent the minimum

and maximum values oft − s along directionk, the span of the interactions along that

direction isSk = Rmax,k −Rmin,k + 1. Let Tk be the stride forkernel_values, defined in

a manner consistent withSk. For a source grid coordinates and a target grid coordinatet,

the linear index intokernel_values is given by

cached_kernel_index =
∑

k

(tk − sk − Rmin,k)Tk. (7.2)

Instead of computing (7.2) for each access tokernel_values, linear indicesprojection-

_green_offset =
∑

k(sk+Rmin,k)Tk, for each projection point, andinterpolation_green-

_offset =
∑

k tkTk, for each interpolation point, are computed and saved once.The dif-

ference between the two linear indices is then used to accessthe cached kernel values.

Listing 7.7: Precorrection algorithm.
// project_on_grid performs the scatter operation for each
// source. See subtract_grid_based_interactions below fo r
// usage details.
template <...>
void project_on_grid(

target_grid_it_type target_grid_it,
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target_grid_it_type target_grid_it_end,
target_green_it_type target_green_it,
projection_green_offset_it_type projection_green_offsets_begin,
projection_green_offset_it_type projection_green_offsets_end,
projection_coefficients_it_type projection_coefficients_begin,
kernel_container_type const & kernel_values,
projected_kernel_container_type & projected_kernel_values)

{
projected_kernel_value_type v ;

// Calculate the projection of the source onto each target po int.
while (target_grid_it != target_grid_it_end)
{
size_t const target_grid_offset = *target_grid_it ;
int const target_green_offset = *target_green_it ;

// Zero out accumulator.
clear(v) ;

projection_green_offset_it_type projection_green_offset_it
= projection_green_offsets_begin ;

projection_coefficients_it_type projection_coefficients_it
= projection_coefficients_begin ;

while (projection_green_offset_it != projection_green_offsets_end)
{

int const cached_kernel_index = target_green_offset
- *projection_green_offset_it ;

multiply_accumulate(
v, kernel_values[cached_kernel_index],

*projection_coefficients_it) ;

++projection_coefficients_it ;
++projection_green_offset_it ;

}

projected_kernel_values[target_grid_offset] = v ;

++target_grid_it ;
++target_green_it ;

}
}

template <
class kernel_value_type,
class projected_kernel_value_type,
class interaction_value_type,
...>

void subtract_grid_based_interactions(
KernelEvaluationFunctor const & kernel_evaluation_functor,
InteractionList const & interaction_list,
ProjectionGridCoordinates const & projection_grid_coordinates,
ProjectionOffsets const & projection_offsets,
ProjectionCoefficients const & projection_coefficients,
InterpolationGridCoordinates const & interpolation_grid_coordinates,
InterpolationOffsets const & interpolation_offsets,
InterpolationCoefficients const & interpolation_coefficients,
InteractionValuesIterator const & interaction_values)

{
// Determine the maximum interaction range.
vector<pair<int, int> > interaction_range =
calculate_maximum_grid_based_interaction_range(
interaction_list,
projection_grid_coordinates,
interpolation_grid_coordinates) ;

// Setup a mini-grid from the interaction range. * /
size_t const n_dims = interaction_range.size() ;
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vector<vector<int> > kernel_grid_indices ;
vector<int> green_min_coordinates, green_max_coordinates ;
size_t num_green_grid_points = 1 ;
for (size_t dim = 0 ; dim != n_dims ; ++dim) {
kernel_grid_indices.push_back(

linspace(interaction_range[dim].first,
1, interaction_range[dim].second)) ;

green_min_coordinates.push_back(interaction_range[dim].first) ;
green_max_coordinates.push_back(interaction_range[dim].second) ;
num_green_grid_points *= kernel_grid_indices.back().size() ;

}

// Calculate kernel values
vector<kernel_value_type> kernel_values(num_green_grid_points) ;
vector<size_t> green_stride = kernel_evaluation_functor(
kernel_grid_indices, kernel_values.begin()) ;

int green_origin_offset = -linear_index_from_stride_and_multi_index(
green_stride, green_min_coordinates) ;

size_t const n_sources = interaction_list.size() ;
vector<int> interpolation_green_offsets ;
vector<int> projection_green_offsets ;

// Allocate workspace to contain the projected kernel value s.
using max ;
size_t const n_targets = boost::size(interpolation_offsets) ;
size_t max_interpolation_offset = 0 ;
for (size_t ti = 0 ; ti != n_targets ; ++ti)
for (size_t poi = 0 ; poi != interpolation_offsets[ti].size() ; ++poi)

max_interpolation_offset = max(
interpolation_offsets[ti][poi], max_interpolation_offset) ;

size_t max_projection_offset = 0 ;
for (size_t si = 0 ; si != n_sources ; ++si)

for (size_t poi = 0 ; poi != projection_offsets[si].size() ; ++poi)
max_projection_offset = max(
projection_offsets[si][poi], max_projection_offset) ;

vector<projected_kernel_value_type> projected_kernel_values(
max(max_interpolation_offset, max_projection_offset) + 1);

// Map grid offsets into (aliased) offsets into the kernel mi ni-grid.
vector<int> green_offset_from_grid_offset(max_interpolation_offset + 1, 0) ;
for (size_t ti = 0 ; ti != n_targets ; ++ti)

for (size_t ioi = 0 ; ioi != interpolation_offsets[ti].size() ; ++ioi)
if (green_offset_from_grid_offset[interpolation_offsets[ti][ioi]] == 0)
green_offset_from_grid_offset[interpolation_offsets[ti][ioi]] =

linear_index_from_stride_and_multi_index(
green_stride, interpolation_grid_coordinates[ti][ioi]) ;

vector<int> target_green_offset ;
vector<size_t> target_grid_offset ;

// Subtract the nearby grid based interactions for each sour ce.
for (size_t si = 0 ; si != n_sources ; ++si) {
size_t const n_interactions = interaction_list[si].size() ;
size_t const n_projection_points = projection_coefficients[si].size() ;

// Map the projection stencil grid offsets to offsets on the m ini grid
// where the kernel values where cached.
// psi -- projection stencil index
projection_green_offsets.resize(n_projection_points) ;
for (size_t psi = 0 ; psi != n_projection_points ; ++psi)

projection_green_offsets[psi] =
linear_index_from_stride_and_multi_index(
green_stride,
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projection_grid_coordinates[si][psi]) - green_origin_offset ;

// Determine the projected kernel values that need to be calc ulated.
target_grid_offset.resize(0) ;
target_grid_offset.reserve(

n_interactions * ((n_interactions != 0) ?
interpolation_offsets[interaction_list[si][0]].size() : 0)) ;

// ii -- interaction index
for (size_t ii = 0 ; ii != n_interactions ; ++ii) {
size_t const ti = interaction_list[si][ii] ;
copy(interpolation_offsets[ti].begin(), interpolation_offsets[ti].end(),

back_inserter(target_grid_offset)) ;
}

sort(target_grid_offset.begin(), target_grid_offset.end()) ;
vector<size_t>::iterator new_target_grid_offset_end = unique(
target_grid_offset.begin(), target_grid_offset.end()) ;

// Convert grid offsets to green offsets
size_t num_unique_projection_points = new_target_grid_offset_end
- target_grid_offset.begin() ;

target_green_offset.resize(num_unique_projection_points) ;
vector<size_t>::iterator grid_offset_it = target_grid_offset.begin() ;
vector<int>::iterator green_offset_it = target_green_offset.begin() ;
while (grid_offset_it != new_target_grid_offset_end)

*green_offset_it++ = green_offset_from_grid_offset[*grid_offset_it++] ;

// Scatter
project_on_grid(
target_grid_offset.begin(),
new_target_grid_offset_end,
target_green_offset.begin(),
projection_green_offsets.begin(),
projection_green_offsets.end(),
projection_coefficients[si].begin(),
kernel_values,
projected_kernel_values) ;

// Gather
// For each interacting target interpolate the projected ke rnel values.
// ii -- interaction index
for (size_t ii = 0 ; ii != n_interactions ; ++ii) {

// ti -- target index
size_t const ti = interaction_list[si][ii] ;
interaction_value_type & accumulator = interaction_values[si][ii] ;

// isi -- interpolation stencil index
size_t const n_interpolation_points = interpolation_offsets[ti].size() ;
for (size_t isi = 0 ; isi != n_interpolation_points ; ++isi)
multiply_subtract(

accumulator,
projected_kernel_values[interpolation_offsets[ti][isi]],
interpolation_coefficients[ti][isi]) ;

}
}

}

It is possible that further performance improvements may beachieved by zeroing out parts

of the Green’s function that are likely to have to be precorrected later.
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Precorrection with image sources

If translational invariance is used to cache the Green’s function values, the precorrection

for image panels and image Green’s functions must be considered separately from precor-

rection for “direct” source kernels. If the precorrection for the image terms and the direct

terms is performed separately, it might be worthwhile to setup a separate nearby interaction

lists for the direct panels and for the image panels. Separating the nearby interaction lists

would very significantly reduce the cost of precorrection for the image sources but it would

require having two precorrection matrices or a method to combine the entries of the image

precorrection matrix with the entries of the direct precorrection matrix. Note that, regard-

less of the position of the source panel and the test point (ortest panel), the image panel is

always further away from the test point (or test panel) than the original source. Therefore,

the precorrection matrix for the image panels will always have a sparse structure that is

a subset of the structure for the precorrection matrix for the direct panels. If the nonzero

structure of the image precorrection matrix is a subset of the nonzero structure of direct

precorrection matrix it is very likely thatsubtract_grid_based_interactions can be

modified, or passed in a set of adequate iterators, such that combining the two matrices can

be done efficiently and seamlessly. Developing thissplit precorrectionapproach is left as

future work.

7.5 Calculating the image transform from a signal trans-

form

When applying the precorrected FFT algorithm to problems involving image sources, such

as the Stokes substrate Green’s function or the Green’s function for electrostatics in the

presence of a ground plane, the projection of the source panels on to the FFT grid and the

projection of the image panels on the FFT grid as well as theirDFTs must be computed.

In this section, a method for computing the image projectionand its transform from their

“direct” counterparts, without requiring an extra FFT, is presented.
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Assuming that the plane of symmetry for defining image sources is thez = 0 plane and

that the projection coefficients for the sources arecm,n,p, the projection coefficients of the

image sources are given bydm,n,p = cm,n,mod(Nz−p,Nz). Similarly, if the DFT of c is C

thenDm,n,p = Cm,n,mod(Nz−p,Nz). However, ifc is real its DFTC can becompressedusing

conjugate symmetry, i.e. it may be truncated such that it only has⌊Nz/2⌋+ 1 entries along

thez direction. The Matlab code below illustrates how to producea compressedD from a

compressedC for 2D and for 3D.

Listing 7.8: Compressed image transform from compressed signal transform in 2D.

c = rand(M, N) ;
C = fftn(c) ;
C = C(:, 1:floor(N/2)+1) ;

D_from_C = C ;
D_from_C(2:end,2:end) = D_from_C(end:-1:2,2:end) ;
D_from_C(:, 2:end) = conj(D_from_C(:, 2:end)) ;

% D is the compressed image transform that we want, we can comp are it to
$ D_from_C to validate the procedure.
d = c(:, [1 end:-1:2]) ;
D = fftn(d) ;
D = D(:, 1:floor(N/2)+1) ;

Listing 7.9: Compressed image transform from compressed signal transform in 3D.

P = 6 ; M = 6 ; N = 6 ;
c = rand(P, M, N) ;
C = fftn(c) ;
C = C(:, :, 1:floor(N/2)+1) ;

D_from_C = C ;
D_from_C(2:end,:,2:end) = D_from_C(end:-1:2,:,2:end) ;
D_from_C(:,2:end,2:end) = D_from_C(:,end:-1:2,2:end) ;
% Note that the two steps above are not equivalent to
% D_from_C(2:end,2:end,2:end) = D_from_C(end:-1:2,end: -1:2,2:end)
D_from_C(:,:,2:end) = conj(D_from_C(:,:,2:end)) ;

% D is the compressed image transform that we want, we can comp are it to
$ D_from_C to validate the procedure.
d = c(:, :, [1 end:-1:2]) ;
D = fftn(d) ;
D = D(:, :, 1:floor(N/2)+1) ;
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7.6 Preconditioning

To improve convergence of the iterative solver for (2.23) the block preconditioner from

[55] was adapted to work with the Stokes flow Green’s functions. The maximum block

size is a user controllable parameter that can be used to trade setup time and memory for

improved convergence.
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Chapter 8

Conclusions and future work

In this chapter, the conclusions that were drawn in previouschapters are summarized and

directions for future work are proposed.

Conclusions

A precorrected FFT accelerated algorithm for solving Stokes flow problems in the presence

of a substrate was developed and demonstrated. Techniques to extend the applicability of

the pFFT algorithm to certain types of non-translation invariant Green’s functions were

developed. The modified pFFT algorithm was validated against known theoretical, ex-

perimental and computational results and its performance was compared with previously

published results.

Using the implicit substrate representation was shown to produce more accurate results with

less memory and significantly less time than explicitly representing the substrate. Using the

implicit substrate representation produces more accurateresults because it accounts for the

presence of the substrate exactly.

Surprisingly, a disappointing outcome of this study was that out-of-plane motion excites

equation modes that reveal the need to refine the structure discretization as the distance

to the substrate decreases. Simulation of out-of-plane motion also revealed that, when

using an explicit substrate, the substrate discretizationmust be refined faster than than
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structure discretization for results to match the results obtained using implicit substrate

discretization. So the implicit substrate representationhas benefits but does not entirely

decouple structure discretization from distance to the substrate.

An analytical panel integration algorithm for polynomial force distributions over odd pow-

ers of the distance between points on a flat panel and an evaluation point was developed

extending previous results in the area.

Most of the blocks of the precorrected FFT algorithm where implemented using C++ tem-

plate metaprogramming techniques that will facilitate thefuture development of accelerated

boundary element solvers.

A stable velocity implicit time stepping scheme coupling the precorrected FFT solver with

rigid body dynamics was introduced and demonstrated. The ODE library [27] was inte-

grated with the solver to enable the simulation of systems with collisions, contacts and

friction. Several techniques for speeding up the calculation of each time step were pre-

sented and tested. The time integration algorithm was foundto produce reasonable results.

However, it was found that some work still needs to be done to improve the robustness of

the support for collisions and contacts of moving objects described by arbitrary meshes.

Directions for future work

In the future it would be interesting to couple membrane models such as those described in

[47], [26] and [1] with the velocity-implicit integration scheme and the pFFT accelerated

Stokes boundary element solver.

Since, for the microfluidic application examples, the paneldistribution is not very homo-

geneous, coupling the velocity implicit stepping scheme with a fast solver that can better

deal with non-homogeneous problems, such as the multipole method [33][20], could prove

useful. Another alternative would be to develop a multi-resolution pFFT algorithm.

It would be very useful to integrate the solver with a scripting language such as Matlab,

Python or Lua. Although this integration cannot be considered as research work it would

greatly enhance the usability and the flexibility of the solver.
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Another possibility for improvement would be supporting higher order panel force distri-

butions to reduce the number of panels and improve convergence. Again this would not be

considered to be very interesting research as the techniques for doing this are already de-

veloped. However, supporting higher order panels and forcedistributions would be useful

for simulating smooth structures and would also facilitatethe integration of the boundary

element solver with a finite element solver for structural mechanics where high order shape

and force distributions are commonly used.

Finally it would be both interesting and useful to further explore the techniques used for

dealing with contacts, collisions and friction in order to provide better handling of compli-

cated collision situations and to enable the time domain simulation using large time steps

in the presence of multiple ongoing contacts. Still in this context, it would be worthwhile

to try using multi-rate simulation techniques to speed up the simulation of systems where

there are multiple moving objects, possibly undergoing collisions.
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