Efficient tools for the design and simulation of
microelectromechanical and microfluidic systems
by
Carlos Pinto Coelho

Eng., Instituto Superior &cnico, Universidadedcnica de Lisboa (1999)
M.Eng., Instituto Superior &cnico, Universidadedcnica de Lisboa
(2001)

Submitted to the Department of Electrical Engineering and Computer
Science
in partial fulfilment of the requirements for the degree of

Doctor of Philosophy
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
August 2007
(© Massachusetts Institute of Technology 2007. All rights reserved.

Department of Electrical Engineering and Computer Science
August 10, 2007

Jacob K. White
Professor
Thesis Supervisor

Arthur C. Smith
Chairman, Departmental Committee on Graduate Students

Efficient tools for the design and simulation of microelectromechanical

and microfluidic systems

by
Carlos Pinto Coelho

Submitted to the Department of Electrical Engineering anch@uter Science
on August 10, 2007, in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy

Abstract

In air-packaged surface micromachined devices and middaflalevices the surface to
volume ratio is such that drag forces play a very importate mo device behavior and
performance. Especially for surface micromachined daeyittee amount of drag is greatly
influenced by the presence of the nearby substrate. In tegstla precorrected FFT ac-
celerated boundary element method specialized for cdioglthe drag force on structures
above a substrate is presented. The method uses the Grapaotfoh for Stokes flow
bounded by an infinite plane to implicitly represent the de\substrate, requiring a num-
ber of modifications to the precorrected FFT algorithm. Twate the velocity due to
force distribution on a panel near a substrate an analyiea| integration algorithm was
also developed. Computational results demonstrate thaisinef the implicit representa-
tion of the substrate reduces computation time and memoig witreasing the solution
accuracy. The results also demonstrate that surprisiagly,unfortunately, even though
representing the substrate implicitly has many benefitoéstot completely decouple
discretization fineness from distance to the substrate.

To simulate the time dependent behavior of micromechamicdlmicrofluidic systems, a
stable velocity implicit time stepping scheme coupling firecorrected FFT solver with
rigid body dynamics was introduced and demonstrated. ThE @fary was integrated
with the solver to enable the simulation of systems withismlhs, contacts and friction.
Several techniques for speeding up the calculation of déawh step were presented and
tested. The time integration algorithm was successfulgdus simulate the behavior of
several real-world microfluidic devices.

Thesis Supervisor: Jacob K. White
Title: Professor

Acknowledgments

First I would like to thank my advisor Professor Jacob Whitehis support and guidance
through the years. Jacob has been both an advisor and frieagisakeeping my best

interests in mind and showing true concern about my weltbaimd that of my family.

| would also like to thank Professor Miguel Silveira who, efeom Portugal, has always

been present as a friend and as a source of advice and enemaiaig

| would also like to thank all my friends at MIT and elsewherghvwhom | shared good

times and bad. You know who you are.

Finally, and most importantly, | must thank my wife and fayrfibr their love and support.

Without them | would not have made it here today.

Contents

1 Introduction

2 Background

2.1 Boundary Integral Equation Formulation

2.2 Green's function for a flow bounded by a planewall

2.3 Nullspace and defectintherange

3 Panel integration

3.1 Analytical panelintegration,

3.2 Assembling the Stokes free space kernelintegral

3.3 Assembling the Stokes substrate kernelintegral

3.4 Testing. e

3.5 NOteS e

4 Precorrected FFT solver for Stokes flow

4.1 Precorrected FFT algorithm

4.1.1 Projection andinterpolation

4.1.2 Collocation

4.1.3 Convolutiononrequlargrid

4

2.4 Boundary ElementMethod

12

13

16

18

4.2 Dealing with the substrate Green’s function 42

4.3 Resultsanddiscussion 4 4
4.3.1 Sphere movingnearaplanewall 4 4
4.3.2 Cylinder over substrate - Effect of substrate diszaéitn 46
4.3.3 Substrateshadow o 48
43.4 MEMS acceleromeler 51
4.3.5 Proof mass with hol‘es 53

4.4 Conclusions and futurework oL 56

5 A surprising result 58

5.1 Lateral motio‘n 59

5.2 \ertical motio% 60

5.3 Observatio%s 63

6 Time domain simulatiorl 64

6.1 Boundary integral formulation 66
6.1.1 Backgroundflow 67
6.1.2 Protuberancesonsubstrate 69.
6.1.3 Holes in the substrlate 71
6.1.4 Boundary elementmethod 74

6.2 Timeconstantsandscaling 75
6.2.1 Stiffne:Js 76

6.3 Time stepping schenJ\es 7 7
6.3.1 ForwardEuler 78
6.3.2 Velocity implicit metho‘d 97

6.4 Coupling the Stokes BEM solver and rigid body dynamics 81

5

6.4.1 Anexplicitcoupledsolved 48

6.4.2 Velocity implicit coupled soIvLsr 85
6.5 Interaction with structurLes 87
6.6 Updatablesolver 89
6.7 Resul}s 90
6.7.1 Microwell tra£ 91
6.7.2 Pachinkotrap 98
6.8 Conclusions and futurework 103
7 Implementation detaiISL 106
7.1 Projectionandinterpolation. 106
7.2 Exploiting kernel symmetries to reduce memory usage 110
7.3 Specializations for planar topologies117
7.4 Precorrection e 911
7.5 Calculating the image transform from a signal trans%orm 125
7.6 Preconditioning 271
8 Conclusions and future WOI’IL 128

Contributions

e Adapted the precorrected FFT to support non-translatiomatiant substrate Stokes

flow Greens function.

e Coupled velocity implicit time stepping scheme to accebktdboundary element
solver that enables the stable and efficient simulatiomoeé tlependent problems in

microfludics.

e Developed analytical panel integration algorithm for paynial force distributions
over odd powers of the distance between the source and theagwa point. This
algorithm can be used to calculate the Stokes velocity fie<d polynomial force

and force multipole distributions on flat panels.

e Used C++ template metaprogramming techniques to implenfigsieat and generic
routines that enable exploiting kernel symmetry to redueenary requirements for

the precorrected FFT algorithm.

e Developed specializations of the precorrected FFT algoritor the calculation of

the drag force on surface micromachined devices.

e Demonstrated the surprising result that using the Stokestiate Green’s function
doesnot decouple structure discretization from distance to thestsate, regardless

of the smoothness of the force distribution.

Chapter 1

Introduction

For small length scales, as the ratio between the surfaaeaarckthe volume increases, drag
forces play an important role in the behavior of any objeatsimg in a fluid. For the length
scales and velocities encountered in many micromechaanchmicrofluidic applications,
the Stokes flow model is known to produce accurate estimétes drag forces on objects
in a fluid [1, 2]. The Stokes drag force on air-packaged miecieomechanical systems
(MEMS) such as oscillators, accelerometers and micromsin®an important factor that
significantly influences their dynamic behavior and perfance [3, 4, 5, 6]. Especially
for surface micromachined devices, the drag is greatly eémibed by the presence of the
nearby substrate [7]. In microfluidic devices the fluid dragcé drives the motion of beads

and cells in the flow and is also very important.

Several methods exist for the calculation of the drag fooresbjects immersed in Stokes
flow: finite differences/[8], immersed boundary methods [8g finite element method

[10] and the boundary element method [1]. Since, for Stokes, fihe fluid structure only

depends on the boundary configuration at the time point efést, the boundary element
method is a particularly suitable approach. Moreover, fobfems where one is interested
in the time domain evolution of a system, the boundary elémmthod has the advantage
that remeshing the domain at each step is not necessarfriefudre, using the boundary
element method with appropriate Green’s functions it ismfbossible to drive the motion

of the objects in the flow by specifying a background flow withbaving to explicitly

discretize the surface of the microfluidic channel or otleemaaries that, in other methods,

would just be used to drive the bulk fluid.

The formulation of Stokes flow problems as boundary integealations can be found in
[11, 12, 1] and is reviewed in Chapter 2. Boundary element nastHoased on discretiza-
tion of the boundary integral equations for Stokes flow areflyrreviewed in Chapter 2.

An analytical panel integration scheme for calculating $tekes velocity due to a force
distribution on a flat panel is presented in Chapter 3. Howewa@ve implementations

of the boundary element method have a prohibitively high soboth computation time

and memory when applied to large engineering problems. lacted boundary element
solvers based on the multipole method [13], panel clusgeaimd wavelets [14] and on the
precorrected FFT method [15], have been applied to the ledion of the Stokes drag

force [16, 17, 18, 6, 19, 20].

In this thesis we present a precorrected FFT acceleratatlaoyelement method special-
ized for calculating the drag force on structures above stsate. Our method uses the
Green’s function for Stokes flow bounded by an infinite plam@plicitly represent the
device substrate, requiring a number of modifications toptleeorrected FFT algorithm.
Computational results demonstrate that the use of the impdipresentation of the sub-
strate reduces computation time and memory while incrgasi@ solution accuracy. The
modified precorrected FFT algorithm and results demonstrats use are presented in
Chapter 4.

Our computational results demonstrate that, surprisjmyisn though representing the sub-
strate implicitly has many benefits, it doest completely decouple discretization fineness
from distance to the substrate. A detailed description igfithportant result can be found
in Chapter 5.

The calculation of the trajectories of objects moving inkeflow is a convenient tool for
the design of microfluidic devices such as cell traps [21232 24] and micromixers [25].
Time domain simulation is also very important for the dessfiMEMS devices such as

micromirrors [26].

The Stokes equations state that the pressure, viscous fancebody forces are at balance

regardless of the history of flow, even though the boundari¢ke flow maybe changing
in time [1]. When there are no abrupt changes in the fluid vitpaniomentum diffuses
throughout the fluid domain much faster than the configunatibthe flow is changing
due to the evolution of its boundaries [1]. Therefore, instheonditions, a quasi-static
approach for analyzing the time evolution of the system [gayriate [25]. However, for
small length scales, such as those present in MEMS and muchiofldevices, the ratio of
the drag forces and the mass of the bodies is such that thecrmstant associated with
transferring momentum between an object and the surrogrtiird is very small. For
typical geometries, the time scale for momentum transfewéen the objects and the fluid
is much smaller than the timescale at which the objects maigh the devices, which
is usually the time scale of interest in simulation. The &xise of the very small time
scale for momentum diffusion makes the problem stiff andesdy limits the step sizes

that explicit time integration schemes can use.

To deal with stiffness without incurring the excessive aigolving a non-linear equation
for the forces on the surface of the object at each time stegowple the boundary element
Stokes solver with a time stepping scheme that updates tloeityeimplicitly and the
position explicitly. Using this velocity implicit schemdl@ws for the stable simulation of
the motion of objects using large time steps. To deal witlbj@ms involving collisions,
contacts and friction we coupled our velocity-implicit gnntegration method with the
freely available rigid body physics library ODE [27]. Theagistatic velocity-implicit time
domain solver for Stokes flow is presented in Chapter 6 whei® applied to a set of

real-world microfluidic problems.

For the implementation of the precorrected FFT solver, C+aptate metaprogramming
techniques [28, 29] were used to construct efficient andrgerautines that enable exploit-
ing the symmetry of the Stokes flow Green'’s function’s to @memory usage. The use
of C++ template metaprogramming techniques also enablegktieric implementation of
most of the building blocks for the precorrected FFT aldonis in a way that makes it easy
for a new solver, with a different kernel, to be developedtade regarding the implemen-

tation of the more interesting blocks of the precorrected Bigorithm are presented in

10

Chapter 7.

Thesis structure

The thesis is structured as follows: in Chapter 2, a revievwhefStokes flow model and
the formulation of Stokes flow problems as boundary integrplations is presented; in
Chapter 3, an analytical panel integration scheme for catitig) the Stokes velocity due to
a force distribution on a flat panel is presented; in Chaptérelprecorrected FFT method
is reviewed and extended to support the Stokes substraem&ffenction; in Chapter|5, a
surprising result describing the dependency of the soludiccuracy on the discretization
of the structures and their distance to the substrate i€pted; in Chapter|6, a velocity-
implicit time stepping scheme for the stable and efficiemigation of the motion of objects
in Stokes flow is presented; in Chapter 7, a set of relevannteghcontributions are de-
scribed. Finally, in Chapter 8, conclusions are drawn anaréuivork is suggested. While
Chapter 8 is a global conclusions chapter, some of the otlaatefs also have a local set

of conclusions and suggestions for future work.

11

Chapter 2

Background

For many air-packaged surface micromachined devices anbfiuidic devices, it has
been verified that the characteristic velodity characteristic lengtlh, densityp and vis-
cosity i are such that the Reynolds numlber = U Lp/n is small, the viscous term in the
Navier-Stokes equations for moment conservation donsrater the inertial terms and the

fluid motion can be accurately modeled by the combinatiomefStokes equation
~VP+uV*u=V.-0=0 (2.1)

and the continuity equation
V.-u=0, (2.2)

whereu is the fluid velocity,P is the pressurey is the viscosity, ana is the fluid stress

tensor, which can be written elementwise as

o = — P + . + Ouix ; (2.3)
Ox, Ox;
or in matrix form as
o=—PI+p(Vu+ (Vu)'), (2.4)

whereVu is the Jacobian of the velocity.

The Stokes equations (2.1) can be obtained as an approaimtdtine Navier-Stokes equa-

12

tions for momentum conservatE)n

ou

Por +pu-Vu = pViu— VP (2.5)

wherep is the fluid density. The approximation can be justified by-donensionalizing

2.5))
1 ou ~ ~ ML ~ -~
Re| ——=+u-Va|=Via-—=VP
e(Sr6t+u Vu) V- qu
whereSr = 7U/L wherer is either an externally imposed time constant or, in its abeg

is the convective time scale afd = 1.

The Reynolds number is the ratio of the diffusive time cortstanmomentum in the fluid
o = pL?/p and the convective time constart = L/U it states that the momentum
diffuses through the fluid much faster than it is convectedweler, ifr is small it also
means that any objects moving in the fluid are doing so in sweayethat the time constant
associated with the changing boundary configuration iglaigan the time constant associ-
ated with momentum diffusion. In other words, the fluid reexch steady state momentum
distribution much faster than the boundaries move; thisfies a quasi-static approach for
time domain integration. Note that the quasi-static timel@on model is not valid if
the fluid motion is starting or stopping or if there are anychewllisions, in which case

maybe much smaller than the convective time scale.

2.1 Boundary Integral Equation Formulation

An integral equation formulation for the Stokes flow probleam be constructed using the
Lorentz reciprocity identity [1]. The Lorentz reciprociigtentity states that ifu4, P4)
and(up, Pg) are the solutions of two Stokes flow problems, defined on threesgeomet-

ric domain but with different boundary conditions, the esponding velocities and stress

1Equations[(2.11) and (2.5) are vector equations that expseasmentum conservation along each axis.

13

tensors are related by

0
%(Ufafj —upopy) =V - (ujop —upoa) =0, (2.6)
J

wherever the solutions A and B are non-singular.

The Lorentz reciprocity identity can be used to construcb@nolary integral equation for
o s andug by choosing a problem A that has a known solution, integgaih6) over the
volume of fluid domain/ and using the divergence theorem to reduce the integratser

volume of the domain to an integral on its surfag¥,,

V- (uhop—ul dV:/ 7 —uf dS =0 2.7
/V (Wpop —upo4) av(uAUBn uBa'fAn) (2.7)
B A

wheref,, 5 represent the force applied to the fluid at a point on the sarfahere the

normal direction isa, pointing away from the fluid.

A common choice for problem A is the free-space Stokes flone@sefunction, i.e. the

fluid velocity, stress and pressure field produced by apglgipoint forceg atx, to (2.1)

and solving
—VP + pViu =6(x — x,)g
V-u=0,
which yields
0(x) = G (%, %,)g = —— (I + £7) (2.8)
X) =—— X, X5)g = —— .
87 %s)8 S &
1 31, .+,
o(x) =~ Thi(x.x)g; = -7 ('g) (2.9)
1, 1 i
P(x) —gp (x,%5)8 Er—gg

wherer = x — x,, 7 = [|r||2 andr = r/r. The matrix relating the velocity field at with
the point forceg atx,, G (x,x,) in (2.8) is also known as stokeslet For simplicity, the

F notation is dropped in this section.

Since the velocityu(x) in (2.8) and the stress tensefx) in (2.9) are singular at, to

14

apply (2.7) we exclude a regidn(x,) aroundx, such thau1”(x) ando*(x) are analytical

insideV as illustrated in Figure 2-1.

-
pes
L
o

\l/n w

Figure 2-1: The integration volum#&’, in gray, is bounded by the substrate, the objects in the fluid,
and aninfinite surfaceS,,;. The exclusion volum contains the source poist; such thatu 4 (x)
ando 4(x) are analytical inV — V..

Figure 2-2: When the source point; is located on a smooth surface, for small enougtine
exclusion regiorV (x;) is bounded by a hemisphefé and a diskD..

The exclusion volumé/,(x;), which for convenience is often chosen to be a spherical
section of radius > 0, is parameterized onsuch that its surface and volume are asymp-

totically proportional to:? ande?® respectively.

We obtain an equation farz andfz, which from now on we will refer to simply as and
f, by applying|(2.7) td/ — V_ which yields

Jr(x)Gri(x, %) — prug (%) T (x, %5)0,(x)dA = 0. (2.10)
o(V—-Ve)

When the source point, is located on a smooth surface, for small enoagfire exclusion
regionV,(x;) is bounded by a hemisphefé. and a diskD, as illustrated in Figure 2-2.
Using surfaced, and H,, (2.10) can be rewritten as

/ Fe(3) Gra(, %) — g (%) Tiij (%, %) (x)dA = 0 (2.11)
(OV—De) U He

15

That can be decomposed into a sum of simpler terms

fr(x)Gri(x, Xs)dA:M/ uy (%) Tz (X, xs)nj(x)dA—i—/ f1(x%) Gri(x, X5)
v oV , JD.

N\ /

g

4muy, (xs) for rigid bodyu andx, on oV’ O(e)——0
e—0

-/ Jr(%)Gri(x, x5) —,u/ uk(x)Tkij(x,Xs)nj(x)dA—l—,u/ g (%) Thij (X, x5)1 (x)dA

€ €
J/

0(e)——0 = 0 for x. on disk g Ak (xs)

(2.12)

Considering only rigid body motion and then computing thetlofi (2.12) asc — 0 as the

outer surface,,; stretches to infinity yields

Jr(X)Ghi (%, X5)dA = 87 piug(X,) (2.13)
v

Using the symmetry relatioix(x, x,) = G”(x,,x), true for any Stokes flow Green’s
function due to the Lorenz reciprocity theorem, and repigt¢he force on the fluid; by

the force on the object surfacef;, results in

/ Gir(Xs, X) fre(X)dA = =8 pu;(Xs). (2.14)
ov

where the poink,, originally defined as the source of the Green'’s functian, o 4), can

now be interpreted astast point

2.2 Green'’s function for a flow bounded by a plane wall

The important forces in many MEMS are the forces acting omshiucturess,y;, that are
suspended over a substrate,,;, while the forces on the substrate do not usually determine
device performance. The need to solve (2.14) explicitlytfier force on the substrate can

be eliminated by using a Green’s function that satisfies a zelocity condition on the

16

substrate. Specifically, the Green'’s function can be coatphy solving

—VP + uV?u = §(x — x,)g
Vou=0 (2.15)

u(x) =0, forxonSya.

X, r
h
inw
h rl
X

image
Figure 2-3: Schematic representation of source and image source associated wiGrdba’s
function for Stokes flow bounded by a plane wall.

In the presence of the substrafg,,;, as illustrated in Figure 2-3, the solution of (2.15) is
given by

u(x) = G"(x,x,)g = GF(x,xs)g — GF(x,xi)g
(2.16)
+2h*GP (x,x;)Ng + 2hG>P (x, x;)Ng

whereh is the normal distance above the substrate of source ggitN = I — 2n,n’, n,,
is the wall unit normal as illustrated in Figure 2:3,= Nx,, GF is the free-space Green’s

function (2.8) and
1
3

T

is the potential dipole, whene = x — x;, r; = ||r;||2, T; = r;/r;. The last term in (2.16) is

referred to as the Stokeslet doublet and is given by

AT T
r;nl —n,r
G (x,x) = (ri - ny) GP(x, %) + ———5——. (2.17)
~—— T
Ch—k ———
GR(r;)

Using the definition ofa5P, GP andGR, it follows that the substrate Green’s function can

17

be written as
GYx,x,)=Gr) - G"(r;)—2nkGP (r;)N+2nG"*(r;,)N (2.18)

wherek is the distance of the evaluation point to the substratehdflane normah,, is
aligned with one of the global coordinate ax€st has only two independent scalar entries,
while G5P in (2.16) has 6 independent scalar entries. Reducing the eunfbinique scalar

kernels can be used to reduce memory usage and computaten ti

Using the substrate Green’s functid@,14) becomes

/s GV (x4, x)f(x)dA = —8mpu(xy). (2.19)

obj

2.3 Nullspace and defect in the range

For any Green'’s functiofx (x, x) associated with incompressible Stokes flow, the bound-
ary integral equation for a single body (2.14) is singulad has a rank 1 nullspace given
by f = n. The extension to thgé-body case generates a rahkiullspace [18]. This can
shown by settind = n and using the divergence theorem

Gin(Xs, X)np(X)dA = / dA=0 (2.20)

)%

G (%, X () dA = / OGi(x, %)

1% Vv Oxy,

and recalling tha€,;(x, x,) = G(x, x,)e; is thek™ component of the velocity field due to
a point force along thé&" direction applied orx, and thatV G (x, x,)e; is the divergence

of that incompressible velocity field, which is zero.

Due to the reciprocity relationGz(x, x,) = G*(x,,x), and therefore the defect in the
range of the integral operator in (2.14) is alsix,) = n(x;). Therefore, for (2.14) to have

a solution, the velocity field must satisfy

/ n’ (x)u(x)dA = 0, (2.21)
ov

18

or equivalently, the net flux over the body surfacgs; must be zero. Fortunately, all the
motion velocitiesu due to rigid body motion satisfy the zero net flux conditior2@@ and
therefore((2.14) has a solution.

For the substrate case, sinte: (G%(x,x;)g) = 0, for any forceg, andG"(x,x,) =
G"T(x,,x) the nullspace and defect of (2.19) are still the object serfeormals.

There are several approaches to handling the nullspacéeprdB0, 6]. For the examples
examined in this thesis we used the simplest approach ie¢@iputing the null-space free

solution by projection.

2.4 Boundary Element Method

The Stokes flow problem defined by the integration volumand a set of boundary condi-
tions onu(x,) at each poink, on 9V is represented, in a continuous infinite dimensional
form by (2.14) or|(2.19). However, for almost any practicedlgem, there is no explicit
analytical solution for(2.14) or (2.19). Approximate vesdufor the forces on the object
surface are generated by limiting the dimension of the snlgpace and the number of

constraints to a finite number.

There are several ways to generate a finite linear systemuaitieqs from the boundary
integral equation| (2.14) or (2.19). In this section we discone of the simplest pos-
sible discretization schemes: constant strength collmtatFirst the integration surface
0V is discretized into a set of .15 triangular or quadrilateral flat panels. The value of
the velocity and the drag force on each panel is approximiayeal constant value. With
this discretization method, velocities and forces can peesented as vectok$ andF in

R3*manels| To generate a set 6fi,.n1s €gquations using collocation, consider imposin
p

Npanels

Z/G(Xk, x)F. jdA(x) =—8rpu(xy) =—8mpU. 4, (2.22)
j=1 Pj

for k = 1...npanes, Wherex,, is the centroid of thé'® panel,F. ; denotes the vector force

on thejth panel andJ. ;, denotes the velocity at the centroid of #té panel. The resulting

19

3Npanels X 3Mpanels System of equations can be represented by

GF = —87U. (2.23)

Since the substrate surfasg,; spans a large area, discretizing (2.14) using (2.22) would
require a large number of panels and would greatly incréest@rhe and memory required
to compute drag forces. Moreover, as the distance betweesutistrate and the suspended
structures is reduced, the discretization for bsithy and.S,..; must be refined because the
forces on the substrate and the bottom of the structurebiegharper features that require
finer discretization. Therefore, discretizing the sulistgreatly increases the number of
unknowns in the problem, implying that only small to mediuamplexity problems can
be solved using (2.14) with (2.22). By using a Green’s functiwat implicitly represents
the no-slip no-penetration substrate boundary conditi@remove the need to explicitly

represent the substrate in (2.22) and greatly reduce théewoh unknowns irf¥.

Calculating the panel integrals in (2.22) requires some baoause the Green'’s function
is singular. Algorithms for calculating the panel integrah (2.22) can be obtained by

generalizing the results in [31] and are presented in Ch&pter

Equation|(2.23) is usually solved using iterative methatshsas GMRES [32], and such
methods compute solution approximates by forming prodofots with candidate vectors.
For discretized versions of (2.14), the matrix vector padican be computed rapidly
using sparsification techniques such as multipole algostf83, 16, 30] or precorrected
FFT (pFFT) methods [15, 34, 35]. Using pFFT methods to sd@ved) has complications
as described in Chapter 4.

20

Chapter 3

Panel integration

The entries in the boundary element method matrix (2.23)eehe force distribution over
a flat panelP to the velocity at a test point or the weighted integral ofwblecity over a test
panel. The velocity due to a force distribution on a panellmoomputed by integrating the
Stokes Green’s function. In free space, the Stokes Greentibn is called thetokeslet
and is given by/(2.8); in the presence of a substrate, theeStGkeen’s function is given
by (2.16). In either case, the integrals|of (2.8) or (2.16) lsa calculated by combining the

appropriate values of

_ m _ n — p

S(m’ n)p) q) — / (x(] x) (yo y) (ZO Z) - dS (31)
P ((zo —)%+ (yo — y)* + (20 — 2)?) 72

In fact, combining the appropriate values$(fm, n, p, ¢) can be used to calculate the ve-

locity field due to any polynomial force distribution ovEr

The calculation of panel integrals can be performed usiraysinal or numerical integra-
tion or by combining analytical and numerical integratiofnalytical panel integration
algorithms have the advantage that they are accurate lutleds$ for vector functions,
much of the setup cost and the more expensive function di@hsacan be reused for the
different scalar entries of the vector function. On the othend, using efficient adaptive
guadrature methods for calculating the integral of veatoicfions has problems because

each entry of the vector kernel may converge at a differdst ththe entries of the vector

21

kernel are integrated separately many, often not triveuations must be repeated. On
the other hand, if the quadrature rule is applied to the vé@mel integral as a whole, the
kernel with the worst convergence will determine the nundfequadrature points to be
used, which will also be inefficient. However, especiallyantthe evaluation point is not
close to the source panel and a fixed quadrature rule can ddarsall the kernel entries,
using numerical integration is often more efficient thamgghe analytical panel integra-
tion methods (see [36] for a list of efficient quadrature sude triangular panels and other
shapes). Our implementation uses analytical integratiotie calculation of the velocity
at a point due to a force distribution on a panel if the poirglaseto the panel and uses
numerical quadrature [36] if the point is further away frdme panel. When using Galerkin

testing our implementation computes the integral overesepganel using quadrature.

In this chapter an analytical panel integration for calto@(3.1) is presented. The al-
gorithm extends some of the results'in [31], [37], [38], [3@]d [40], uses some different
recursion schemes and is designed for the simultaneouslatdn of multiple entries of
(3.1), which is particularly useful when dealing with vedternels such as (2.8) and (2.16).
The panel integration algorithm can calculate the integfg@olynomial distributions over

any odd power of the distance between the evaluation pothtfensource panel.

This chapter is structured as follows: first, in Section Bd dnalytical panel integration is
presented; in Section 3.2 and Section 3.3 an efficient wagsd#rabling the Stokes Green'’s
functions is presented; in Section 3.4 the panel integnaigorithm is demonstrated; fi-

nally, in Section 3.5 some comments and suggestions forfutork are made.

3.1 Analytical panel integration

In this section, an analytic method for computing (3.1) isgented. Since the algorithm
relies on several recursion relations and geometric toamsftions an overview of the al-

gorithm is presented in Figure 3-1.

In the following three coordinate systems will be referredthe global coordinate system,

with (z,y, z) Cartesian coordinates; the panel plane coordinate systémgcwoordinates

22

(u,v,w) defined such that the panel lies on a constarlane; the edgé coordinate
system in which the position of the target point is descriag@ distancé along edgek,
E;, and a distancel, normal to edge: in the plane of the panel. The three coordinate

systems are illustrated in Figure 3-2, Figure 3-3 and Fige

Kernel Integrals:

-Stokes free space
-Stokes substrate

REC 4 HEEI
(REC 4) Py

global coordinates

Surface integrals in global coordinates: ¢
to panel coordinates

E S(m,n,p,q)zj. (x,=%)" =)' (z,— 2)" ds

Pr(Xy =X, Yy = V2o —2)° 7" Yo X “

Yo~V |=R|v

mmmmmmmmmmmmeeeey IZ Zy—Z w
(REC 1) i (REC 2)

.

Surface integrals in panel coordinates: (REC 1) Surface integrals in panel coordinates:

u"v" < _ 1
S, (m,n,q) = LL Wd”dv SL(O,O,q)—L,LWd“dV
1 (REC 1) |
Edge integrals in panel coordinates:
BY" u(bY" B panel coordinates
E(m,n,q) :I u(b)"v(b) e) Z to edge k coordinates
E, +
V(l:lk(b),\/(b), Z) u B COS(ek) Uk b — Bk,()
v| |sin®,) 7, 1
Z (REC 3)
Edge integrals in edge coordinates: Edge integrals in edge coordinates:
By b By 1
J(k,t)= J‘BH, (b2 n Akz n Zz)r+1/2 I(k,t)= J-BM (b2 " Akz 1 Zz)t+1/2

Figure 3-1: Overview version of the panel integration algorithm for polynomials over palvers
of the distance between the source and the target. In the graphic (RE@&t3 to equation (3.4),
(REC2) refers to equations (3.9) (3/10) and (REC3) refers to equatidd X3(REC 4) corresponds
to the material presented in Section 3.2 and Section 3.3.

First a rigid body transformation from the:, y, z) global coordinate system, illustrated
in Figure3-2, to a coordinate system, v, w) where the source panel is on a plane with

constantw, as illustrated in Figure 3-3, is computed. In the new comth system the

23

Figure 3-2: Source panel and evaluation point in global coordinate system.

Figure 3-4: Source panel and evaluation point in the edge coordinate systems.

distance alongw between any point in the source and the evaluation poift is

Considering the panel vertices and edges, as illustrateidgimé=3-2, a rotation matrix from

the panel coordinate system to the shifted global coordisggtem can be determine using

R, = E;/||E;]]
R, = —(I- R,R))Ey
o (3.2)
Rv = Rv/”RvH2
R,=R, xR,

24

which can be represented in matrix form as

To— T U
Y — Y = Ru Rv Rw v (33)
20— 2 R w

For points on the source panel, in the v, w) coordinate systemy is constant and has a
value of Z. Sincew is constant, the integral over the surface of the sourcelgamebe
described as an integralinandv. For a giveny, the integralS(m, n, p, ¢) can be expressed

as a linear combination of integrals @f'v™ /r(u, v)?*! over the source

/ /
m',n
(%

SL(m',n',q):/u—dS

s 7(u,v)% !

wherem’ +n' < m+n + p. However, whenever possible, it is more efficient to byphes t
explicit calculation ofS(m, n, p, ¢) and to work withSy (m’, n’, ¢) instead (see Sections 8.2
and Section 3!3 for further details). In the following thénpe notation is dropped for sim-
plicity. The 2D surface integral afv" /r(u,v)?*! for nonzerom or n can be computed
using the divergence theorem on thev) plane, which yields the recurrence relations
Ey(m,n—1,q—1)—(n—1)Sp(m,n—2,q—-1)

SL(m7n7 Q) = 129 X (34)
Eu(m_17n7q_1)_(m_l)SL(m_27nvq_ 1)

whereFE, andE, are the line integrals

Eu(m, n, Q) _nedges sin 6, y Z)mv(l)n
] 2 ! }/Ekr(u(l),v(l))%ﬂdl (3.5)

Ev (mv n, Q> k — COs ek

where|sin 0, — cos 6] is the k" edge exterior normal in the, v) plane. The angleg,

are illustrated in Figure 3-3.

25

Calculating S.,(0,0, ¢) and S (m, n, q)

The values 0f5;,(0,0,¢) and S;(m,n,0) are required to initiate the recursion (3.4). To
calculateS; (m,n,0), the two equations in (3.4) can be combined yielding

T X (Bu(m +1,m,¢)+ (3.6)

Ev(mvn +]-7Q) - ZQSL(munaq + 1))7

Sp(m,n,q) =

which can be used to computg (m, n,0) as the values'(m,n, 1) are being generated.

The value 0fS., (0, 0, ¢) can be determined using cylindrical coordinaigsp, w) such that

u = pcos ¢ andv = psin ¢ andw is unchanged

O O /‘(z)max /‘Pmax pdpd¢ B
,q) _ (p® + ZQ)q—i—l/z =

Pmax (¢)

do

Pmin (¢)

(3.7)

1 ¢mdx
1 - 2q /Illill (p + ZQ)qil/Q
and then replacing the integrals oveby integrals over the position along the edge,

NGz

Nedges Bkl 1 d(g(b)
S.(0,0,q9)= db 3.8
L(’ 7q) 1_2q;/Bko(p2+Z2>q_1/2 db ()
- ’ P0
wheredg/db = A, /(b* + Ay). More explicitly
Nedges 1—2
Z qA(b
ALK .
51(0,0,q) = 2q2 V() = S5 (39)
whereK (k, q) is given by
W L
Akf(k,O)—i-Ztan WB q:0
K(k)_/Bk1 = = 11 gy |PEa '
T o, B A 22 T) T !
Al (k’q_l()QZEQf)_Z?;)K (kg=1) otherwise
(3.10)

26

E
3
+
E,
E;t
a) When point is over panél¢ = 27. b) When point is not over panél¢ = 0.

Figure 3-5: Cylindrical coordinate system used to evaluat@, 0, ¢). The signs associated with
each edge integral are indicated in superscript.

where(k, p) is the edge integral calculated in thth edge coordinate system (see Fig-

ure[3-4,

Sign (Bkﬁ) 10g(Bk71/Bk70), Ck = O,p =0
Bri b Sign (Bro) (B — Blo)/2p. Cr=0,p#0
I(k,p) = /B e (DT X . -
k.0 sign(Bk,o) log(b + (b)), ., Ck #0,p =0
B
|7 S mmee T 2(p— DI(k,p— 1)) , OW.

(3.11)

wherer?(b) = b? + C? andC? = A? + Z2. The expressions fak (k,0) and K (k, 1) can
be rearranged for accuracy and reduced cost, see [31] faitslefo avoid loss of accuracy

in (3.11), expressions of the fora™ — 1™ can be computed using

A" — hm = (— . 1) (f)k (3.12)

The termA¢ in (3.9) is27 if the evaluation point, is over the source, as illustrated in
Figure 3-5a). If the evaluation point is over an edye is 7. If x, is over a cornerA¢

is the internal angle between the two edges that define thaercolf x, is not over the
panel, as illustrated in Figure 3-5k)y is zero. Ifx, is onthe panel, thery; (0, 0, ¢) is not
defined forg > 0.

27

Calculating E, and E,

One way to calculate (3.5) would be to exprasandv on each edge as a function of the

position along the edge see Figure 3-4, using

uk(b) =U, + (b — Bk,o) cos), = Qw0 + Oék%lb

Uk(b) =Vi+ (b — Bk,o) sin @, = Qg0+ Oékﬂ,,lb

and to combine integrals of powersiobverr; (b)??*! as in

u(b)o(b)" mi:nn b "
- ,—b2+022q+1 g q,m,n,k,p 5, ,—b2—|—022q+1

Instead, we introduce a simpler recursion that redsksg) from (3.11), which is already

used to computé(0, 0, ¢), and

J(k, p)= / o = _r(b)'
P= By (D2 + AL+ Z2)pH/2 1 —2p

By 1

(3.13)

Byo

that has a simple integrand for aqyNote that, for accuracy, (3.13) can be calculated using
(3.12). To appropriately combine the valued ¢, p) and.J (k, p) we present the following

recurrence relation: If

“u(b)mo ()" / 1
m,n db
Ek \/702211-%1 Zﬁq kop \/m (g—p)+1 ™

E(q,m n,k) I(q p,k)

E Yg.m / b db
q,m,n.k,p —
» X Ey /b2 C]%Q(q p)+1

J(q—p,k)

J/

28

wheres, 0.0,k = 0qp aNdy400k, = 0, then

AL w0 + bak,u,l

E(Q7m+ 17n7k) - ﬁ smun,k, / —
; T e e

bO{ku + b2+0 (67’ ¥N) —CQCM]CU
S vy | st P4 Ol - o
P Ex

2(q—p)+1
\/m(qpﬁr

- Z /yq,m,n,k,pak’,u,l](q -p—1, k)+

db+

p

Z[ﬁq,m,n,k,pak,u,l + f)/q,m,n,k,pak,u,O]J<q - D k)+
p

Z[ﬁq,m,n,k,pak,u,O - Cl?’)/q,m,n,k,pak,u,l]](q - D k)
p

i.e.
2
Bam+1mkp = BgmmkpQhkuo — Cp¥ammnkpOhul T Ygmomkp—10%ku1
Yasmt1nkp = BammndepQhu,1 + Vagmm,k,pOh,u,0
and similarly

2
Bammt1kp = Bgmmkphv,0 — Cr¥ammnkpQkw1 + Yommnkp—10kv,1

fyq7m7n+17k7p = ﬁq7m7n7k7pak7v71 + fyq7m7n7k7pak7l}70

3.2 Assembling the Stokes free space kernel integral
Fortunately, to calculate the panel integral of the Stokes $pace Green’s function

! (I+ tt7) (3.14)

r

G (r)

it is not necessary to explicitly calculat&m, n, p, ¢). Let R represent the rotation matrix
associated with the source parteandr;, = [uvw] the value of in local panel coordinates

such thatr = Rry itis clear that

1 1.1
GF(r) = ;(I +it!) = “I+ ﬁRrerRT = RG(r;)R". (3.15)

r

29

SinceR andR” are constants, (3.15) can be integrated using,

/ GF(r)dS=R [G¥(r;)dS;R” (3.16)
P

Py,
where P, anddS, indicate an integration in the panel coordinate system.

From (3.16) one can conclude that the panel integral canlbelated in panel coordinates
using S.(m,n,q)Z? and afterward surrounded by the appropriate rotations. pémel

integral in local coordinates is given by

S,(0,2,1) Sp(1,1,1) S.(1,0,1)Z
G[dS, = S.(0,0,0)15+ | S.(1,1,1) 5.,(0,2,1) S.(0,1,1)Z (3.17)
Py,

Sp(1,0,1)Z Sp(0,1,1)Z S.(0,0,1)22

wherel; represents the identity matrix with 3 rows and columns.

3.3 Assembling the Stokes substrate kernel integral

The Stokes substrate Green'’s function

Gi(x, x,) =G (r) - GH(r;) —2nkGP (r,)N+2hGR (r;,)N (3.18)

where
GP 1I 3 T 3.19
(ri)zr_g _Eriri (3.19)

and
X . T

GR(r;) = 2pT —pn b 3.20
(r3) rg,nw 1, 3 (3.20)

is more complicated tha@’. The panel integral o6G® can be calculated by setting up
an image paneP;, as illustrated in Figure 36, over whid&” (r;), 2hkGP(r;)N and
2hGR(r;)N can be integrated. The panel integral for the direct and é@g terms can
be computed by following the procedure outlined in Sectich 3

The panel integrals foG” and G present some further challenges as, farm (3.18), the

30

Figure 3-6: Schematic illustration of source panel, image panel and evaluation point.

GP? andG* terms are scaled by a term proportionahtdhe distance of the source panel
to the substrate. To introduce this dependency on the distahthe source panel to the
substrate, while integrating over the image panel, thetigen! - n, = —h — k can be
used. Note that is constant but changes along the panel. LRt represent the rotation
matrix associated with the image par&lsuch thatr; = R,r; ;, andn,, = R;n,, 1, the

value ofh can be expressed in termsiof, andn,, ;, usingh = —rZan’L — k.

To represen2hkGP (r;)N in terms ofr; ;, we can use

2hkGP (r;)N = —2k(r] n, 1 + k)R;EG"(r;)R] R; (13 — 2n,, 0,) R}

N J/

N (3.21)
= —Ri(2k(rZan7L —+ k)GD<I'Z7L)NL)RZT
To represen2hG®(r;)N in terms ofr; ;, we can use
2hG"(r))N = —R;(2(r] 1, + k)G (r; 1, ny, .)NLR] (3.22)

The panel integrals of (3.21) and (3.22) can computed ffgm, n, ¢) Z7. Note that, since

these panel integrals are being calculated over the imags {3, x, will never beon the
panel and therefore there is no need to worry about the plitysis trying to calculate the

integral of a hyper-singular expression at its singulanpoi

The terms associated with the dipole kernel can be calaulagecombining a constant

strength dipoIeGrLD,0 and a linear strength dipo@LDvl. The panel integral of the constant

31

strength dipole is given by

Sp(0,2,2) S.(1,1,2) Si(1,0,2)Z
/ GPodS, = S1(0,0,1)13 =3 | S.(1,1,2) 5,(0,2,2) 5.(0,1,2)Z
P

5.(1,0,2)Z 5.(0,1,2)Z S.,(0,0,2)2>
(3.23)

whereP, ;, represents the image panel in the image panel coordinatnsys

Let
a = [SL(l,O, 1) SL(07 1, 1) SL((),O, 1)Z] Ny, L

and
3

Bij = Z Sp(Bia 4 051 + Ok, ip + Oj2 + Op2, 2) 209058 man,, 1
k=1

wheres; ;. is the Kronecker delta function and, ;. is thek™ component of the substrate
normal in the image local panel coordinate system. The pategral of the linear strength

dipole is given by

Bin B2 Bis
/ GlL),ldSL =aly3 =3 | By [og Do (3.24)
P L
P31 B32 B33

Therefore, the total contribution due to the dipole terms is

/ GPdS, = —2k (/ GP,dS; — k / GﬁodsL> . (3.25)
P P P 1

The contributions associated with the rotlet tei@, consists of the sum of the panel
integral of a constant strength rotﬁ:tﬁ0 and the panel integral of a linear strength rotlet
G1 | with strengthe? n,, ;.. Lety, = [S(1,0,1) S(0,1,1) S(0,0,1)Z]", the panel integral

of the constant strength rotlet is given by

/ GrIL%,odSL = ’70“5,L - nw,mg- (3.26)
P L

32

Let
[SL(Qa 07 1) SL(]-a]-) 1) SL(]-u 07 1)2] LTINS

[Sp(1,1,1) S,(0,2,1) S,,(0,1,1)Z]ny, 1, (3.27)
[SL(L 0, 1)Z SL<O, 1, 1)Z SL(O, O, 1)22] Ny L

Y1

the panel integral of the linear strength rotlet is

/ GH S, = vinT, — T (3.29)
P

and the total rotlet contribution is

/ GRS, =2 (k:/ GﬁOdSL —/ GﬁOdSL> : (3.29)
Pir P L P r
The integral of the Stokes substrate Green’s function is gieen by
/ G%dS =R [GFdSR” - R, / GFdSR] +
P Py, P L
(3.30)

R; (/ GPds; — / GfdsL> N, R}
P P

Galerkin

If the boundary element method is using Galerkin testing,ehtries of the boundary el-
ement matrix are the weighted integrals over a test pandiefelocity due to a force
distribution over a source panel. To calculate the entriéis Galerkin testing our imple-

mentation calculates the integral over the test panel ugiaglrature rules (see [36]).

3.4 Testing

In this section we demonstrate the panel integration algorby plotting the velocity field
produced by a force along the y or z direction. The velocity field produced by a force

distribution on a square panel withuth side atz = 2um, parallel to the substrate, is

33

illustrated in Figure 3-7. For comparison, where for conmgmar, the velocity field in the

absence of the substrate is also illustrated in Figure 3-7.

y [um] -5 y [um] -5 y [um] -5

Figure 3-7: Velocity field produced by a constant force distribution on a square paitietl.:m side

at z = 2um. The figures on the top row were produced by integrating the StokesatetGreen’s
function. The figures on the bottom row were produced by integrating thke<sShee space Green'’s
function. On the first column, a force along thexis was applied; on the second column, a force
alongy was applied; on the third column, a force alongvas applied. To improve visualization of
the field, the length of the arrows in the figures is proportional to the logariththe magnitude of
the velocity.

The velocity field produced by a force distribution on a tgatar panel with km side at
2z = 2um, normal to the substrate, is illustrated in Figure 3-7. ¢@mnparison, where for

comparison, the velocity field in the absence of the sulssisatiso illustrated in Figure 3-7.

The panel integration algorithm was tested by comparinggslts to those produced using
adaptive subdivision quadrature methods using the quaeratiles in [36] as the inner

qguadrature rule. The results were verified to match to angoregble degree of accuracy.

34

y [um] -5 y [um] -5 y [Hm] -5

Figure 3-8: Velocity field produced by a constant force distribution on a triangular paith 1,:m
side atz = 2um placed normal to the substrate. The figures on the top row were peddoyg
integrating the Stokes substrate Green’s function. The figures on the hottowere produced by
integrating the Stokes free space Green’s function. On the first colummgceadtong ther axis
was applied; on the second column, a force alongas applied; on the third column, a force
along z was applied. To improve visualization of the field, the length of the arrowseifighres is
proportional to the logarithm of the magnitude of the velocity.

3.5 Notes

The panel integration algorithm presented in this chaptersdchot account for the case
where the evaluation point @n an edge or corner of the panel. Extending the panel inte-
gration algorithm to deal with such cases is not too comgsitdut it was not necessary
for the purposes of developing the boundary element soeeaulse, for that application,
the evaluation points where either not on the source panekoe interior points on the

source panel.

The velocity due a linear strength force distribution cacdleulated by replacing., (m, n, q)

35

in Sections 3.2 and 3.3 by

SL (m7 n, Q)

Sp(m,n,q) = | Sp(m+1,n,q) (3.31)
Si(m,n+1,q)

and replacing scalar operations by the correspondingisietvectorized operations. Nat-
urally the same process can be applied to the computationeo¥elocity due to higher

order force distributions.

36

Chapter 4

Precorrected FFT solver for Stokes flow

In this chapter we describe an accelerated boundary elesoketr for calculating the drag
force on microelectromechanical and microfluidic devicése drag force on microelec-
tromechanical devices such as oscillators, acceleromet@mbdrives and micromirrors is
an important factor that significantly influence their dynabrehavior [3, 4, 5]. Especially
for surface micromachined devices, the drag is greatly emided by the presence of the
nearby substrate [7]. Stokes drag near the bottom of a middafichannel is also impor-
tant for the calculation of the cell trapping dynamics otistures such as those described
in [21], [22] and [23]. However, explicitly accounting fone substrate can be computa-

tionally expensive.

Accelerated boundary element solvers based on the mutipethod [13], panel clustering
and wavelets [14] and on the precorrected FFT method [15& heeviously been applied
to the calculation of drag forces on MEMS structures [6, 16,18, 19]. However, with

the exception of the variable order wavelet method useddh fhese implementations of
the boundary element method use a free-space Green’'sdartbtit requires an explicit
discretization of both the substrate and the suspendectstes. The problem with dis-
cretizing the substrate is that a large number of unknowaseeded. In addition, when
the structure is close to the substrate, the substratestlizaion must be refined to match

the “shadow” of the structure.

In this chapter we present a more efficient fast BEM solvertimcsures above a substrate

37

that uses the Green’s function for Stokes flow bounded by epia implicitly represent
the device substrate. In particular, we develop an apprbastd on the precorrected FFT
(pFFT) algorithm [15], as the pFFT method has been demdagsitta be extremely mem-
ory efficient. Such pFFT approaches rely on translationriamae and, as we describe
below, that introduces algorithmic complications when borad with the substrate Stokes

Green’s function.

In the following, it is shown that using the Stokes substfateen’s function significantly
reduces memory usage and the time required to calculatedigefarce. It is also shown
that, if the substrate is represented explicitly, then foak separation distances between
the structures and the substrate a very large number ofpant be used to represent the
substrate. In Chapter 5, it is also demonstrated that toaehigiven level of accuracy, re-
gardless of whether an implicit or an explicit representatf the substrate is used, the size
of the panels used to discretize the structures must be eddagthe distance between the
structures and the substrate decreases. This result isssugbecause the need to refine
the discretization of the structures as the gap decreases recessarily driven by a need
to more accurately represent the solution. Nevertheléss,demonstrated that, despite
the complications introduced in the pFFT algorithm and #e that the discretization still
needs to be refined as the structures are brought closer gulis¢rate, using the Stokes
flow substrate Green'’s function is still worthwhile as it fuces more accurate results more

efficiently than by using an explicit substrate discretmat

This chapter is structured as follows. In Section 4.1, thETpRIgorithm is reviewed. In
Section 4.2, the modifications to the pFFT algorithm reglixe support the Stokes sub-
strate Green’s function are presented. In Section 4.3|tseglidating and demonstrating
the pFFT accelerated boundary element method using thératgh&reen’s function are
shown. Finally, in Section 4.4, the advantages and linaitetiof the approach proposed in
this chapter are discussed. The background material,iagsoavith the Stokes flow model

and boundary integral formulation is presented in Chapter 2.

38

4.1 Precorrected FFT algorithm

The precorrected FFT algorithm, introduced in [15], acaks the process of calculating
the interactions betweeN sources and/ targets by first applying interpolation to map the
effects of the/V arbitrarily located sources to a regular grid,/af points, then calculating
the interactions between thé; regular grid points using FFT accelerated convolution and
finally interpolating the results from the grid to thé targets. Since the interactions calcu-
lated using this grid based procedure are not accurate arnwlign the sources and targets
are nearby, in the pFFT algorithm the values of the inaceugatl based nearby interac-
tions are discarded (effectively subtracted from the tgmalduced by the FFT accelerated
convolution) and replaced with more accurate estimateiseohearby interactions, usually

obtained with numerical or analytical integration.

To use the FFT to accelerate the convolution step on a reguthithe interactions between
sources and targets must be translation invariant. Howthesubstrate Green's function
for Stokes flow is not translation invariant on the directimormal to the substrate. In
the following sections the basic concepts and steps indoinehe pFFT algorithm are

reviewed.

4.1.1 Projection and interpolation

Consider evaluating a functiog(x, z, yi, ys, 21, 2s) = g(X¢,Xs), Wherex, denotes a
source point anet; denotes a target point. The functigrcan be approximated by polyno-
mially interpolating from a set of sampleg$x,, x,,) evaluated at a set of points near the

source poink,. In particular,
(x4, %) = Zg(xt,xp)Lp(xs) + Ep(x¢, Xs) (4.1)
p

where, for a given projection order L, (x,) is a Lagrangian interpolator, i.e. a polynomial
that is 1 whenx, = x, and zero for the remaining sample points, andx;, x) is the

projection error. In the context of the pFFT algorithm, th@irce interpolations called

39

projection.

Dually, g(x;, xs) can be approximated by interpolating samplés;, x,) evaluated at a set

of pointsx; near the target point,. Analogous to/(4.1),
g %,) = 3 Li(xi)g(xi,x,) + Eilx4,x,) (4.2)

whereL;(x) is again a Lagrangian interpolator affl x,, x,) is the interpolation error.

Projecting the source using (4.1) and interpolating at #sidation|(4.2) results in
g(x¢, x5 = ZL Xy Zg Xi, Xp) Lp(Xs) + Eigp(xe, X,) (4.3)

where thex;’s andx,’s are conveniently chosen points (e.g. a subset of poingswomform

grid) andE;,, represents the approximation error.

The accuracy of the above approximation can be improved ibg @slditional information

aboutg, such as its derivatives with respect to the source and fasdipns.

4.1.2 Collocation

The BEM collocation matribG in (2.23) can be approximated using (4.3)

> Gisfs =D fs g(xy,Xs) f(x5)dS =
> ZpLi(Xt) 9(Xi, Xp) D fs f(xs)dS+
Z fs i+p Xskvxt)f<xszc)ds = (44)

Z It,z‘ Z gi,p Z Pp,s fs + Zs Et,sf37
% P s

~~

i+p
Gt,s

where the matri®,, ; is called the projection matrix, and the matkjx is called the interpo-
lation matrix. The error terril, maybe large ik, andx; are nearby or if the interpolation

stencil forx, overlaps with the projection stencil fat, and the kernel is singular, in which

40

case the kernel valuegx;,x,) for x; = x,, which cannot be correctly evaluated, will
corrupt the approximation. In the precorrected FFT alpanithe error term for nearby
interactions i.e. E; s = Gy — Gifsp, is calculated explicitly and added to the contributions
calculated using projection and interpolation in ordernmpiove the accuracy of the ap-
proximation. For distant interactionE, is negligible and is set to zero thus generating a

sparse matri>Et7s called the precorrection matrix.

The non-zero entries of the precorrection matrix are géedrssing quadrature schemes [36]
or an analytical method to calculate an accurate valu€farand by subtracting the grid
based contributiorGithp. An analytical method for calculating the velocity field dicea

force distribution on a flat panel is presented in Chapter 3.

4.1.3 Convolution on regular grid

If the pointsx; andx, are points on regularly spaced grids with the same spaciddtan
same axis of alignment, aggl,, = g(x;,x,) is translation invariagt theng;, = g;_,isa

block Toeplitz matrix. Therefore, the term in (4.4),

Z 8ip Z Pyfs = Z gi,pfp = Z gi—pfp (4.5)
p S p p
fp
can be interpreted as a discrete convolution and can belatdduefficiently using the
FFT algorithm [41]. Calculating the convolution using theTF® transform both a zero
paddecfp and the kernel associated wih , to the frequency domain, performing a point-
wise multiplication, and then inverse transforming theutebas a computational cost of
O(Ng log(Ng)). By contrast, calculating the convolution on the grid dilebis a cost of
O(Ng). A similar interpretation and acceleration scheme can led fsr the case where
the kernel is of the forny(x;,x,) = g(x; — Dx,) whereD is a 3 by 3 diagonal matrix

with entries that are 1 or -1. For the grid axis correspondmgl entries the matriyg; ,

LA function is translation invariant if(x;, x,) only depends on the relative positionsofandx, and the
two parameter functiop(x;,x,) can be reduced to a single parameter function — x,,).

41

forms Hankel blocks that can be viewed as a discrete congalof an image source with

a shifted translation invariant kernel [15].

In the following, for simplicity, we will assume that the drof Ng points is arranged in

Nz regularly spaced layers with witNxy points parallel to the substrate.

4.2 Dealing with the substrate Green’s function

Since the Stokes flow substrate Green’s function is notla#ios invariant along the direc-
tion normal to the substrate, the FFT based convolutionriestin section 4.1.3 cannot
be directly applied to accelerate the calculation of theei#y on theN¢ grid points. Ex-

amining how the Stokes flow substrate Green’s function istraotslation invariant along
the direction normal to the substrate leads to severalnatises for extending the pFFT

approach.

The Stokes flow substrate Green’s function, repeated froh8)2

GY(x,x,)=G"(r) - G¥(r;)—2nkGP (r;)N+2hG" (r;,)N

Gim(x,x;)

is not translation invariant along the direction normalte substrate for two reasons: first,
it is the combination of a direct contribution and an imagatdbution; second, some of
the image terms are multiplied bByor h%k and therefore depend on the absolute position
of the source and the target. The first issue can be addregsgalitting the kernel into

a direct contributionG(x, x¢)¥ and an image contributioG™(x,x;). The direct contri-
bution is translation invariant and does not pose any autditichallenge. However, the
image contributiorG'™(x, x;) has an explicit dependence drandik and is not transla-
tion invariant even though the kernals”, GP and GSP are. To deal with the translation

variant terms, it is possible to move theand thehk dependence to the projection and

42

interpolation matrices as in

w =30 [GY(x4,%s)dSs = 37, Li(xe) x (
>, GF(xi, %) 3o, [Lyp(x)dS,f—
>, G (xi,Nx,) 37, [o Ly(x)dS £+ (4.6)
202G (i, Nxp) 37 [, Lp(x)h(x)dS,f+

k(xe) 32,267 (xi, Nx,) 35 [, Lp(x)h(x)dS.E),

which can be written in matrix form as

= > fs Y (xy, Xs)f5dSs =
Zi Lii Zp GiF,z) Zs P, sfi—

S LY, G”“FP Sft (4.7)
S L Y 2GS PR+

SIS 2GS P,

The resulting FFT accelerated matrix vector product, withithe precorrection term, is
illustrated in Figure 4-1. Using this scheme each matrixaeproduct requires 6 scalar
projections, 6 FFTs, 6 iFFTs and 6 scalar interpolationandJthe symmetry of the ker-
nels, this scheme requires storing 6 scalar kernels tramsféor the direct contribution

G (x,x¢) and 14 scalar kernel transforms for the image contribu@dn(x, x;).

FFT(G},)
P(O)f (FFT |
P FFT(G‘,?;F)
PY FFT(G")—>@—s®mms Lo u,
P(l)fk
FFT(G") —® [FFT>

()]

Figure 4-1: The velocity on the interpolation grid can be calculated using 6 projections, 6 FFTs,
6 IFFTs and 6 interpolations and us88 N normalized storage for kernel transforms. Note that
the transforms of the Green’s functions are computed once and stored.

43

Splitting the kernel into 20 scalar components while thgioal kernel has 8 independent
scalar entries seems wasteful. Motivated by this obsenva#in alternative approach, one
that does not require splitting the kernel nor modifying fgrejection and interpolation
steps, was considered. Instead of splitting the kernel amdjwa three dimensional FFT to
accelerate the convolution, in the alternative approaelvéthocity on each of tha/; layers
of the grid is computed using an explicit convolution of tleece distribution on each of
the IV layers. Sinc&Z" is translation invariant along directions parallel to tisrate,
the alternative approach can use two dimensional FFTs werate the computation of the
contribution of the velocity on a layer due to the force ontheolayer. Therefore, the com-
putational cost of the alternative approactOiEN2 Nxy log Nxy) = O(NzN¢ log Nxy).
SinceGY is not translation invariant in the direction normal to thistrate and there are
8 scalar kernels, to store the interactions between all #ivs pf layers requires memory

proportional toa8 N2 Nxy = 8Nz Ng.

Despite its simplicity, this alternative approach was awmed because it does not scale
well as N, increases. Even though splitting the kernel into subcoreptsncomplicates
the projection and interpolation steps and requires momang the memory used by the
split kernel approach scales linearly with the number a goints, while the memory and
time required for the alternative approach grow quadriyieeith N,. We found that for

Nz > 4, the split kernel approach was more memory efficient.

4.3 Results and discussion

In this section we compare the results obtained using th& @ieEelerated BEM formula-
tion using the ground plane Green'’s function with theoedtinumerical and experimental

results.

4.3.1 Sphere moving near a plane wall

The Stokes drag on a sphere moving parallel or normal to a&phadl has an analytical

solution (see [42] and [43] for details). For comparisorg thiag force on a sphere dis-

44

gap Normalized drag - parallel motion|| Normalized drag - normal motion
h/r-1 || coarse mesh fine mesh| exact [42]|| coarse mesh fine mesh| exact [43]
15 1.0353 1.0361 1.0364 1.0742 1.0752 1.0755
1.0741 1.0751 1.0754 1.1608 1.1621 1.1625
1.1603 1.1615 1.1620 1.3772 1.3794 1.3802
1.3797 1.3820 1.3828 2.1163 2.1232 2.1255
0.5 1.5908 1.5945 1.5957 3.1812 3.1993 3.2054
0.2 1.9425 1.9501 1.9527 6.2314 6.3131 6.3409

oW~

Table 4.1: Normalized drag force on a sphere of radiusvhose center is at a distanéefrom a
wall.

cretization with 1280 panels, labeledarse and for a sphere with 5120 panels, labeled
fine for both in-plane and normal motion were calculated usireggdrecorrected FFT ap-
proach described above. The drag force values, normalizbdegpect to the Stokes drag
force in free space-67urU, wherer is the sphere radius arid is its linear velocity, are
summarized in Table 4.1 and illustrated in Figure 4-2. Froetable and the figures, it can
be seen that the agreement between the theoretical valdélseasolution produced by the

above method is very good.

2

T
B O - Exact reference [ONeill1964]

& -+ Exact reference [Brenner1961]
19r O pFFT coarse mesh N 8 O pFFT coarse mesh
X pFFT fine mesh 6 + pFFT fine mesh
1.8 1
1.7 5
1.6 B

=
&
T

=
»
T

normalized lateral drag
Normalized vertical drag

=
w
T

Free space ®]
Free space] Stokes drag
Stokes drag ® ®

\ i] 8. .a |

I
N
T

I
N
T

[

Normalized gap = (h-r)/r Normalized gap = (h-r)/r

Figure 4-2: Normalized drag force density on a sphere of radiushose center is at a distance
h from a plane wall. The drag is normalized with respect to the Stokes drag forfree space

6rurU. On the left is the the drag associated with motion normal to the wall, on the righeis
drag associated with motion parallel to the wall.

45

4.3.2 Cylinder over substrate - Effect of substrate discretization

The focus of this section is to analyze the effect of the sabsudiscretization on the so-
lution accuracy for a simple structure. The example stinectuas chosen to be a cylinder
with 10um radius and 2m thickness. A cylinder discretizations with a median paadius

of 0.14um was constructed using Comsol 3.2.

The cylinder mesh was placed over a#®by 4Q:m plane discretized into a set of regular
square panels. The cylinder mesh was then placed at a dstdrsgm, 2um, 1um and
0.5um from the substrate. For each configuration, the drag forcéhe bottom of the
cylinder was calculated for lateral motion of the cylindeddhe total vertical force on the
cylinder was calculated for vertical motion. A referenckison was generated by solving

the same problem but using the implicit substrate reprasent

The relative error of the lateral drag force on the bottomhef tylinder is illustrated in
Figure[4-3. It is clear from the figure that, to get within 1%tbé reference solution, a
coarse substrate discretization suffices. This resuliegpfd the case where the geometry
of the body is very simple and the force on the bottom of thendgr and on the substrate
is mostly constant. For cases like the comb-like structarsection 4.3.3 this is not the
case. Another observation to be made from Figure 4-3 is ligatelative error for a sepa-
ration gap of wm did not decrease limited to 1%; this is due to the use of afsutface
to represent thanfinite substrate. As the cylinder is brought closer to the sulesttae
interaction between the cylinder and the substrate becomoes localized and the 44n
side square region used to represent the substrate becdmett®@approximation of the

actual substrate.

The relative error of the total vertical force on the cylinéte vertical motion as a function
of the radius of the panels used to discretize the substtates gor several separation
distances between the cylinder and the substrate is aiestrin Figure 4-4. Contrary to
was was observed in Figure 4-3, as the gap size is reducedubstrate discretization
had to be made much finer to achieve a given accuracy. For tebesrgaps, the finest
substrate discretization did not produce a result withindf%e reference solution. This

result clearly emphasizes the advantage of using the imhglibstrate representation.

46

10

10°F

relative error

10°F

10"

gap=0.5um
gap=1pm

— ~ —gap=2um
—+— - gap=5um

1 0.5 0.33 0.25
substrate panel radius [pm]

0.2

0.17

Figure 4-3: Relative error of the drag force calculated for a cylinder movparallelto the sub-
strate. The relative error was calculated for a fixed cylinder discretizatimhfar a set of substrate

discretizations and gap sizes.

10°

107

relative error

10 °F

10°

gap=0.5um
gap=1pm

— ~ —gap=2um
—+— - gap=5um

1 0.5 0.33 0.25
substrate panel radius [pm]

0.2

0.17

Figure 4-4: Relative error of the drag force calculated for a cylinder movimgmalto the sub-
strate. The relative error was calculated for a fixed cylinder discretizatimhfar a set of substrate

discretizations and gap sizes.

Observations

Several observations can be made from the results presentbis example. First, for

lateral motion of a simple body like a cylinder, the body ahd substrate discretization

do not need to be made very fine to achieve reasonable accusgond, for objects

moving vertically, using the Stokes free space Green’stiangequires that the substrate

discretization be made very fine to produce accurate results

47

4.3.3 Substrate shadow

To compare the accuracy of the results produced by solviagdibcretized version of
(2.14), where using the free space Green'’s requires théciqgibkcretization of the sub-
strate, with the results of solving the discretizated \@rsdf (2.19) without an explicit
substrate representation, we chose a non-smooth problesisting of a comb-like struc-

ture with fine fingers moving over a substrate, as depictedguarg 4-5.

~

Figure 4-5: Comb like structure moving over substrate.

The drag force on the structure was calculated using thepmested FFT algorithm for in-
plane and out-of-plane motion for several separation witgts between the comb structure
and the substrate. The value of drag force on the comb steusiass calculated for several
combinations of discretizations for the comb and for thestnalbe. The separation between
the comb and the substrate was also swept over a set of thieesvarhe drag forces

produced by this multidimensional sweep are summarizedlinel4.2.
Several observations can be made from the data in Table 4.2:

The variation with discretization of the results obtainedif-plane motion drag is much
smaller than the variation for the values that were caledl&br out-of-plane motion. For
in-plane motion the results were all within 10% of the refee values, regardless of the
discretization used for the substrate. Nevertheless,ioe @btained using a coarse sub-
strate discretization is larger than the error obtainedgugither implicit substrate dis-

cretization or a fine explicit substrate discretization.

48

gap = 4m gap = 2um gap = Jum
comb | subs.| p.r. lateral vertical lateral vertical lateral vertical
mesh | mesh| [um] || drag [pN] | drag [pN] || drag [pN] | drag [pN] || drag [pN] | drag [pN]
r n 0.32 58.65 587.84 89.44 1747.93 141.07 8251.85
c n 2.55 57.52 554.46 87.22 1508.66 136.16 | 5869.81
m n 1.27 58.21 572.23 88.60 1665.21 139.37 6976.18
f n 0.64 58.51 582.67 89.19 1724.17 140.57 8023.81
c c 2.69 56.94 506.57 86.12 1076.27 133.35 | 2366.16
m c 1.27 57.61 532.23 87.40 1150.91 136.56 | 3325.24
f c 0.64 57.92 539.91 87.92 1066.92 135.17 | 1119.19
c f 0.87 57.04 554.80 86.89 1490.90 135.83 | 5647.43
m f 0.87 57.73 572.34 88.27 1638.88 138.96 | 6652.27
f f 0.67 58.03 582.17 88.88 1679.91 140.12 | 8005.46

Table 4.2: Drag force on a comb like structure moving over a substrate. Results olxtaéned
using different discretizations for both the structure and the substrate.rdlateag results were
obtained by setting the structure velocity to -1psnalong thexr axis. Vertical drag results were
obtained by setting the structure velocity to -1psmalong the: axis. In all cases the fluid viscosity
wasy = 1.843 x 10~°Pa.s. In the table.r. stands for median panel radius algm, andf stand
for coarse, medium and fine meshesstands forno meshindicating that the substrate implicit
solver was used. stands for the reference mesh.

Focusing on the results obtained with the implicit représgon of the substrate it can be
observed that, as the separation between the comb and thieasabs reduced, the drag
calculated for out-of-plane motion depends strongly ondiseretization resolution. This
dependence indicates that, for out-of-plane motion, thetiso has more variation and
that a large number of constant strength panels is needegtesent the solution. Using a
Galerkin test scheme slightly reduces this discretizadiependence but it is still clear that

a finer resolution is needed as the comb is moved closer tatistrate.

Focusing on the drag associated with out-of-plane motidcutzted using explicit sub-
strate discretizations, it can be observed that even fdatively large separation between
the comb and the substrate, the error is strongly dependetiiteosubstrate discretization
resolution. As the distance between the comb and the stdbstreeduced, the accuracy
of the solutions produced using a coarse substrate dizsatiein deteriorates significantly.
To reinforce the claim that the cause of this deterioratoiiné coarseness of the substrate
discretization, consider that, for a fine substrate diszagbn, the results calculated using
the free-space Green'’s function approach the resultsrautaising the implicit substrate

representation.

49

x10°

100 100

50| 50

-100

50

0.035

100 100 0035

0.03 0.03

50 50

0.025 0.025

0.02 0 0.02

0.015 0.015

-50 -50

0.01 0.01

-100 0.005 -100 0.005

-50 0 50 -50 0 50

Figure 4-6: Substrate “shadow” - Drag force density on the substrate under a comatstikicture
moving in-plane. The figures on the left where generated using a finetiistion for the substrate,
the figures on the right where generated using a coarse discretizatiaghdasubstrate. In the top
two figures the comb structure was placed andabove the substrate, in the bottom figures the
comb structure was placed at @& above the substrate.

To illustrate the effect of the substrate discretizatiosotetion, Figure 4-6 shows that the
forces on the substrate form a “shadow” of the comb strucaine/e it. Comparing the
shadows for the two separation distances in Figure 4-6¢lear that the shadow becomes
sharper as the comb is brought closer to the substrate. foheréor small separation dis-
tances, a constant coarse discretization cannot acouraf@esent the forces on the sub-
strate. On the other hand, for large separation distandesrenhe shadow of the structure

is much smoother, a coarse substrate discretization pesdsudficiently accurate results.

50

4.3.4 MEMS accelerometer

The substrate implicit pFFT solver was used to analyze tloeamachined capacitive ac-
celerometer that was studied in [6] and [19]. Below, the daagd results reported in [6]
and [19] are compared with the results calculated using @wes For this real world ex-

ample, time and memory usage are reported to reinforce wiig®mrs made in section 4.3.3

and to point out some additional facts.

In [6] and [19], the combdrive was placed at a distance;ah2bove the substrate and the
mesh, referred to below as measiwas used. To study the convergence of the solution with
the discretization resolution meshvas refined by panel subdivision to produce meshes

f ande. For each mesh refinement, the combdrive was placed at ackstd 4:m, 2um,
1xm and 0..xm above the substrate. The drag force results and the timeanobry usage

for each case are summarized in Table 4.3.

Comparison to previously published results

For the case of a/an gap, the drag coefficient value obtained in [44], @a&58nNm-'s,
corresponding to a quality factor @ = 29.1. Experimentally the quality factor was
measured to b&.,, = 27. Using the substrate implicit pFFT algorithm with meshhe
force estimate217.26nNm~'s was produced, after adjusting for the different valug:of
used in [44], this corresponds taca= 28.5, which is marginally closer t@).,. Using a
mesh with 313536 panels, labeleih Table 4.3, produced a drag force2#3.6nNm™'s,

corresponding t@) = 27.7, which is consistent with the result reported in [18].

The result produced in [19] used the far more general varialder wavelet acceleration
method, an implicit representation of the substrate, ardcttimb mesh labeledin Ta-
ble/4.3. In [19], the computed drag force wst. 7nNm~!s. According to [19], this result
was calculated in 4685s and required 4.7GB of memory. Taegelsimilar accuracy with
an identical mesh, the precorrected FFT based solver usedMB and 176.2 seconds.
Although the pFFT solver outperformed the wavelet methodhis fairly spatially ho-

mogeneous problem, it is well known that FFT based methodsnpe poorly on more

51

comb | wall gap | p.r. | panels | memory full GMRES | iterations drag
mesh | mesh| [pm] | [um] [MB] time [s] | time [s] [pN]
c n 4 2.39 | 8418 281.4 183.9 62.1 134 -150.12
m n 4 1.20 | 33672 | 1087.2 | 918.0 376.8 156 -153.07
f n 4 0.64 | 78384 | 2507.3 | 1967.5 515.6 44 -154.17
e n 4 0.32 | 313536| 11921.8| 13263.6| 6432.0 44 -154.66
c c 4 255 | 12330 | 401.1 534.9 355.5 270 -149.96
m m 4 1.27 | 49320 | 1581.6 | 3654.4 | 3051.9 335 -152.87
f f 4 1.10 | 140976| 4461.3 | 4457.0 | 2490.1 134 -154.12
e e 4 0.55 | 563904 | 18664.8| 26399.4| 16584.1 103 -154.58
c n 2 2.39 | 8418 281.4 176.2 54.3 119 -217.26
m n 2 1.20 | 33672 | 1087.2 | 871.7 330.3 139 -221.45
f n 2 0.64 | 78384 | 2507.3 | 1976.8 527.8 45 -222.94
e n 2 0.32 | 313536| 11921.8| 13778.9| 6970.1 48 -223.60
c c 2 255 | 12330 | 399.7 686.1 465.0 363 -213.62
m m 2 1.27 | 49320 | 1509.3 | 4017.6 | 3401.4 442 -220.51
f f 2 1.10 | 140976| 4296.2 | 6499.5 | 4647.5 269 -222.94
e e 2 0.55 | 563904 | 18577.5| 26086.9| 14928.9 129 -223.60
c n 1 2.39 | 8418 281.4 168.7 46.2 103 -343.57
m n 1 1.20 | 33672 | 1087.3 | 833.4 291.5 125 -351.05
f n 1 0.64 | 78384 | 2507.3 | 1952.8 503.8 43 -353.54
e n 1 0.32 | 313536 11921.8| 13943.6| 7111.7 49 -354.71
c c 1 255 | 12330 | 395.7 860.5 621.9 457 -325.05
m m 1 1.27 | 49320 | 1483.4 | 2207.0 | 1436.2 256 -347.01
f f 1 1.10 | 140976| 4168.3 | 3982.6 | 2164.3 139 -352.79
e e 1 0.55 | 563904 | 18078.1| 31474.9| 20791.6 179 -354.33
c n 05 | 2.39 | 8418 281.4 163.8 41.6 94 -577.46
m n 0.5 | 1.20 | 33672 | 1087.3 | 821.0 278.7 120 -593.12
f n 0.5 | 0.64 | 78384 | 2507.2 | 2110.2 663.0 57 -598.01
e n 0.5 | 0.32 | 313536| 11921.8| 14487.1| 7665.6 53 -600.67
c c 05 | 255 | 12330 | 394.2 945.7 699.6 500 -533.30
m m 0.5 | 1.27 | 49320 | 1473.0 | 4161.6 | 3305.3 500 -591.06
f f 0.5 | 1.10 | 140976| 4087.8 | 7199.4 | 5353.6 304 -596.16
e e 0.5 | 0.55 | 563904 | 17835.2| 29343.2| 18781.4 165 -599.73

Table 4.3: Drag force on a the movable comb of a combdrive resonator for lateraiom@long
the comb finger direction. The accelerometer is moving at a velocity ofstiim air with 1 =
1.843 x 10~°Pa.s. Above stands for coarsan stands for mediunf, stands for fineg stands for
finer andn indicates that the substrate was represented implicitly. stands for median panel
radius. A number of 500 GMRES iterations indicates that GMRES did neeaga to a relative

error of 10~%.

52

inhomogeneous problems [15].

Observations

The results presented in Table 4.3 demonstrate that, feaiine combdrive mesh resolution
the pFFT algorithm using the implicit substrate discrdima uses less memory and is
faster than the pFFT algorithm using the free space Greanitibn and discretizing the
substrate. This is true even though the kernels used tosepréhe substrate implicitly are
much more complicated than the free-space Stokes Grearcidn. The reason for this
improvement is that not only does the free-space Stokes ifgorithm need to account
for the substrate explicitly, but also needs a larger FF@ triencompasses the substrate
and the objects above it, instead of just the objects. Furtbee, as shown in Table 4.3, the
number of GMRES iterations that is required to achieve theesatative residue norm is
typically much larger for the case where the substrate isesgmted explicitly suggesting
that the system of equations associated with that fornurlasi poorer conditioned than the

systems of equations associated with the substrate imnplethod.

4.3.5 Proof mass with holes

In surface micromachined devices, parts of the device thardarge areas, such as proof
masses, are often designed with several small holes thhtiafiecthe removal of sacrificial
layers and subsequent release of the device and that rdgudesiy the device experiences

as it moves [5].

To effectively predict the behavior of the devices, or tousglthe drag by a given desirable
amount it is necessary to accurately account for the effechbles have on the drag. For
example, while designing an oscillator, to achieve a highligufactor () one would want
to maximize the reduction in the drag while minimizing theluetion in mass. While
accounting for the reduction in mass due to adding holesagsitforward, accounting for
the reduction in drag is more complicated since, espediatlpff-plane motion, the drag

is strongly dependent on the size, number and distributidheoholes and on the distance

53

between the structure and the substrate.

The effect of the holes in the drag force becomes strongeneasttuctures are closer to
the substrate and the fluid is “forced” in the holes rathenthest being pushed away
from the bottom of the structure. In these cases, accuratphesenting the presence of
the substrate is especially important. If an explicit stdist discretization method were
to be used, that discretization would have to fine and henstycdy using an implicit,

accurate representation of the effects of the presence ofaglrby substrate, the algorithm
proposed in this chapter allows the computational resesui@de better spent in refining

the discretization of the actual suspended structure.

To demonstrate the use of our solver we used Comsol 3.2 to setigh of meshes of
100um by 10Qum, 2um thick proof mass. The maximum panel size was settm In
order to guarantee that, even at a close distance to theatehyshe discretization would be
fine enough to represent the solution using constant stigragtels. To study the effect of
the size and number of holes on the drag we used Comsol 3.2 twajermeshes with 1,
4,9, 25 and 100 equally distributed cylindrical holes wittadius of :m, 2um and 4:m.
The proof masses were set at/a@and Jum above the substrate. In all cases the proof
mass velocity was 1mm/s moving towards the substrate. Fopadson, the drag on a
proof mass with no holes was also calculated. The resultstamenarized in Table 4.4. To
further emphasize the effect of the hole radius on the forsteiloution on the proof mass,
we present the vertical force on the bottom of a proof masis @8btregularly space holes
for holes with a radius of Am, 2um and 4:m in Figure 4-7.

50
. < . o .

y 50
40
L 30
20
[10

. . o

Figure 4-7: Force on the bottom of a 1@®n by 10xm by 2um tile moving at Lm above the
substrate moving towards it at a velocity of 1mrh# a fluid with viscosity: = 1.843 x 10~°Pa.s.
The tiles on the figure have 25 equally spaced holes with a radiugrof 2:m and 4:m.

54

num | h.r. | gap | p.r. | num | memory| full GMRES| GMRES | drag

holes| [um] | [pm] | [um] | panels| [MB] time [s] | time [s] | iterations|| [nNN]
0 4 0.56 | 74128| 2138.5 | 2049.7| 555.0 103 14.88
1 1 4 0.56 | 74314 | 2144.7 | 2070.6| 579.4 103 14.83
4 1 4 0.56 | 74408 | 2148.8 | 2031.0| 545.7 103 14.80
9 1 4 0.55 | 79192 | 2339.8 | 2203.0| 580.6 104 14.70
25 1 4 0.55 | 75930| 2207.6 | 2147.1| 588.3 104 14.47
100 1 4 0.55 | 78454 | 2319.6 | 2524.9| 817.6 137 13.39
1 2 4 0.56 | 74180| 2140.4 | 2237.1| 749.3 131 14.35
4 2 4 0.56 | 74486 | 2149.6 | 2240.4| 747.9 131 13.98
9 2 4 0.56 | 74554 | 2154.1 | 2230.8| 733.6 132 13.19
25 2 4 0.56 | 75406 | 2181.2 | 2241.2| 721.3 132 11.07
100 2 4 0.55 | 77542 | 2250.0 | 2333.9| 718.7 134 6.29
1 4 4 0.56 | 74060| 2137.3 | 2263.2| 745.2 130 12.10
4 4 4 0.56 | 73426| 2125.0 | 2169.0| 696.5 123 10.29
9 4 4 0.56 | 72494 | 2108.0 | 2176.6| 710.9 129 7.56
25 4 4 0.56 | 69162| 2040.3 | 2025.6| 617.3 122 3.83
0 1 0.56 | 74128 | 2138.5 | 2048.5| 569.0 107 820.67
1 1 1 0.56 | 74314 | 2144.7 | 2042.0| 557.6 105 734.05
4 1 1 0.56 | 74408| 2148.8 | 2063.1| 5754 108 685.26
9 1 1 0.55 | 79192 | 2339.8 | 2214.1| 587.4 105 571.56
25 1 1 0.55 | 75930| 2207.6 | 2077.8| 532.9 100 386.42
100 1 1 0.55 | 78454 | 2319.6 | 2723.3| 811.7 107 145.15
1 2 1 0.56 | 74180 | 2140.4 | 2267.1| 708.0 124 618.38
4 2 1 0.56 | 74486| 2149.6 | 2233.3| 738.3 129 507.10
9 2 1 0.56 | 74554 | 2154.0 | 2265.7| 761.4 134 342.78
25 2 1 0.56 | 75406 | 2181.3 | 2098.5| 560.6 105 148.38
100 2 1 0.55 | 77542 | 2250.1 | 2092.3 | 474.6 93 30.03
1 4 1 0.56 | 74060 | 2137.4 | 2685.6 | 995.1 123 535.79
4 4 1 0.56 | 73426| 2125.0 | 2236.8| 755.6 133 380.58
9 4 1 0.56 | 72494 | 2108.0 | 2067.3| 602.9 110 206.26
4 1

25 0.56 | 69162 | 2040.3 | 1919.5| 508.3 102 59.08

Table 4.4: Drag force on a square 1Q0n by 10@:m tile, 2um thick tile moving towards the sub-
strate at a velocity of Imms in a fluid with viscosity: = 1.843 x 10~°kg/ms. Abové.r. stands
for hole radius ando.r. stands for panel radius.

55

To validate the results obtained using our solver we contp#rem to those produced
using the Comsol 3.2 finite element code, which uses a reljattoarse volume mesh with
guadratic elements. The proof mass with 4 holes with a radiud:m was chosen at
random to perform this comparison. For the randomly chogamele, the drag calculated
using Comsol 3.2 was 13.98nN for a separation distancemf@nd 507nN for a separation

distance of Lm, which is is clearly consistent with the results reportedable 4.4.

4.4 Conclusions and future work

A precorrected FFT accelerated algorithm for solving Sédl@v problems in the presence
of a substrate was developed and demonstrated. The algodis validated against known
theoretical, experimental and computational results erErformance was compared with

previously published results.

Overall the following conclusions were drawn: the pFFT é&@ded results closely match
exact analytical results and results previously reponettie literature. Using the implicit
substrate representation produces more accurate reshite®s memory and significantly
less time than explicitly representing the substrate. ¢#ne implicit substrate represen-
tation produces more accurate results because it accaurttsefpresence of the substrate
exactly. Using the implicit substrate representation igenefficient because it requires
fewer panels and because the domain that the pFFT grid mestisanuch smaller than if
the substrate were to be explicitly discretized. Using aplicit substrate introduces more
scalar kernels, 20 instead of 6, but the speed gain obtaietirbinating the substrate and
reducing the size of the pFFT grid overcomes this cost. Ttlenigues used to extend the
applicability of the pFFT algorithm to non-translation amant kernels can be exploited in

other applications.

What was a surprising and disappointing outcome of this stwtlych is further detailed
in Chapter 5 is that out-of-plane motion excites equation esathat reveal the need to
refine the structure discretization as the distance to thstste decreases. Simulation of

out-of-plane motion also revealed that, when using an exxglubstrate, the substrate dis-

56

cretization must be refined faster than than structure eligation for results to match the
results obtained using implicit substrate discretizati@o implicit substrate representa-
tion has benefits but does not entirely decouple structwaetization from distance to the

substrate.

As future work we propose supporting higher order paneldaistributions to reduce the

number of panels and improve convergence.

57

Chapter 5

A surprising result

The Stokes substrate Green’s function can be used to inhplreijpresent the substrate.
By using the Stokes substrate Green’s function, a boundé&gral formulation involving
only the structures above the substrate can be producedbdimlary integral equations
are discretized by approximating the geometry of the prolby a set of flat panels; by
limiting the solution space to only constant force disttibns on each panel and by testing

the equations only at the centroid of each panel.

By removing the need to explicitly represent the substrateas expected that, unless
the solution became more complicated, the panel disctietizéor the structures above
the substrate would not need to be refined as the distancedetiie structures and the
substrate decreases. In this chapter, using a very simpla@g, we demonstrate that
vertical motion activates modes of the equation that rechie discretization to be refined,

regardless of the smoothness of the solution.

In the following, the example of a cylinder with a radius ofb@ over a substrate is used
to study the effect of discretization refinement on the aacyof the calculated drag force

for both horizontal and vertical motion.

To study the effect of the cylinder discretization and dis&to the substrate on the accu-
racy of the calculated drag force a set of cylinder discagittns were constructed using
Comsol 3.2. Each cylinder mesh was then placed at a distanSenof 2um, 1um and

0.5um from the substrate and the drag force was calculated. Tihe®st calculated for

58

the finer cylinder discretizations, with a median panelwadif 0.14:m, were used as refer-
ence. For the gap size of QuB, a finer discretization of the cylinder, with a median panel

radius of 0.0Zm, was used to calculate the reference drag forces.

5.1 Lateral motion

For a cylinder moving in a direction parallel to the subsr#ite drag force is largest on the
bottom of the cylinder. For a small enough gap, the drag obttem of the cylinder can

be accurately predicted using the Couette flow model and endiy
F = Vya®/h,

whereV is the velocity,u is the fluid viscositya is the cylinder radius and is the gap

between the cylinder and the substrate.

The error of the computed drag force on the bottom of the dglinas a function of the

median radius of panels used to represent the cylindeutiéited in Figure 5-1. For these
computations, the Green’s function in (2.16) is used to iaith} represent the substrate.
Note that as the discretization is refined, the relativerasroeduced at roughly the same

rate, regardless of the gap between the cylinder and thératéas

0

gap=0.5pm
gap=1pm
— ~ —gap=2um
—+— - gap=5um

10

relative error

107}

10

.
2 1 0.67 0.5 0.4 0.33 0.29 0.25
cylinder panel radius [um]

Figure 5-1: Relative error of the drag force calculated for a cylinder moving parallel substrate
for several cylinder discretizations for several gap sizes. The substras represented implicitly.

59

5.2 Vertical motion

For a cylinder near the substrate that is moving with a vgtlagdrmal to the substrate, the
dominant force is the pressure on the bottom of the cyliné@ra small gap between the
cylinder and the substrate, the pressure on the bottom afythmler of radius: moving at

a velocityV in the direction normal to the substrate can be approximased

P(r) =3uVh3(n* — a?) (5.1)

i.e. a quadratic function of, the radial distance to the cylinder’s axis, that is scaled b
a factor that is inversely proportional to the cube of the fdp Through our numerical
experiments we have observed that (5.1) is a very good ajppati®n to the pressure on
the bottom of a cylinder, except very near the cylinder eddésreover, (5.1) becomes
more accurate as the gap between the cylinder and the delstranks. Therefore, since
the solution is approximately a quadratic scaled by a sipeéent factor, it is expected
that a constant force panel discretization should reptdlersolution to the same relative
accuracy independent of the gap size. Surprisingly, tmstishe case. To accurately match
the reference solution, the cylinder discretization mestiade finer as the gap shrinks.
Such a result is surprising because the need to refine thetizstion with the reduction
of the gap size isotdriven by the need to more accurately represent the solufiois can
be observed in Figure 5-2, where the error of the verticald@n the cylinder is plotted
as a function of the median radius of the panels. Contraryegaehult in Figure 5-1, the
relative error for the smaller gaps is much larger than thaive error for the larger gaps.
For the smaller gap of O:&n a very fine discretization was necessary to accuratelyhmatc
the reference solution. Moreover, for a given discret@atas the gap size is reduced, the
number of GMRES iterations required to achieve a given cgarere tolerance increases.
This increase in the number of iterations suggests thatidoeadized system’s condition

number is rising.

Since the need to make the discretization finer is not driyethé need to more accurately

represent the solution, one possible explanation for tkd t@increase the number of pan-

60

gap=0.5um
gap=1pm
— = —gap=2um
—+— - gap=5um

relative error

107}

107 1 1 1 1 1 1 1
1 0.5 0.33 0.25 0.2 0.17 0.14 0.13
cylinder panel radius [um]

Figure 5-2: Relative error of the drag force calculated for a cylinder moving parallel substrate
for several cylinder discretizations for several gap sizes. The substras represented implicitly.

2 0.5

0.4t

15
0.3}

z/h
-
1
1
1
1
1
1
1
1
1
1
z

For z/h (inplane
source and target) | | or
the zero occurs

0.5

for n/h=0.888 0.1
0 ; -0.2 : :
0 0.5 1 1.5 2 0.5 1 1.5 2
n/h n/h

Figure 5-3: Velocity along the: direction due to a force along thedirection located at0, 0, i)
evaluated a poin{n cos#,nsiné, z), wheren is the radial distance from the source point to the
evaluation point. The figure on the left illustrates the vertical velocity field; dr&at line marks
the points where the vertical velocity changes sign. The figure on theilliggttates the vertical
velocity as a function of radial position for evaluation points in the same plarieeasource.

els as the gap size is reduced is the “behavior” of the Grdaniion. A possible source
for the behavior is the way that the velocity due to a constartical force distribution on
a flat panel changes as the separation distance betweenrtblegpa the substrate is re-
duced. The vertical velocity due to a vertical force apphéd distancé above a substrate
behaves as illustrated in Figure 5-3, the velocity is pesitiear the point where the force is
applied but becomes negative at a radial distance of ab888Q. For a constant strength

panel of a given size, dsis reduced and becomes smaller than the panel size, thatyeloc

61

due to a force on one part of the panel will cancel out the ¥laltie to the force on other
parts of the panel. This effect is clearly illustrated inutig 5-4 where, for the larger panel
size and smalh, the velocity field due to a constant strength panel is greatluced and
exhibits a very sharp and complicated behavior. On the dthed, the velocity fields pro-
duced by smaller panels, not subject to self-cancellatidheaseparation distances in the
figure, keep the smooth shape. The effect is further illtestran Figure 5-5 where, for a
gap ofh = 0.25um, the vertical velocity field due to each panel is plottechim $ame scale

for easier comparison.

N
o

J,G2zds [ums UN]
J,G2z ds [ums™N]

N
o

J,G2zds [ums UN]
1,622 dS [ums™IN]
J,G2z ds [ums™N]

¥ fum] L Xl ¥ [um) h X [um]

N
o

J,G2zds [ums UN]
1,622 dS [ums™N]
J,G2z ds [ums™N]

0

0

¥ fum] -1 X [um] y [um] h X [um] ¥ lum] o7 X [um]

Figure 5-4: This figure illustrates the self-cancellation that occurs for larger panekséemaller
gaps by depicting the vertical velocity generated by a constant forcd fartbree square panels
of varying sizes placed at three gap distances from the substrate. $tksren the first row cor-
respond to a gap size ofidn, on the second row the gap igrh and on the third row the gap is
0.25:m. The results on the left column correspond to a panel sidgf, bn the middle column to
a panel side of 0.25m and on the right column to a panel side of @M.

62

J,Gzzds [ums HN]

¥ fum] 15 X [um] ¥ lum] -5 X [l y lum] - X [um]

panel side = Am panel side = 0.26m panel side = 0.Am

Figure 5-5: This figure illustrates the self-cancellation that occurs for the vertical velalkig/to a
uniform vertical force on panels above a substrate. The panels on thefigtees where placed at
a distance of 0.2b6m from the substrate.

5.3 Observations

Several observations can be made from the results presentexicylinder example. First,
for lateral motion of a simple body like the cylinder, coaodgect discretization achieves a
reasonable accuracy. Second, for objects moving vestjaatcurate results are produced
only if the discretization is refined as the gap is reduesen though the force distribution
smoothness is unchangedhis behavior is observed regardless of whether the satbstr
is represented implicitly or explicitly. The practical i of this observation is that rep-
resenting the substrate implicitly has many benefits bubriuhately doesiot completely

decouple discretization fineness from distance to the satbst

63

Chapter 6

Time domain simulation

The simulation of objects moving in Stokes or creeping flow isonvenient tool for the
design of microfluidic devices such as cell traps [21, 22223and micromixers [25]. The
time domain simulation MEMS devices is also very importamtthe design of devices

such as micromirrors [26].

As was reviewed in Chapter 2, for problems where the lengtle s€athe characteristic
velocity, V, the fluid viscosity, and the fluid density are such that the Reynolds number
Re=LV p/u is much smaller than one, the inertial terms of the Naviek&e@quations can

be neglected and the Stokes equations can be used.

The Stokes equations state that the pressure, viscous fancebody forces are at balance
regardless of the history of flow, even though the boundafigse flow maybe changing in
time [1]. The Reynolds number, Re, is the ratio between the ¢omstant for the diffusion
of momentum in the fluid, = pL?/u and the time constant for convection = L/V.
When the Reynolds number is small, and there are no abrupt esamghe fluid velocity,
momentum diffuses throughout the fluid domain much fasten the configuration of the
flow is changing due to the evolution of its boundaries [1]efiéiore, in these conditions,

a quasi-static approach for analyzing the time evolutiothefsystem is appropriate [25].

Several methods exist for the calculation of drag forces lgjeats immersed in Stokes
flow: finite differences/[8], immersed boundary methods [8g finite element method

[10] and the boundary element method [1]. Since, for Stokms, fihe fluid structure only

64

depends on the boundary configuration at the time point efést, the boundary element
method is a particularly suitable approach. Moreover, fobfems where one is interested
in the time domain evolution of a system, the boundary elémmthod has the advantage
that remeshing the domain at each step is not necessarfiefudre, using the boundary
element method with appropriate Green'’s functions it ismftossible to drive the motion
of the objects in the flow by specifying a background flow withbaving to explicitly

discretize the surface of the microfluidic channel or otlemrwlaries that, in other methods,

would just be used to drive the bulk fluid.

It would therefore seem that, to simulate the motion of disj@t Stokes flow one would
simply need to use a boundary element solver to calculaterdng force on each object
in the fluid and to use these forces to update the velocity asitipn of the objects by
integrating the equations of motion. However, for smalbléscales, such as those present
in MEMS and microfluidic devices, the ratio of the drag foroel the mass of the bodies is
such that the time constant associated with transferringembum between an object and
the surrounding fluid is very small. For typical geometrib®, time scale for momentum
transfer between the objects and the fluid is much smallertthatimescale at which the
objects move through the devices, which is usually the ticadesof interest in simulation.
The existence of this very small time scale makes the probtdfrand severely limits the
step sizes that explicit time integration schemes can usast@oned to using very small
time steps, even though the actual solution of interest mo$im the simulation of realistic
problems becomes too expensive, even if efficient accel@faundary element methods

are used.

Typically, stiffness is dealt with by using implicit timetegration methods. However, since
the forces on the surface of the objects depend on the posiiieentation and velocity of
the objects, using an implicit time integration method vabtéquire solving a possibly
large boundary element problem involving a non-linear delpace of the forces of the
object on the object position. In this chapter, we demotestiaat the small time constants
that limit the time steps that can be used by explicit timegnation methods are due to the

relation between the velocity of the objects and the dragefan their surfaces and not to

65

the rate at which the fluid structure changes as the objeetsoavected through the fluid.

To deal with stiffness without incurring in the excessivatoof solving a non-linear equa-
tion for the forces on the surface of the object at each tirp, ste introduce a method to
couple a time-stepping scheme that updates the velocitydrhypand the position explic-
itly with a boundary element solver for Stokes flow. The véloanplicit time stepping
scheme enables the simulation of the motion of objects Uangg time steps. We demon-
strate the stability of our method and apply it to a set of oflaidic applications. To deal
with problems involving collisions, contacts and frictisw®@ coupled our velocity-implicit

time integration method with the freely available rigid pqzhysics library ODE [27].

This chapter is structured as follows: first, in Section @h&, boundary integral equation
formulation of the Stokes flow problems presented in ChaptsreXtended to support the
definition of background flows and problems involving stues protruding above a sub-
strate or holes on a substrate; in Section 6.2 and Sectidh&i8sue of stiffness in Stokes
flow is illustrated for the case of a sphere in infinite flow; ac8on 6.4, the time-integration
schemes presented in Section 6.3 are coupled with rigid buehanics and a boundary
element solver for the Stokes drag force; in Section 6.5ildethout the algorithm and of
how collisions and friction are dealt with are presentedSéttion 6.6 optimizations aim-
ing to reuse part of the pFFT solver structures from stepdp ate presented; finally in
Sections 6.7 and 6.8 results presented and discussedysimmd are drawn and directions

for future work are proposed.

6.1 Boundary integral formulation

This section is an extension of the presentation in SectibnlI this section we describe
how to formulate boundary integral equations for calcakatihe drag force on objects in
Stokes flow in the presence of a background flow for three apeases that are of special
interest for the simulation of objects moving in microfl@diystems. First, in Section 6.1.1
a boundary integral equation for the drag force on an objectersed in a background flow

is described. In Section 6.1.2 a formulation for calculgtime drag on objects immersed in

66

Figure 6-1: Stokes flow around a rigid body. In the figur&® represents the flow in the absence of
V. Vy is the fluid volumeV;, is the volume of the rigid body, Sb is the boundary between the fluid
and the rigid bodyS is the substrate and,,; represents a surface in the fluid that is considered to
be arbitrarily distant from the other features. The source paipnts represented inside the fluid.

a background flow over over a substrate with protuberanttsires is presented; Finally,
in Section 6.1.3 we introduce a formulation for the drag éoom objects immersed in a

background flow near a hole in a substrate.

6.1.1 Background flow

A natural way to drive the motion of an object in a flow it is tdroduce a background
flow. The background flow is the solution of the Stokes flow jeobin the absence of the
perturbation introduced by the presence of the object. Byguttie linearity of the Stokes
equations a boundary integral equation for the drag on agcobbjoving in a background
flow can be obtained combining a boundary integral equationshe background flow

itself and a boundary integral equation for the perturlvetiow [1].

To derive the Stokes flow boundary integral equations fontle&on of a rigid bodyV;, in
the presence of a background flaw* as illustrated in Figure 6+1. We will first assume
that the source poinky, for the Stokes Green’s function is inside the fluid voluieas
illustrated in Figure 641 , we will then consider the case rehg is onS;, the boundary of

the object.

First we integrate the Lorentz reciprocity identity for gherturbation flow identity ovev
excluding an infinitesimal sphere around the source pajrit V; and get the boundary

integral equation

G(x, x0)fPdS(x) — u/ T(x,%0)(—ns(x))u”(x)dS(x) = —8rpu”(xy). (6.1)

Sh Sp

67

Due to the no slip boundary condition, the velocity$yris u(x) = u*+u? = u,+w;, xx,
whereu, andw, are the linear and angular velocity of objéctSinceu is a rigid body
motion and we are excluding an infinitesimal spherical negitfluid aroundx,, the double

layer integral in/(6.1) becomes
|) (s u (S) = | T x0) (g) (S)
S Sh

yielding

G(x,x0)f" (x)dS(x) — ,u/ T (x, X)) (—1n;(x))u™(x)dS(x) = —8mpuu® (xo).

Sy Sp

By integrating the Lorentz reciprocity identity for the bgc&und flow on the interior of

the body,V,, we get

G (x,x0)f*(x)dS(x) — [L/ T (x,x%0)(—ns(x))u™(x)dS(x) =0

Sp Sp

where there is no free term in the velocity because the sqotd is inV; and we are
integrating ovel},. The negative sign preceding the normal is meant to emph#sézthat

the integral outer normal isn;.

Adding the two equations yields

; G(x,x0)(F* 4 £P)(x)dS(x) = —8muu”(x¢) = —8mp(uy + w. x Xo — u™(xq))

that can simply be written as

; G(x,x0)f(x)S(x) = —8mp(up + we X xg — u™(xp)) (6.2)

This equation is also valid in the more interesting case whgeis on .S, . To prove this

consider the two integration regions illustrated in Figé+2.

Integrating the Lorentz reciprocity identity ovef with x, on S, for the perturbation flow

68

Figure 6-2: Integration region with source poindy on the boundary;,. The exclusion region is an
infinitesimal hemisphere.

yields
PV

G(x,x0)fPd(x)S(x) — ,u/ T (x,Xo)(—ns(x))u” (x)dS(x) = —4mpu® (xo).

Sp Sh

Since the source point is on the boundary and the velocifgid body we have
PV PV
/ T(x,%0)(—ng(x))(u—u>)(x)dS(x) = —/ T (x,Xo)(—ny(x))u™(x)dS(x)—4mpu(xo),
Sy Sh
which, foru(x) = u, + wy x x, yields
PV

G(x, Xo)fD(x)dS(X) + M/s T(x,Xo)(—nf(x))u™(x)dS(x) = 63)

—4rpu® (xo) — 4mp(ay + w, X X)

Sp

Integrating the Lorentz reciprocity identity for the backgnd flow overV,, when the

source point is oty;, yields
PV

G (x, x0) £ (x)dS(x) — / T(x, Xo) (—1y (%)) u™ (x)dS (x) = dmpu(xs) (6.4)

Sb Sb

Adding (6.3) and (6.4) produces (6.2), that only differsiirthe boundary integral equation

without a background flow because of h& term on the right hand side.

6.1.2 Protuberances on substrate

For the case of microfluidic devices such as the pachinkdre@is [21][22][23], the moving

objectsS. and the fixed structureS, are close to the bottom of a microfluidic channel but

69

far enough from the other device walls that the flow field neasé walls is not significantly
affected by the presence 6f andS,. In these conditions, the flow field ne§irandsS, can

be represented by the sum of a background fiéty the Stokes flow solution in the absence
of S. andS,, and a perturbation flom” that, added tm> satisfies the no-slip velocity
boundary conditions on the surface &f and S,. SincesS, and S, are near the bottom
of the microfluidic deviceS, the problem geometry is locally similar to the semi-ingnit
problem illustrated in Figure 6-:3. When dealing with struesiover a substrat&, the
Stokes substrate Green’s function [1, 45] can be used tesept the substrate implicitly.
By using the Stokes substrate Green’s function only the stres above the substrate need
to be discretized greatly reducing the memory and time reduior calculating the drag

force on the objects moving in the flow [45].

To formulate a set of boundary integral equations for thedsronS, and.S, we will first
consider onlyS, and then merge the resulting equation with (6.2). We wilk fasnsider
the case wherg, is in the fluid volumel/; and afterwards will consider the case whege

is on.sS,.

Integrating the Lorentz reciprocity identity for the petiation flow overV; excluding a

spherical region arounx, we get

G (x,%0)fPdS(x) — u/ T(x,%o)(—ns(x))u” (x)dS(x) = —8muu®(x).
SyUS SyUS

Sinceu” = —u* on S, andu” = u*™ = 0 on 9, the equation can be written as

G(x,x0)fPdS(x) — u/ T (x,x0)n;(x)u™(x)dS(x) = —8mpu”(xq). (6.5)
S,US SyUS

Integrating the Lorentz reciprocity identity for the bacsgnd overV, yields

/SG(x,xo)fD(x)dS(x) + [G(x,x0)f*(x)dS(x)

Sp

[Gl (1 +))dS(x) = —Sm® (xa)

70

If G is the Stokes substrate Green'’s function the first two iategre zero and we get
G (x, x0)f (x)dS (x) = —8mp(u(xo) — u(x0)). (6.6)
Sp

which is equivalent ta (6.2). The same identity holds whkeiis on.S,, (the proof is similar

to the corresponding proof in the previous section).

A boundary integral equation for the force Spand.S, is given by

—8mrp(uy + w,. X X9 — u™ for x, on S,
Gx.x)F()dS(x) = 4o X0~ u(x)) forxg 6.7)
SpUSe 87 puu™ (xg) for x, on S,

Figure 6-3: Stokes flow around a protuberance on the substrai®. represents the flow in the
absence of the protuberancé’ is the fluid volume}, is the volume of the protuberancsg, is
the boundary between the fluid and the protuberacis, the substrate, except for the part that is
covered by the protuberancs, is the part of the substrate that is covered by the protuberafice,
is the surface of a rigid body moving in the flow afig,; represents a surface in the fluid that is
considered to be arbitrarily distant from the other features. The sourad gonot represented in
this figure.

6.1.3 Holes in the substrate

Other microfluidic trap geometries, such as the microwdlltcaps presented in [24], can
be described as "holes” in the bottom of a microfluidic chdmsellustrated in Figure 6-4.
Since discretizing a significant portion of the substratarribe hole would be expensive
and there would be no way to impose a "natural” background Beeause the structures
of interest are in a region where the background flow (e.dy tidveloped channel flow) is

not defined, it became necessary to explore alternativeuiations.

As in the case for protuberances over a substrate, a foriowlasing the Stokes substrate

71

Green’s function can be used to eliminate the need to eHplidiscretize the substrate.
Such a formulation can be obtained by separating the probieran interior region;

and an exterior regiof; as illustrated in Figure 6-4. Applying the Lorentz recigtgc

Figure 6-4: Integration regions for the formulation of boundary integral equations f@rablem
involving traps formed by a hole on a substrate and objects moving in a tzackd flow.

identity on the exterior regiof;, yields a boundary integral equation Shfor the force
on the interface an the fluid velocity. A background flow canrfteoduced in the exterior
region, where it is a valid solution of the Stokes flow probleifhe equations for the
exterior region are coupled to the equations for the integgion by equating the velocity
and force on both sides 6f. The boundary integral equations for the interior redibaose
the free-space Stokes Green'’s function and do not congiddyaickground flow explicitly.

The resulting system of boundary integral equations is

—4mpu™(xy) forx,on.s;
—u/ T(x, XO)UOO(X)dS—l—/ G(xo,x)f(x)dS = ¢ —8rpu.(xo) forx,ons,
Sq', Si+h+c

0 for xo on Sy,

— 1 /s TV (x, x0)u(x)dS + /5i G" (x0,x)f(x)dS = —4mpu(u(xg) — u®(x)) forxyons;

k3

(6.8)

Even though!(6.8) accurately accounts for the backgroumwd dlod the presence of the
substrate, this formulation requires introducing an aabytboundary in the fluid and uses
the Stokes substrate double layer Green’s function. Im@fdimg a solver (6.8) would
require a significant implementation and computationaréefiecause the Stokes substrate

double layer Green’s function has many, relatively congiéd scalar entries. Accelerating

72

Figure 6-5: Integration regions for formulation of problem with hole on a substrate usiegrée
space Stokes flow Green'’s function. The surfgds expected to be far enough frath and S, that
the velocity atS; is very close to the background velocity.

the matrix vector products involving the Stokes substratebte layer Green’s function
using the pFFT algorithm can use exactly the same modifieggron and interpolation
schemes described in Chapter 4 but, in the absence of sonmatian or code generation
step, manually accounting for the large number of of kertted$ would result from such
the decomposition scheme used for the single layer Grean&ibn would prove to be

guite cumbersome and error prone.

Alternatively, an approximate solution can be obtainediyyasing velocity boundary con-
ditions on.S; stating that the velocity o8; is the background flow velocity>. This ap-
proximation is valid ifS; is far enough front),, andsS. that the velocity af; is very close to
the background velocity. Due to the short development lefayt Stokes flowsS; does not
need to be at serylarge distance fron%;, and.S,. for this approximation to be valid. The
integration region for this approximate formulation isiftrated in Figure 645. Integrating

the Lorentz reciprocity relation ovéf; yields

—4pmu™(x) forxyons;

u/ T(x, XO)HOO(X)CZS+/ G(xo, x)f(x)dS = ¢ —8uru.(x) forxyons.
Si Si h+c
o 0 for x, on S},
(6.9)

whereu, represents the rigid body velocity on the surféte The integration region for

this simplified problem is limited t®; and no exterior region is considered.

If the integral of the background flow> over S; is zero, which is true as long as° is an

incompressible flow, the double layer integral oggcan be eliminated by integrating the

73

Lorentz reciprocity identity oveV; andV, and subtracting the resulting boundary integral

equations from (6.9) results in

—8muu>(xq) forxyonsS;

/ G (%o, x) (f(x) — £""(x)) dS+ G(xo, x)f(x)dS = { —8muu.(xo) forxyons.
Si v Sh c
fi(x) " 0 for xo, on S,
(6.10)

that can be solved faf on S; and forf on S, andS.. Note that, because of the method
used to eliminate the double layer kernel, the fdram S; is not the the same fordethat
is obtained by solving (619). Fortunately, the forces%randS;, which are the forces of

interest for calculating the time evolution of the systene, @ot affected.

6.1.4 Boundary element method

Except for very simple geometries and boundary condititmese are no analytical solu-
tions for the boundary integral equations (6.2), or (6.7)6010). These boundary integral
equations can be solved approximately by discretizing thitases, constraining the so-
lution to be lie in a finite dimensional vector space, and arifg the satisfaction of the
equations at a finite number of points, collocation, or esifg that the integral of the
residue, multiplied by test functions, be zero over theréigcelements, Galerkin. Hav-
ing discretized the surface of the problem intpelements, a straightforward implemen-
tation of the boundary element method would require theutation of the interactions
between the:, panels requiring?(ng) storage, which becomes prohibitively expensive in
both computation time and memory when applied to large esging problems. Acceler-
ated boundary element methods using the multipole meth@)fL[2][20], the multiresolu-
tion wavelet method [19] and the precorrected FFT methofi§lBave been applied to the
calculation of drag forces in Stokes flow. Accelerated baupelement solvers that use
specialized Green’s functions to save time and memory hiaeebeen developed [45] and
were presented in Chapter 4. These solvers produce thetastmus force on the surface
of objects immersed in Stokes flow given the velocity of thobgects at a given time. In

the following we use the solver described in Chapter 4 but tethads that are presented

74

in this chapter can be integrated with any other boundamete solver for Stokes flow.

For a matter of notational convenience, Fedescribe the vector of forces on the panels
representing the objects in the fluid and Vétrepresent the vector of velocities on these
panels, possibly weighted or integrated over the panesareanultiplied by test functions,
depending on the testing scheme that is used. MoreoveY, et vector of background
flow velocities also evaluated in the object panels accgrdinthe discretization of the
boundary integral equations that is being used. Xetepresent the configuration of the
objects in the flow. For the case of rigid body moti¥ns a vector containing the position
and orientation of each object in the flow. In the following wiéd assume that, a boundary

element solver exists that can solve the equation
G(X)F = -V +~4(X)V*™ (6.11)

where~ is a matrix that maps the background velocity ved6t to the appropriate values
on the right hand side of (6.11).

6.2 Time constants and scaling

It would seem that, to simulate the motion of objects in Ssdl@v one would simply need
to solve (6.11) fo, calculate the force on each object and use these forceslaiaithe
velocity and position of the objects by integrating the eoumes of motion. However, for
small length scales, such as those present in MEMS and muchofldevices, the ratio of
the drag forces and the mass of the bodies is such that thecbnmstant associated with
transferring momentum between an object and the fluid is serall. In this section we
illustrate the small time scale issue by using the triviaraple of Stokes flow on a sphere

moving in infinite Stokes flow with uniform velocity~°.

75

6.2.1 Stiffness

Consider a sphere of radiusand densityp moving with linear velocityv in an infinite
fluid domain with viscosity: and a background velocity* along the direction of. Due
to symmetry, the position of the spherg,and its velocityp, can be represented by scalar
values. In these conditions, the Stokes drag on the spher&riga(v — v>°) and the

position and the velocity of the sphere satisfy

+ > (6.12)

The matrixA has eigenvalues, = 0 and)\; = %;% that correspond to time constants of
70 = oo andr;, = %% Given an initial positionr, and the initial velocityy, the solution
of (6.12) is

v(t) = v™ + (vg — v™) exp(—t/7) (6.13)

z(t) = xog + vt — (vg — V)7 (exp(—t/7) — 1)

For a sphere with a 10n radius with densityp = 10%kg/m? in a fluid with viscosity

i = 8.9 x 10~*Pa.s the time constant is roughly 25%s. On the other hand, we are
interested in tracking the motion of the sphere, the timéesohinterest is determined by
ration between> and the lengthscale of interest for the device, i.e. the ecine time
scale, which in microfluidic devices can be on the order obeds or minutes. It is clear
from (6.12) and[(6.13) that the small timescajeexists due to the relation between the
velocity of the sphere, its mass, and fluid drag force on itiase and that this value is not

dependent on the actual position of the object.

The position and velocity in (6.13) are the superpositioa sooth, steady state solution,
and a rapidly decaying homogeneous solution. Except fongialitransient, while the
velocity of the sphere does not yet match the velocity of thekiground flow, the behavior

of (6.13) is very smooth. However, it will be shown in Sect®B that, regardless of how

76

closev is to v, if an explicit time integration algorithm is used, very dhtiane steps are

needed to maintain stability.

The existence of a small time scale associated with thefemobmomentum from a body
to the surrounding Stokes flow is not limited to the case offesptranslating in infinite
flow. The rate at which angular momentum is transfered beatveetating sphere and a
background flow is also very high. Moreover, if the spheregtber object, is close to any
other fixed structure in the fluid, such as the bottom of a nfligidic channel, the drag
force will increase and the time constant associated wighntiomentum transfer due to
Stokes drag will decrease. In a quiescent fluid, the Stokag firce will always oppose
the motion of the objects moving in the fluid, extracting mowoen from the objects and

dissipating it in the fluid, or transmitting it to other objsan the fluid.

If only a single object is present in the fluid, the work donethg object on the fluid is
entirely dissipated, the fluid does not accumulate kinatiergy. This is demonstrated in

Appendix A, at the end of this chapter.

Note on stiffness and volume discretization methods

In the finite element method as well as in the finite differeand finite volume methods,
the fluid domain is discretized into a set of small elemenkse Jcaling of volume and area
of these elements is such that the time constant associ#gtechamentum transfer through
viscous forces on the surface of each element is small, emapared to the time scale of
momentum transfer from the bodies immersed in the fluid (vl usually larger than
the fluid elements). Therefore, explicitly discretizing ttuid volume and accounting for
the momentum in its interior will generate yet another, semalengthscale that the time

integration algorithm must deal with.

6.3 Time stepping schemes

This section contains a brief review of a few basic time stgppgchemes illustrating the

issues associated with numerically integrating the eqoatof motion((6.12) for a sphere

77

0.25

analytical ar analytical
02l F.E./F.EAt:O.STI 25l F.E./F.EAt=0.5TI
- — —FE/FEAtT, : — — —FE/FEAt=T,
- = F.E.IF.EAt:l.QTI sl - = F.E.IF.EAl:l.QTI
0150 —— F.E/FEM=211, —»— F.E/FEA=2.11,

X [um]
X [um]

0.1f

0.05

0 2 4 6 8 10 0 20 40 60 80 100
time/t, time/rI

Figure 6-6: Forward Euler, explicit, numerical time integration of equations of motionafqrer-
fectly buoyant sphere with Lén radius translating in a fluid with viscosijy = 8.9 x 10~*Pa.s and
density 1000kg/idomain with a background velocity of, = 1mm/s.

translating in a fluid with with background flow.

6.3.1 Forward Euler

If (6.12) is integrated using the Forward Euler method witinmee stepAt, the following
iteration is produced

x 1 At x
SR " (6.14)

Vk+1 0 1—At/7’l Vk
This iteration is unstable foA¢ > 27;,. Therefore, regardless of accuracy concerns, sim-
ulating the motion of a 1@m sphere with density000kg/m? in a fluid with viscosity
u = 8.9 x 10~*Pa.s, would require taking time steps smaller thanss0The stability

threshold is independent of°.

The position of the sphere was calculated using (6.14) witmiial velocity of v = 0m/s
using different values aof\t. The results are illustrated in Figure 6-6, together witi 8%

clearly demonstrating the issue with stability.

78

6.3.2 Velocity implicit method

Since the small time scale is associated with the update of the velocity, it is reastanab
to expect that using an implicit time integration schemeupdating the velocity update
can result in a stable scheme for integrating the equatibnsoton (6.12). The simplest

form of the velocity implicit method replaces the Forwarddtwpdate for the velocity by

Th+l |
Vk41
that yields the iteration

b e 1
= +
Vk+1 0 (1 + At/Tl>_1 Vg

which is stable for alAt. This method is also known as the symplectic Euler methoel (se
[46], chapter 5).

a Backward Euler update

1 0
01 +At/7’l

0

v (6.15)
(1 + At/Tl>_1At/Tl

A more accurate scheme can use the trapezoidal rule for 8iggroupdate

Tht1 1 % Ty
V41 0 1 Vg
yielding the iteration

Thet | 1 SHA+ (1 + At/m)™Y) T n
Vk+1 0 (1 + At/TZ)_l Uk

which is stable for anyA¢.

0
At/Tl

+

A
1A
0 1+At/7’l

(1 + At/Tl)_lAt2/2Tl
(1 + At/Tl)flﬁt/Tl

(6.16)

A more accurate scheme can use the trapezoidal rule for gigguoupdate and the velocity

79

0.45F

analytical
F.E/JF.E. 7,

041 | - — —~FE/BE. e ol 7
— — TR.J/B.E. . 7
0.35F | —=— TRJ/TR. , A s
7 7 7
v v 3
s
0.3F s P 4 1 151 7
s , i
—_ e s —_ g
5 0.25F) s . 7 5 7. 7
x L s x s
7 ad
0.2 e ~ 1 1t o
7 7
- L7 ////
0.15r P g s ’ s
P 4 sid analytical
4 v
01t) s p - il 05} z “ F.E/FE. | |
- - I3 — — —F.E/BE.
7 v 7
0.05F - 7 e] 7 — — TR./B.E.
- - - —>—TRJ/TR.
)= _ P L L oL L L L L
0 5 10 15 20 0 20 40 60 80 100

time/t, time/rI

Figure 6-7: Numerical time integration of equations of motion for a perfectly buoyantrgphvith
10pm radius translating in a fluid with viscosity = 8.9 x 10~*Pa.s and density 1000kg/domain
with a background velocity of,, = 1mm/s. F.E. stands for Forward Euler; B.E. for Backward Euler
and TR for the trapezoidal method. For example F.E./B.E. means that thefbEuler method
was used to discretize the position update equation and Backward Eularsgddo discretize the
velocity update equation.

update.
1 —% Tk41 - 1 % Tl n 0 e
0 1+%Til Uk41 0 1—%% Vg At/7
yielding the iteration
T 1 —&in_ x 1+ At/n) LAt? /27
Vk+1 0 2:5—T—At Vg (1—|—At/7’l)71At/Tl

which is also stable for angz.

The position of the sphere used in the previous example Wwaslated using (6.14), (6.15),
(6.16), and[(6.17) with a time step dft = 57;. The results are illustrated in Figure 6-7
where it can be observed that (6.15), (6.16), and (6.17)tal#eswhile [(6.14) is clearly

unstable forAt = 57;.

The local position and velocity truncation errors for thetfistep of((6.14), (6.15), (6.16)

was calculated for severdlt and is illustrated in Figure 6-8 where it can be observed that

80

10° " 10 T
F.E/FE. F.EJFE.
[- — —F.E/BE. b — - —FE/BE.
10° s d 10 F T .]
NN - — TRJ/B.E. o — — TR/BE.
SR TR/TR. N TR/TR.
107} N] 0 |
SN
@ 1072 N : o 2 10°
% ~ RN g
e N N S
é 10 14 N R ~ - § 10 10 L
u < S b
S -16 N ~ s %‘ 12
= 10 N ~ S 10
g 2
g N
<
107° N 107
N
-20 > 16
107t ~ 107
N
N
22 -18
10 —4 5 6 7 8 -9 10 4 5 6 -7 8
10 10 10 10 10 10 10 10 10 10 10 10
At At

Figure 6-8: Truncation error for first time step of each numerical integration schama function
of the time step. The figure on the left represents the truncation error fggakidon; the figure on
the right represents the truncation error for the velocity.

the position and velocity truncation error for (6.14), &.hreO(At?), that the velocity
truncation error for((6.15) is als@(At?) and that the position truncation error for for
(6.16) and((6.17) i©(At3).

There exists an enormous number of integration schemesdmravy differential equations
[46]. The purpose of this chapter is not to review all the plmlegime integration schemes
but to show how they can be coupled efficiently with a bounddeynent solver for Stokes

flow.

6.4 Coupling the Stokes BEM solver and rigid body dy-

namics

In this section a stable time integration algorithm thatpies the Stokes drag forces calcu-
lated using a boundary element solver with a rigid body méatethe objects in the flow is
presented. In the following, we consider that objects irflihe are rigid objects of uniform
density that are described by a mesh of flat panels. To moded mteresting behavior of
objects such as cells and vesicles in the flow it is necessagdount for the properties of

the membranes of these objects (for details on membraneawlle simulation see [1],

81

[47] and [26]). However, the focus of this chapter is to idinoe a technique to couple a
boundary element solver and a semi-implicit time integraicheme and our discussion is
limited to rigid body dynamics. Extending the results irsteection to the mode general

case of the motion of elastic membranes and shells in flovftiasgfuture work.

First, to introduce some notation and to define relationswéen the rigid body state and the
panel velocities and position a brief review of some basicgples of rigid body motion

is presented. Then, in Section 6.4.1, a simple explicit ttegping scheme is presented.
Finally, in Section 6.4.2, a more stable velocity-impligihe stepping scheme is presented.

Rigid body motion and notation

To calculate the motion of a rigid body one can use the coasiervof linear momentum

P = mv and angular momentuiln = Iw , wherem is the mass of the body, is its linear
velocity, I is its inertia tensor and is its angular velocity. In the following, for conve-
nience, we also usg = [vI w’|T. The spatial configuration of a rigid body is determined
by the position of its center of mass,and by its orientation, which can be represented by
a rotation matrixR,, mapping positions in the body'’s local coordinate systethéoglobal
coordinate system, or by unit quaterni@n[48]. In the following, X is used to represent
the set of positions and orientations of the rigid bodiesheftow, i.e. the current configu-
ration of the system. The body’s inertia tensor is a functibits orientation and is given
by I(X) = RI,RT wherel, is the inertia tensor in the body’s local coordinate systéhe
center of mass and inertia tendgrfor any constant density object defined by a flat panel

mesh can be calculated using the algorithm proposed in [49].

Linear and angular momentum conservation state khat f andL = T wheref and
T are the total force and torque applied to the object. From emum conservation it
follows (see [50]) that the velocity and angular velocityaafgid body satisfy the following

equation

q= '. - (6.18)

wherels is the 3 by 3 identity matrix. For spherical obje&is< w is zero.

Given a rigid body described by a set:gf flat panels, if the Stokes drag force is given by

F € R*™ the Stokes drag force on the object is
fs = Z aF3—1)+(1:3) (6.19)
k=1
whereay, is the area of panél. The total torque due to Stokes drag on the object is
Ts = Zak(xk — X) X fk (620)

k=1

wherex; is the centroid of panet. This projection operation, from the panel ford@so
the total force[(6.19) and total torque (6.20), is represeimt matrix form by a 8, by 6
matrix B(X) such that

whereB(X) is a function of the orientation of each object.

To calculate the Stokes drag on an object using a boundanealesolver with a collocation
testing scheme, represented generically by (6.11), av&te k3™ with the velocity on

the centroid of each panel is needed. The ve¥dtas given by
Vi3k-1)+(1:3) = Vi = w X (x — %) + V.

This expansion operation is represented in matrix form by,al 6 matrix A(X) such

that

If the BEM solver is using a Galerkin testing scheme, instdatie@vector of velocities on

83

all panels it will need a vector of fluxéé. The vector of fluxed/ is given by

6.4.1 An explicit coupled solved

Using the notation defined in the previous section, the falg system of equations rep-
resenting an explicit time integration algorithm couplithg boundary element solver to

rigid body dynamics can be written

0 G(Xy)
U (6.21)
16 + AtK(Xk) 0 Athl(Xk) Ve
_A(Xk?) ’Y(Xk) 0 fext
Text

wheref,,, andT,,; represent the total externally applied force and torque and

0 —Ls Lo
0 0
K(Xy) = andL" = | Ly 0 —I
0 L(Xj)* Lo .
—Ly Iy

The system of equations (6.21) is a block upper triangulsiesy of equations that can be
solved forF by using a boundary element solver. The resullthig then used to produce

dx+1, Which in turn is used to calculate.,; andQ., according to

Xk+1 = Xk -+ At(Vk + Vk+1)/2
Qi1 = (At 2wy 1) * (AL/2wy) * Q

(6.22)

yielding X, ;. Note that, for numerical stability, the orientation of baibject is repre-

sented by a unit quaternion that is updated using finiteiootatinstead of incrementally.

84

6.4.2 Velocity implicit coupled solver

From the results and examples presented in sections 6.3.and & clear that a stable
solver will require that the Stokes drag force be calculateah implicit manner consistent
with the velocity updating scheme. An implicit scheme canobé&ined by modifying

(6.21) such thaF depends not only oq,, but also ong;..; i.e.

1y, ~AMXOBXD)" | | @ |

oA (Xy,) G(Xy) F |
el (6.23)

1o+ AKX, 0 AM Xy | | Ve

—A(Xy) v(Xy) 0 fext

Text

where, for “Backward-Euler” type update, = 1 anda; = 0 and, for a “Trapezoidal”
type updatep, = 1/2 anda; = 1/2. Note that, regardless of the value used dgr

and o, the update for the velocity is not entirely implicit becaube gyroscopic term
L xw = (Iw) xw, introduces a non-linear dependencewrf-or example, for a Backward

Euler update one would need to solve

W1 = Wi + AtT) + Athhwg X Wiy,

The system of equations (6.23) is not block upper triandikar(6.21) but it can be solved
using GMRES. Alternatively] (6.23) can be reduced to a bloggeu triangular form by

85

applying a step of Gaussian elimination yielding

15 —AtM_l<Xk)B(Xk)T qk+1 B

Ky (6.24)
CAX) (1g + a0 AK (X)) 7(Xp) —AAXOM LX) | | foe

Text

In our implementation use the form (6.24) is used and a swidor

(G + apAtAM'BT) F = — A(15+aoAtK)q,— AtAM ! [, TZ |7 44V, (6.25)

ext ext

is computed using GMRES and the pFFT accelerated representdtG described in
Chapter 4 and a rank 6 update for each rigid object moving ifitiee Then the calculated
forceF is used to calculatg,,, in a consistent manner that is stable fist much larger
than7,. If G does not change witk this scheme is stable for allz, if G changes withx

it might be possible to construct an example where the i@raicheme becomes unstable
but we have not encountered any case where this happens dRsgaf stabilityA, B, G
andK are functions ofX,. so the time step\t is still limited by accuracy concerns i.e. by
the requirement that these matrices be a reasonable ap@ions to their actual values

for the path fromX, to X, ;.

External forces

Many interesting problems involve not only fluid drag forbes also forces such as gravity
and electrical forces. Often the relation between the eatedorces and the mass of the
objects that are to be simulated is such that taking a tinpecgirsidering the acceleration
due to these forces, without considering the immediateorespof the Stokes drag, would
make the simulated object, wrongly, leave the domain ofrésie For a simple example

illustrating this problem, consider a spherical bead witheaneter: = 10m and a density

86

of p, = 1010kg/m? in an infinite quiescent fluid with densigy= 1000kg/m? and viscosity
1= 8.9 x 10~*Pa.s. The balance between the Stokes drag force and th&atjomal force
imply that the bead’s terminal velocity will satisfy/3(p, — p)ma®g — 6ruaV, = 0 i.e.

V. = 8(py, — p)a*g/u, whereg = 9.8m/<’ is the gravitational acceleration. The analytical
solution, for the case where the bead starts from regtjs= V. x (1 —exp(—t/7;)) where,
for this exampleV, ~ 88.1um/s andr; ~ 25us. For a time step of 0.1s, the analytical
solution will move at mos8.1m, on the other hand, if the acceleration dueytaas
considered separately and a time step of 0.1s was takene#teviould have been moved

by 485.1%m.

To avoid having to use very small time steps, external foitgs and torquesT .., should

be calculated at the beginning of each iteration and thdtiegacceleration on the objects
in the flow should be considered by the Stokes flow solver daathappropriate drag force
can be calculated as in (6/25). An exception to this rule aee computed constraint forces

whose calculation requires access to the total force agdi¢oon each object [51][52][50].

6.5 Interaction with structures

Since the objects moving in the fluid may collide with eacheottind with fixed structures
in the fluid, collisions, friction and contacts must be medkelTo deal with these issues the

freely available library ODE [27] was integrated with thensiator.

Before each time step, our time integration algorithm chdok<ollisions between the
objects. To detect collisions and penetrations our algoritises the libraries OPCODE or

GIMPACT that are associated with the ODE library.

At the beginning of each stdpis calculated for the candidate time step At by solving
(6.25). The force and torque on each object is then calaifeden F and is used to generate
a candidate state for timet At.

If a collision was detected at the beginning of the time s@PE is used to generate a

step candidate that integrates the equations of motiond®nirsg not only the forces and

87

torques due to fluid drag, calculated frdmand external sources, but also contact, friction

and collision forces [27].

If no collision was detected at the beginning of the time stepandidate state for time
t + At is computed using (6.24) and (6.22).

The candidate state is checked for penetrations and centddhere is any penetration
that exceeds a user-defined limit, the candidate statedastegj and the time step size is
reduced. If no excessive penetrations were detected, tithdzde state position of each
object is compared against a polynomial prediction basetth@position at previous time
steps; if the difference between the two values exceedsrade$eed threshold the step is

rejected. The step size is adjusted using the followinggat{53]

n+1
Errormaximum)

Errorestimate

Atnew - Atoldf)/ <

wheren is the order of the integration scheme and the polynomialipt@r; Erroresimate

is a user defined tolerance (in metdr)ror.imate IS the absolute value of the difference
between the predicted position value and the correspormdindidate state position value;
and is chosen to be about 0.9 to reduce the number of rejeteesl STo avoid very large

step variationg\t,.,,/ At.q IS constrained to be within 0.5 and 2.

After each time step, the time integration routine calls sitor functor with the state of
each object in the flow and the current simulation time. Tlsitoti functor indicates if

the simulation is to continue or if it should be terminated. d&fault, the visitor does not
terminate the simulation and the time integration routinesfies only when the end time

specified for the simulation is reached.

Note that when a step is rejected the calculatiod 0f + At) for the new step size does
not require setting up a new Stokes flow boundary elemenatmeionly the rank 6 update

operator for each object and the right hand side of (6.25) tebe recalculated.

88

a) No reuse. Full update.
I G P E, E,

FF FM
MF MM

b) Reusing grid data and precorrection entries between fixed structures

Figure 6-9: pFFT matrices and the updates that must be made from iteration to iteratioreas th
time integration algorithm is executed. In the figure above the pink coloesgmts sparse storage
or low effort required; red represents high storage or computatioffaireand white represents no
computational effort (due to reuse). In the figutestands for fixed and/ for movable.

6.6 Updatable solver

A significant part of the computational cost of solving (§.&bsetting up the precorrected
FFT representation d& at each iteration. A large part of this cost is due to the datmn
of the nearby interactions and the precorrection matrixiemnt However, in the examples
that are of interest there are usually a few large fixed sirastand one or more smaller
moving objects. The interactions between the panels of kieel tructures don’t change
from iteration from iteration and can be reused. Also, ifhfriteration to iteration the FFT
grid spacing is kept constant and the grid is moved and rédigencrements of this grid
spacing, the precorrection matrix elements for the fixedcsiires also don’'t need to be
recalculated. Reusing the nearby and precorrection forxbd ftructures from iteration to
iteration can have large performance benefits. This uptiataiver can be implemented
by decomposing the precorrected FFT data structures ing af dlock sparse matrices

separated by fixedy, and movable)/, as illustrated in Figure 6+9.

89

If there are fixed objects in the simulation and the grid spa@ not changed from iteration

to iteration, the columns in the projection matrix and the@san the interpolation matrix
associated with the fixed objects don’'t need to be recakedlatMore importantly, the
elements of the matrices containing the accurate valugadarearby interactions between
elements of the fixed object;,, and the precorrection entries, used to cancel out the
inaccurate interactions calculated using the diid, do not need to be updated. If the grid

size doesn't change, the kernel transfox@san also be reused.

For problems where the substrate is not represented irtplanid the free space Stokes
Green’s function is used, the nearby interactions betwkerpanels of the same moving
rigid object can be reused from iteration to iteration by ppiag the nearby interaction
matrix in appropriate rotation operators. However, siteedbjects are moving along the
pFFT grid, the precorrection matrix must still be recalteda To reuse the previously
calculated nearby interactions, the storage for the nemtieyactions must be separated

from the storage for the precorrection term.

6.7 Results

In this section, the stability and effectiveness of the timegration scheme that was in-
troduced in this Chapter is demonstrated by simulating arséems involving cell traps.
The first set of examples uses a microwell trap and the formulantroduced in Sec-
tion|6.1.3; the second set of examples compares four modiglaalinko cell traps and

uses the formulation described in Section 6.1.2 and theeStelbstrate Green’s function.

For the examples reported in this section, we used ODE’'sacontodels withdCont act -
Appr ox1 anddCont act Bounce, mu=1, bounce=0. 5, sof t _cf me0 andsoft _erp=0.9. The
relative tolarence for the GMRES linear system solver wasosgi . The nullspace was
removed from the GMRES search space at each iteration step agit block diagonal

preconditioner was used.

90

6.7.1 Microwell trap

The approximate formulation presented in Section 6.1.3wgasl to simulate the behav-
ior of objects trapped in a microwell cell trap such as thosscdbed in/[24]. For the
examples presented in this section a trap with a diametef@in3and a depth of 3om
was used. The fluid density was setip = 1000Kg/m® and the fluid viscosity was set
to = 8.9x10*Pa.s. The trap and fluid geometry were represented by a til@ngesh
generated using Comsol 3.2. The mesh is composed of 1345dantie hole walls, 1012
panels for the substrate and 3595 panels for the fluid botesdarhe discretized geometry,
and a sample trajectory for a bead moving in the trap, areepted in Figure 6-10. The
bead, with density, is represented by an icosphere with 1280 panels. The #elacithe
fluid boundary was set to that of a fully developed rectangthannel flow for a 3mm wide
and 20@:m high channel with a flow rate of. To study the effect of changing the flow
rate I’ and the bead densigyon the trapping behavior and to analyze the performance of
the transient solver, the flow rafé was set to the values of 100pL/s, 200pL/s and 400pL/s
while the bead density was set to 1000kg/f 1010kg/ni, 1050kg/m and 1100kg/m
generating a set of 12 simulations. In each case the beaddstaom rest, in the trap, at
the positionz = —5um, y = Opm andz = —10um. The simulations were terminated at
time 60s or when a bead escaped the trap and reached the bpohttee computational

domain.

Simulation results

The results for sweeping the bead density with a fixed flow aageillustrated in Fig-
ure 6-11; the results for fixing the bead density and sweeghiadlow rates are presented
in Figure 6-12. The trajectories for the lower flow rates dmerter because the simulations
were ran to the same end time. From both figures it is cleardsaixpected, heavier beads
get captured more easily and that higher flow rate can relegger beads. However, it
is also clear from the figures that the beads trajectoriedbeasomewhat complicated and

that they depend strongly on the flow rate and on the beadtgiensi

91

e —-

C*‘——_

Figure 6-10: Trajectory of a spherical bead moving inside, and then escaping, adtidal mi-
crowell with a diameter of 3@m and a depth of 3an. The bead and fluid density were set to
p = 1000kg/m?* and the fluid velocity on the boundaries of the fluid domain was set to théeprofi
of a fully developed rectangular channel flow for a 3mm wide and.80Bigh channel with a flow
rate of 400pL/s. The fluid viscosity was sefite= 8.9 x 10~*Pa.s. In the figure the bead is drawn
at its initial position, inside the trap, and at its final position, outside the trape $trface of the
microwell and the substrate, where the fluid velocity is zero due to the nbelipdary condition,

is colored light yellow.

92

Z [um]

10
] sk
] ok
] 5l
i 1 -10f
| _
4 1§ is)
/ N
/ 1 -20f
i
I 1 -25}
| ——— p=1000kg/m® ——— p=1000kg/m®
- p=1010kg/m? || -30r p=1010kg/m® ||
— — — p=1050kg/m° || _3s| — — — p=1050kg/m® ||
— = p=1100kg/m® —— p=1100kg/m®
‘ ‘ ‘ ‘ : ‘ a0 ‘ ‘ ‘ ‘ : ‘
-20 -10 0 10 20 30 -20 -10 0 10 20 30
X [um] X [um]
F =100pL/s F = 200pL/s
10
5L i
ok i
i i
_10- i
E st 1
N
ool i
_25 . 4
y ——— p=1000kg/m®
-30r ' p=1010kg/m® ||
35l — — — p=1050kg/m® ||
— — - p=1100kg/m®
_40 ‘ ‘ ‘ ‘ : ‘
-20 -10 0 10 20 30
X [um]
F = 400pL/s

Figure 6-11: Each figure illustrates the trajectory of the center of mass of a bead foremdlow
rate F” and for a set of bead density values. The bead is moving inside a cyliharicewell with
a diameter of 3pm and a depth of 3om (the side view of the trap walls is depicted in light gray).
The sphere of radiusBn, in light yellow, started its motion from rest.

93

10 10

5- -7 1 5t P
s s
{
oF \ . oF X
,,,,,,,, I \
-5+ i 4 -5
|
-10f : 1 -10}
§ st ‘ { E s}
N | N
-20+ ', B 20}
\ 7/
—25} N 7 B -251
-30F g -30f
F=100pL/s F=100pL/s
-35f F=200pL/s [-351 F=200pL/s
— — — F=400pL/s — — — F=400pL/s
~40 n n _40 I I
-20 -10 0 10 20 30 -20 -10 0 10 20 30
X [um] X [um]
p = 1000kg/m? p = 1010kg/m’
10 10
5F B 5t
oF B of
5k - | 5l
Ve - \\ T~
L i _ L \
B -10 u A B 10 ,
g -15} // 1 i -15F //
N / N 7/
-20f ’ 1 -20F -7
7/ -
7 Vi -
-25F -7 B -251 .
- {
/
-30F : g -30f !
F=100pL/s F=100pL/s
-35f F=200pL/s [-351 F=200pL/s
— — — F=400pL/s — — — F=400pL/s
~40 n n _40 I T
-20 -10 0 10 20 30 -20 -10 0 10 20 30
X [um] X [um]
p = 1050kg/m? p = 1100kg/m’

Figure 6-12: Each figure illustrates the trajectory of the center of mass of a bead foremdiead
densityp and for a set of flow rateg’. The bead is moving inside a cylindrical microwell with a
diameter of 3@m and a depth of 3om (the side view of the trap walls is depicted in light gray).
The sphere of radiusBn, in light yellow, started its motion from rest.

94

Performance analysis and solver behavior

The 12 simulations were ran on an Intel Xeon 3GHz workstatgh 2Gb of RAM and
took from 40 minutes to 3 hours to run, depending on the trajgdollowed by the bead
and the number of collisions that occurred. For each sinmmathe precorrected FFT

solver used a 48 by 48 by 48 FFT grid and a maximum of 227Mb of amgm

The median time for setting up the precorrected FFT solvex 9v&s. The maximum time
for setting up the precorrect FFT solver was 67.2s, cormedipg to the first iteration, when
the interactions and precorrection terms between the pdiaxdd panels are calculated. A
histogram with the distribution of setup times for generathe step candidates is presented
in Figure 6-13 clearly illustrating the performance bemefitie to the selective update of
the precorrected FFT data structures. Figure 6-13 alsepi®ea histogram for the GMRES
solve times. The median time for solving (6.25) using GMRES @2.3s; a smaller value
might have been obtained by using a coarser FFT grid, at thieat@ larger number of

nearby interactions. The median time for generating a sdadidate was 33.49s.

150

400

T T
Only updated At
350 and rhs after]
rejected step H
candidate.

300

[N
o
o

250

Setup median time.

200

Recalculation for
interactions with

150 .
movable objects —
after accepted step. Initial setup

a
o
T

number of step candidates
number of step candidates

times (fixed and | |
100 movable update)

il 7] o,

0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
Setup time [s] GMRES time [s]

50

Figure 6-13: Histogram for the precorrected FFT setup time, on the left, and for the GMRES s
time, on the right, for each step candidate. The figures illustrate compdurdelts from 1951 step
candidates, produced by the 12 simulations that were performed for #tedensity and flow rate
sweep for the microwell.

It was observed that, as expected, the step rejection ratéh@nmedian step size taken

by the time integration algorithm were greatly influencedtlhg presence or absence of

95

collisions. In the presence of collisions a much larger nendd step rejections occurred

due to excessive penetration or to excessive integratiam. evloreover, as illustrated in

Figure 6-14, in the presence of collisions and step rejestithe median step size for the

simulations decreases substantially.

45

step candidates rejected [%]
N N w w
o (%)) o (9]
T T T T

H
&

[
o

00

!

!

!

%

0.8

0.6

median step size [s]

0.4r

0.2

20

step candidates with collisions [%]

30

40

50 60 0

10

20 30 40 50 60
step candidates with collisions [%]

Figure 6-14: Effect of collisions on step candidate rejection rate, on the left, and on the tiee in
gration step size, on the right. The figures illustrate compounded resultslféd 1 step candidates,
produced by the 12 simulations that were performed for the bead densitftaam rate sweep for

the microwell.

A larger number of step candidate rejections and the use alfenstep sizes leads to larger

run times for the simulations as illustrated in Figure 6-15.

total run time [h]

3

25

15

§ T O

10

L L L
20 30 40
step candidates with collisions [%)]

50

60

Figure 6-15: Effect of collisions on the simulation run time. The results in this figure cpomed to
the 12 simulations that were performed for the bead density and flow ratpdaethe microwell.

96

g -15 E -15
-20 -20
25 -25
-30 -30 RO 4
40 20 0 0 10 20 30 40 20 TS 0 10 20 3
X [um] X [um]
a) p = 1010Kg/m?, F' = 400pL/s b) p = 1025Kg/m3, F' = 400pL/s

Figure 6-16: Trajectory of a pair of spherical beads moving inside a cylindrical migth with a
diameter of 3@m and a depth of 3@m. The fluid density was set t&1000Kg/n? and the fluid
viscosity was set tp = 8.9 x 1073, Each bead has a diameter bfum and was at rest in the
beginning of the simulation. The surface of the microwell and the subsivaere the fluid velocity
is zero due to the no-slip boundary condition, are depicted in light gray.

Pair of beads in a microwell

Simulating the trapping of two of more beads is no more corapdid than simulating
the trapping of a single bead. However, the presence of nmare dne bead in the trap
can lead to a larger number of collisions that will result madler time steps and longer
simulation run times. The simulation of the pair of bead$wiit= 1010kg/m?, illustrated

in Figure 6-16, took 4.4 hours to run and used 263.8Mb of mgrapran Intel Xeon 3GHz
workstation with 2Gb of RAM. In this simulation the beads i@l collide, one of the
beads rotates around in the trap, collides with the trap avallis released. The simulation
of the pair of beads withh = 1050kg/m?® took 4.6 hours to run until it reached a state where
the pair of beads was trapped, lying on the bottom of the hibteeasimulation time of
60s, as illustrated in Figure 6-16. However, after thisestaas reached, the simulation
continued on with smaller time steps and many collisionghatsimulation time of 90s
the simulation had ran for roughly 11 hours taking very sriale steps as the two beads

collided with each other and with the bottom and side of tap.tr

The small time step issues associated with dealing calssénd contacts seem to suggest

that it would be useful to find a more efficient way to deal witdrgistent contacts, such

97

as those that occur when a bead is trapped. However, delvong deeply into the simu-
lation of contacts, collisions and friction is not the foafghis thesis and finding a freely
available implementation of the collision detection altfons or the rigid body dynamics

library that is more robust than the ODE package [27] hasemtdo be quite hard.

6.7.2 Pachinko trap

In this section we present simulation results for protrgdiell trap geometries such as
those described in [21] using the boundary integral formmtgpresented in Section 6.1.2.
This formulation uses the Stokes substrate Green’s fumetinich has the advantage that
it only requires discretizing the structures above the satesas illustrated in Figure 6-17.
In the following we present results obtained by using foudfedent trap geometries and
different settings for the background flow velocity and foe bead density. The four trap
geometries are illustrated in Figure 6-18 where it can beeiolesl that the shape of the
trapping region itself was kept constant while the shapéefttap support was changed.
A triangular mesh for each trap model was generated using Qld3ri& trap model 1 is
represented by 2810 panels; trap model 2 by 1820 panelsntoael 3 by 2400 panels;
and trap model 4 is represented by 2736 panels. All the traqukels are 20m high. The
simulations were ran with a bead represented by an icosphtrd 280 triangular panels.

The simulations were terminated when the simulation tinaehed 15s.

The following observations were made. In the absence of faatefe gravitational force,
i.e. when the bead density was set to the same value as thed@ogity, changing the
flow rate does not change the trajectory of the beads. Thidtrssillustrated in Fig-
ure 6-19a) and is expected because, in the absence of grwéyto the linearity of the
Stokes equations, multiplying the flow rate by a given factmainges the drag forces and
the accelerations by the same factor and hence the objdots the same trajectory except
they do so at a velocity that is multiplied by that same fadfadhe bead density is set to a
value different than that of the fluid density, the gravity laa effect on the trajectory and,
given the initial position of the bead, the relation betwdes bead density and the flow

rate greatly influences if the bead will be captured or if il wscape. The effect of the

98

/ N
)
Figure 6-17: Trajectory of a bead released near a pachinko type trap. On the the taehis
1 and the bead density was 1050kg/mon the right the trap model is 2 and the bead density was

1050kg/m. Note that the edges on the corners on the structures are just an artffee algorithm
used to render the figures.

trap 1 trap 2

20 20
10 10
5 o 5 o0
> >
-10 -10
-20 -20
0 20 40 60 0 20 40 60
X [um] X [um]
trap 3 trap 4
20 20
10 10
I £ o
> >
-10 -10
-20 =20
0 20 40 60 0 20 40 60
X [um] X [um]

Figure 6-18: Top view of the 4 pachinko type cell traps used to demonstrate the time domain
simulator. Each trap protrudes 20n above the substrate.

flow rate on the trapping behavior is illustrated in Figur&3s) where a bead with density
p = 1050kg/m? is captured with a flow rate of 100pL/s while it escapes for w flate of
200pL/s.

Another interesting observation that was made from our mig@leexperiments was that
changing the trap model by changing the shape of the trapsiypile keeping the actual
trapping region the same does not significantly change #pectory of the bead. This is

99

30 T T T T T 30

251 1
251 1

20 B
20 1

g Eis
N N
151
101
‘ p=1000kg/m° F=100pL/s
r p=1000kg/m® F=400pL/s | | 5t & —— p=1050kg/m® F=200pL/s | |
M/ —%— p=1000kg/m® F=200pL/s & p=1050kg/m® F=100pL/s
. ‘ ‘ ‘ l o ‘ ‘ ‘ I
-10 0 10 20 30 40 50 -10 0 10 20 30 40 50
X [um] X [um]
a) perfectly buoyant bead b) slightly heavier bead

Figure 6-19: Trajectory of the center of mass of a bead released near a modehingadrap. The
figures in the background of the plots represent the edges of the eafieen the top and from the
side.

clearly illustrated in Figure 6-20 for a bead with dengity: 1050kg/m? and for a flow rate

of 100pL/s and a flow rate of 200pL/s. For the lower flow rate, tlead is capture by all
of the traps; for the higher flow rate, the bead escapes dfleofraps. For either flow rate
the trajectory that the bead follows is very similar. Thisuk seems suggests that, at least
for beads starting near the trapping area, and aligned hétleénter of the trapping region
y = 0, the Stokes drag force on the bead is not greatly influencedebghape of the trap’s

support.

Running each of the simulations took from 20 minutes to abdut@s and used a max-
imum of 400Mb of memory on an Intel Xeon 3GHz workstation w2iib of RAM. The
simulation time was influenced by the number of collisionsdiso by the size of the FFT
grid. For cases where the bead escaped the trap, the FFTagritd e enlarged; enlarging
the FFT grid requires recalculating the kernel transforntsraakes the GMRES iterations
become more expensive. The median time for generating aatepidate was 56.31s; the
median time for setting up the precorrected FFT operator20a33s; the median time for
solving (6.25) using GMRES was 37.9s.

100

z[um]

11

bead p:lOSOkg/m3 P
10l F=100pLis e _/}

trap 1

— — —trap3
— — trap4

5r trap 2 |

- -4 -2 0 2 4 6 8 10
X [pm]

12

z [um]

30

bead p:lOSOkg/m3
F=200pL/s

trap 1|7
trap 2
— — —trap3
— — trap 4

0 5

10

X [um]

15

20

25 30

a) Flow rate of 100pL/s. b) Flow rate of 200pL/s.

Figure 6-20: Trajectory of the center of mass of a bead with a diameter @imi@nd density
p = 1050kg/m? released atr = —5um,y = Oum andz = 7um. The background flow was set to
that of a 3mm by 2Q@m channel.

Trapping region

To further compare the trapping efficiency of the trap model$ to demonstrate the use of
our solver, we setup a set of simulations where a bead wassealestarting at = —10um
andz = 6 for several values of. The density of the bead was setite= 1000kg/m? and

p = 1050kg/m? and the flow rate was set 10 = 100pL/s, F' = 150pL/s andF = 200pL/s.

In this example only trap models 1 and 4 were considered. ifméations were terminated
when the simulation time reached 30s or when the bead posikceeded@5,m along the
x direction. The sweep consisted of 60 simulations which ramfl5 minutes to about 1.5
hours (the average run time was 45 minutes) and used a maxaih288Mb of memory on
an Intel Xeon 3GHz workstation. The sweep generated 3632cstedidates. The median
time for setting up the precorrected FFT operator was 18fsmedian time for solving
(6.25) using GMRES was 29s.

The more interesting simulation results are illustrateBigure 6-21 where it is clear that,
even though the trajectory for = 0 is similar for trap model 1 and trap model 4, there
are some differences between the trapping behavior forcefiter’ beads since, far =
200pL/s, trap model 1 was able to capture some beads that traplmaoglas not able to

catch.

101

25

p = 1050kg/m®
E=100pl/s

2ok p = 1050kg/m® |
F =100pL/s

151 J

10 1

y [um]
o

-5 e P 1
10}]

-15} 4

-10 0 10 20 30 40 -10 0 10 20 30 40 50 60
x [um] X [um]

25

p = 1050kg/m®

_ 3
20k p =1050kg/m® | F = 150pL/s

F = 150pL/s
151 1

10 1

T o s | g |
> >
o f i
-10f 1 |
_150-]
—20} : |
o5 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
-10 0 10 20 30 40 -10 0 10 20 30 40 50 60
X [um] X [um]
T s ; ;
20+ T P = 200005 | polstigin® |
=<%0p F = 200pL/s
15} 7 |
10t g i
l % 1 |
5 of o 1§ |
> >
s} y] I
-10} : |
-151 1 g
20t 1 1
10 -5 0 5 10 15 20 25 30 35 40 -10 0 10 20 30 40 50 60

X [um] X [um]

Figure 6-21: Characterization of the trapping region for pachinko trap model 1, on tlfte d&ad
pachinko trap model 4, on the right. The curves in red, with the dot mandqgresent situations
where the bead was trapped; the curves in blue, with the cross maegeesent situations where
the bead was not captured.

102

45 T T T T T 1 T
O captured O captured
x x released 0.9 o o) x released [
X
40 « « « 1 08
X X
X x % X @]
<y x & X x X x x
= XX % X 0.7} o o
B 35 % X o x y >6< x « x) o
Q O
2 X ¥xx & & 0.6 o °
= x x ° o o ©
(%} X)
o 30 L 05
= x X0 2 o
2 ° g ©
c @] 5 0.4r
g £
g x o 0.3
% 09
O 0.2
20 o X x X %
01 X e " XX * X
X X x % X x x
15 ‘ ‘ ‘ ‘ ‘ 0 LR S e S S B
10 20 30 40 50 60 70 10 20 30 40 50 60 70

step candidates with collisions [%)] step candidates with collisions [%]

Figure 6-22: Effect of collisions on step candidate rejection rate, on the left, and on the time in
gration step size, on the right. The figures illustrate compounded results3632 step candidates,
produced by the 60 simulations that were performed for bead initial postiiensity and flow rate
for the pachinko trap models 1 and 4.

To illustrate the relation between the number of collisiand the step rejection ration and
the step size, the percentage of the step candidates thateyected and the step size as a
function of the percentage of step candidates with colisiare illustrated in Figure 6-22.
In Figure 6-22 it can be observed that for all the simulatiatesrge percentage of the steps
had collisions. It can also be observed that simulationsaated with the bead being
captured (and staying in a region with slower moving fluidd ess rejections and larger
step sizes. The median run time for the simulations thatteadcaptured bead was 1536s

while the median run time for the simulations where the bead released was 3134s.

6.8 Conclusions and future work

A stable velocity implicit time stepping scheme coupling firecorrected FFT solver pre-
sented in Chapter 4 with rigid body dynamics was introducetidemonstrated. The ODE
library [27] was integrated with the solver to enable thelgation of situations involving
collisions, contacts and friction. Several techniquesfmeding up the calculation of each
time step were presented and tested. The time integragamitdm was found to produce

reasonable results.

103

However, it was found that some work still needs to be donenfmove the robustness of

the support for collisions and contacts of moving objectcdeed by arbitrary meshes.

It was also found that, for the application examples, th&ibigtion of panels is not very
homogeneous and that, in this context, using the preceadefT may not be an optimal
solution and that other acceleration schemes may be moemtadyeous. Nevertheless, the
current version of the solver was still found to produce oeable results in a reasonable
amount of time and, more importantly, the velocity impligihe stepping scheme can easily

be used with any other boundary element method for calcgjalie Stokes flow drag.

In the future, it would be worthwhile to use the updatable’spimplementation to enable

running parametric sweeps efficiently and to support shagiemzation.

In the future it would be interesting to couple membrane n®dech as those described
in [47], [26] and [1] with the velocity-implicit scheme ante pFFT accelerated Stokes

boundary element solver.

It would be very interesting to extend this work to suppoipy $low boundary conditions
for low Knudsen numbers (see [26]).

Appendix A - rate of energy dissipation in the fluid volume

Let S, represent the surface of a body in an infinite quiescent flugt. V' represent the

fluid volume, bounded by the surface of the body and a su§&cat an "infinite” distance

104

from the object where the fluid is at rest,

Jo; ou;
Sy R v 8Ik 82L‘k

—

oP 0 [0Ou; Ouy ou; Oou; Ouy B
/V <_6ik8xk i 'u&’vk <8xk N 8$Z)) N Oxy, (_6ikp T <8$k * 0%)) V=

2, . .
/ (_5ik OP 0%u; > N 0 Ouy p ouy, N ou; (aul N 8uk) qV —
.

oxy, +'u8xk8$k M@xi oxy, B oxy, ﬂaxk Ox, Ox;
~) ~—~ ~—
=0 from Stokes equation =0 =0
Ou; (Ou; O
v 0r, \ Oz, Ox; v v
—_—
2e;k

(6.26)

Sincen is the normal pointing into the body and away from the flfiies; —on is the force

applied to the object and the work done on the object by thkeStdrag force is

/ ul'fds = —/ w;oiNEdS = —QM/ eireidV = —u/ ddV (6.27)
Sb Sb \%4 \v4

which is the negative of the power dissipated in the fluid r@du In other words, the work

that the body does on the fluid is dissipated in the volume.

If the body is rigid, then the velocity o6, is given byu(x) = v, + w;, X (x — x;) and

/qudS:Vb-/ de—i—wb-/(X—Xb)deS:Vb-f+wb-T:—u/<I>dV
Sb Sp S \%

holds, which basically states that the drag force and toogué&e object oppose its motion.
This statement also implies that, according to the Stokes ifitmdel, the fluid does not
accumulate kinetic energy. In the Stokes flow model, thegntrat a body transmits to

the fluid either dissipates due to viscosity or is transmitteother bodies in the fluid.

105

Chapter 7

Implementation details

In this chapter some details regarding the implementatitimegprecorrected FFT boundary

element solver are presented.

7.1 Projection and interpolation

The projection and interpolation steps in the precorreEted algorithm were reviewed in
Section 4.1.1. In this section we present how to actuallgutate the coefficients of the

projection and interpolation matricésandl.

RecallthatP, . = [L,(x,)dS andthafl,; = L, ,(x;), for collocation testing, anlj ; =
fSt L, ;(x,)dS, for Galerkin testing. Wheré; , is an interpolating Lagrangian polynomial
on the projection stencil associated with the source pan@ndL,; is an interpolating

Lagrangian polynomial on the interpolation stencil assted with the test pané),.

For practical reasonB;; = L,;(x;) is calculated in two steps. In the first step, a set of
monomials of thex; minus the center of the interpolation stencil associatet thie test
panelt are calculated. In the second step, the values of the mofsari& combined to
produceL, ;(x,). Note that the monomial coefficients for the interpolatirddypomials,
which are used to combine the monomials idtg(x,), do not depend onx, and are a

function of only the interpolation stencil and the grid spgc If the same type of inter-

106

polation stencil is used for all the targets, these coefftsican be computed once and
then reused for the calculation of all tihe;(x,) entries. If Galerkin testing is being used,
P, = fSt L. ;(x;)dS and, in the second step, rather than combining monomiakifumc
values, the algorithm uses the same method to combine the@mie moments oves,
(note that these moments are centered on the interpoldaganikassociated with the test

panelt). The same process is used to calculje.

The monomial coefficients** for the interpolating polynomial. ; can be calculated by

solving, in the least squares sense, a linear sy#tem = e, where
A = (5 — 20)™ (y; — y0)"™* (25 — 20)™ (7.1)

wherex; is the jth stencil point andk, is the stencil center; aneg'. = ¢0;;. Sincel(7.1)

is a Vandermonde-like matrix its condition number will d&teate rapidly withm, n and

p. Moreover, if the entries ilA are not rescaled, solving the linear system (7.1), even
using SVD based methods, will not yield accurate valuesférand will instead produce

a low order approximating polynomial that will significantompromise the accuracy of
the pFFT algorithm. Because it does not lead to an immedidéstcaphic failure of the
pFFT algorithm, the loss of accuracy due to failing to resegl can be a very hard to find

bug.

A version of our implementation of the projection/intergibxdn algorithm is included in
Listing/7.1 and Listing 7.2.

Listing 7.1: Functor used for projection and interpolation using monomial basis functams
panel moments.

tenplate <class Gid, class operation_tag>
struct project_on_grid_functor_inpl

typedef geonetric_el ement:: noment _cont ai ner nonent _contai ner ;

tenpl ate <class Stencil >
project_on_grid_functor_inpl (Gid const & grid, Stencil const & stencil)
: _grid(grid), _nonments(new nonent_container())
{
position center_point = grid.position_fromagrid_coordinates(stencil.center()) ;
vect or <posi ti on> stanp_point_positions ;
for (typename Stencil::stanmp_iterator stanp_it = stencil.stanp_begin() ;
stanp_it !'= stencil.stanp_end() ; ++stanp_it)
{

vector<int> stanp_coordinates = *stanp_it ;
for (unsigned dim=0; dim!=3; ++dim

107

stanp_coordi nates[din] += -stencil.bounds()[din.first ;

st anp_poi nt _posi ti ons. push_back(
grid.position_fromagrid_coordinates(stanp_coordi nates) - center_point) ;

}

/I Calculate monomial values on the stencil points
/I establishing a basis_values_on_stencil matrix.
f _nonom als interpolating_function(
stencil.span()[0], stencil.span()[1], stencil.span()[2]) ;

ubl as: : matri x<doubl e, ubl as:: col um_maj or> basi s_val ues_on_stencil =
detail::evaluate_interpolation_functions_on_stencil (
stanp_poi nt _positions, interpolating function) ;

/I SCALE the rows of the basis_values_on_stencil matrix
vect or <doubl e> scal i ng(basi s_val ues_on_stencil.sizel(), 0) ;
for (unsigned row = 0 ; row != basis_values_on_stencil.sizel() ; ++row)
{
/I Determine the maximum value on the column
for (unsigned col = 0 ; col != basis_values_on_stencil.size2() ; ++col)
scaling[row] = max(fabs(basis_values_on_stencil (row, col)),
scaling[row) ;

/I Scale the columns in this row
for (unsigned col = 0 ; col != basis_values_on_stencil.size2() ; ++col)
basi s_val ues_on_stencil (row, col) /= scaling[row ;

}

/I Calculate the pseudo inverse of the scaled matrix
i nterpol ati ng_pol ynomi al _coefficients_m =
pseudo_i nverse(basi s_val ues_on_stencil) ;

/I Scale the columns of the pseudo inverse

for (unsigned col = 0 ; col != interpolating_polynom al_coefficients_msize2() ; ++col)

for (unsigned row = 0 ; row != interpolating_polynom al _coefficients_msizel() ; ++row
i nterpol ati ng_pol ynom al _coefficients_nm(row, col) /= scaling[col] ;

/I Resize the storage for interpolating_polynomial_coeff icients

/I Reorganize the the interpolating_polynomial_coeffici ents

/I to facilitate the computation of the projection and inter polation
/I coefficients.

_monment _orders = interpolating_function.termorders() ;

unsi gned n_functions = interpolating_function.size() ;

for (unsigned fi =0 ; fi !'= n_functions ; ++fi)

{

unsi gned const iXx
unsi gned const iy
unsi gned const iz

_moment _orders[fi][0] ;
_moment _orders[fi][1] ;
_nonent _orders[fi][2] ;

for (unsigned pi = 0 ; pi != stencil.size() ; ++pi)
i nterpol ati ng_pol ynom al _coefficients[pi][ix][iy][iz] =
i nterpol ating_pol ynom al _coefficients_m(pi, fi) ;

}

/I Determine the maximum order of the moments that will be req uired
/I to project the sources onto the projection grid using the s tencil.
_max_nonent_order = 0 ;

for (unsigned io =0 ; io != _nonent_orders.size() ; ++io0)

_max_nonent _order = max(_nax_nonent _order,
_monent _orders[io][0] + _nmonment_orders[io][1] + _nonment_orders[io][2]) ;

/I Determine the minimum and maximum positions for the stenc il

/I centers (in grid coordinates).

for (unsigned dim=0; dim!=3; ++dim {
_mn_grid_coordinates. push_back(-stencil.bounds()[dinm.first) ;

108

_max_grid_coordinates. push_back((int(_grid.numpoints()[dim) - 1)
- stencil.bounds()[din].second) ;
}
}

/I Calculate the projection or interpolation coefficients for
/I a given source or target.
/I The function input is a tuple taking
/I (geometric_element const * source/target,
/I grid_coordinate const & nearest_grid_coordinate,
/I projection_coefficient & output).
tenpl ate <cl ass Tupl e>
voi d operator() (Tuple const & t) const
{
/I Extract the tuple components.
geonetric_el enent const * e = boost::get<0>(t) ;
usi ng nanespace boost::tuples ;

typedef typenane el ement <1, Tupl e>::type grid_coordinate_ref ;
grid_coordinate_ref nearest_grid_coordi nates = boost::get<l>(t) ;

typedef typenane el ement <2, Tupl e>::type projection_coefficients_ref ;
proj ection_coefficients_ref projection_coefficients = boost::get<2>(t) ;

/I If the nearest grid point is too close to the grid border mov e it
/I in such that the projection stencil points are contained i n the grid.
position centroid = e->get_centroid() ;
_grid.grid_coordinates_fromposition(centroid, nearest_grid_coordinates.begin()) ;
for (unsigned dim=0; dim!=3; ++dim

nearest _grid_coordi nates[dim = bound_val ue(

_mn_grid_coordinates[din], _nmax_grid_coordinates[din,

nearest _grid_coordinates[dinm) ;

/I Determine the location of the projection center grid poin t in world coordinates.
position projection_center = _grid.position_fromgrid_coordinates(
nearest _grid_coordi nates) ;

/I Make sure the moment result container has enough space for the moments we need
/I for this source or target type.
typedef typenane boost::renove_reference<projection_coefficients_ref>: :type
proj ection_coefficient_container ;
typedef typenanme projection_coefficient_container::value_type
proj ection_coefficient_type ;
unsi gned const extra_nonent_order =
conbi ne_nonents_and_stenci | _interpol ati on_coefficients<
proj ection_coefficient_type>: :extra_required_nonent_order ;

resi ze_panel _nonent _cont ai ner (extra_nonent_order) ;

/Il Use the position of the nearest projection grid point as th e center for
/I calculating the moments of the source.
e->get _nonment s(_max_nonment _order + extra_nonent_order, projection_center, *_nonents) ;

/I Fill in the projection coefficients
for (unsigned pi = 0 ; pi != interpolating_polynom al_coefficients.size() ; ++pi)
conbi ne_nonment s_and_stenci | _i nterpol ati on_coefficients<
proj ection_coefficient_type>::apply(
_nonent _orders, interpolating_polynom al _coefficients[pi],
e, centroid, *_noments, projection_center, projection_coefficients[pi]) ;

109

Listing 7.2: Function that combines the coefficients for the stencil interpolation polyriemvith
the moments evaluated for a given source or target panel to calculatedfeepon or interpolation
coefficients.

tenpl ate <>
struct conbi ne_nonents_and_stencil _interpol ati on_coefficients<

enum { extra_required_noment_order = 1 }

tenplate <...>
inline static void apply(
Monment Orders const & nonent _orders,
Stenci |l I nterpol ati onCoefficients const & stencil _interpolation_coefficients,
Ceonetri cEl enent const * el enment,
Centroid const & centroid,
Monents const & nonents,
Proj ectionCenter const & projection_center,
Coefficient & result)

result.clear() ;

/I The extra zt or zs moment order term is in absolute
/I coordinates so we need to add the base term to the
/I local z°(p+1) term i.e.
Il Xm *xy'n+*z2'p*(Z + z) <-- Xm *xy'n*z'(p+tl) + Z *xX'm=*y’n *z"p.
for (unsigned io = 0 ; io != nonent_orders.size() ; ++io)
{
unsi gned const ox = nonent_orders[io][0]
unsi gned const oy = nonent_orders[io][1]
unsi gned const oz = nonent_orders[io][2]
resul t[0] += stencil _interpolation_coefficients[ox][oy]][oz]
* nonent s[ox] [oy] [0z]
result[1] += stencil _interpolation_coefficients[ox][oy]][oz]
* (nmoments[ox][oy][oz + 1] + nonents[ox][oy][oz] * projection_center[2]) ;

7.2 Exploiting kernel symmetries to reduce memory usage

The Stokes flow Green'’s functions, as well as many other Gydenctions for physical
problems, have symmetries. If the Green’s function has sgimes and is evaluated on
a regular grid properly aligned with its axis and center ahgyetry, its discrete Fourier
transform (DFT) also has the same symmetries and the stéwagiee DFT can beom-
pressedaccordingly. Moreover, if the Green'’s function is real ahid ieither symmetric or
antisymmetric along each axis, its transform is either lyweal or purely imaginary and
its DFT can be stored using a collection of real values ratiem a collection of complex

values.

The precorrected FFT algorithm computes the DFT of the Gsdanctions to accelerate

110

the calculation of the convolution of the Green’s functiordahe projected forces on a
regular grid. If the Green’s function or the projected farege real, conjugate symmetry
can also be used to reduce storage. In our implementatiostahage for the DFT of real
signals iscompressetby truncating the DFT such that it ha8/, /2| + 1 entries along the
“last” dimension, which we assume to be thdirection for a 3D grid (the truncation could
have been performed along any other axis direction but weB$®V's [54]r 2¢ transforms

and thus follow their convention).

The velocities on the regular grid are computed by zero paytie projected forces, cal-
culating the DFT of the zero padded forces on the grid; catow the pointwise multipli-
cation between the DFT of the zero padded forces on the gddrenDFT of the Green’s
function; and then inverse transforming the result of thmfpase multiplication and re-

moving the padding.

The complicated part of the FFT accelerated convolutiohastlculation of the pointwise
multiplication between theompressedFT of the Green’s function and trmpressed
DFT of the projected forces, where it is assumed that theeptegl forces do not have any
symmetries that can be exploited. For that purpose, we presealgorithm in Listing 7.3
that can compute the pointwise multiplication of the DFT ofrgput signal with the DFT of
a Green'’s function with any combination of odd symmetry,resgmmetry or asymmetry

along any of the axis function and that works for any numbaetimfensions.

Listing 7.3: Function that calculates the pointwise product of a kernel, with symmetiasa
signal and accumulates the result onto a second signal.

#include "util/get_negated_functor. hpp"

/I nd_multiply_accumulate_transform_with_symmetries
tenplate <

class a_it_type,

class a_size_it_type,

class a_stride_it_type,

class a_symetry_it_type,

class b_it_type,

class b_size_it_type,

class b_stride_it_type,

class out_it_type,
class out_size_it_type,
class out_stride_it_type,

class F>
inline void nd_multiply_accunulate_transformw th_symetries_inpl (
size_t rank,

a_it_type
a_size_it_type
a_stride_it_type

ait,
a_size it,
a_stride_it,

111

a_synmetry_it_type a_symetry_it,

b_it_type b_it,
b_size_it_type b_size it,
b_stride_it_type b_stride_it,
bool signal _is_real,
out _it_type out _it,

out _size_ it_type out _size_it,
out _stride_it_type out _stride_it,
F const & f)

a_it_type const a_begin = a_it ;
i gnor e_unused_vari abl e_war ni ng(a_begin) ;

*a_stride_it ;
*b_stride_it ;
= xout _stride_it ;

size_t const b_stride
size_t const out_stride

size_t const a_stride =

size_t const a_size *a_size it ;
size_t const b_size *b_size it ;

size_t const out_size = *out_size_ it ;

if (rank '=1 & & *a_symmetry_it == odd) assert(a_size == (b_size - 1)/2) ;
if (rank '= 1 && r*a_symmetry_it == even) assert(a_size == b_size / 2 + 1) ;
assert (out_size == b_size) ;

a_it_type const a_end ait + a_size x a_stride ;
b_it_type const b_end b_it + b_size * b_stride ;
out_it_type const out_end = out_it + out_size * out_stride ;
i gnore_unused_vari abl e_war ni ng(out _end) ;

/I If the kernel is odd it does not store the first value,
/I which is zero.
if (xra_symretry_it == odd) {

b_it += b_stride ;

out it += out_stride ;

}

if (rank > 1) {
while (a_it !'= a_end) {
nd_rul tiply_accunul ate_transformw th_symretries_inpl (
rank - 1,
a_it, a_size_it + 1, a_stride_it + 1, a_symetry_it + 1,
b it, b_size it + 1, b_stride_it + 1, signal _is_real,
out _it, out_size it + 1, out_stride_it + 1,

f)

a_it += a_stride ;
b it += b_stride ;
out _it += out_stride ;

}
/I Get a_it back in the data range
ait -= a_stride ;

if (b_size %2 == 0) {
/I If using symmetry and signal size is even, point a to
/I the second to last entry.
if (xra_symmetry_it == even) {
/I signal is A B CDEF
/I kernel is abcdcb
/I processing E next so must point kernel to ¢
a it -= a_stride ;

else if (xra_symetry_ it == odd) {
/I signal is AB CDEF
/I kernel is 0 b ¢ 0 -c -b
/I precessing D now so just skip to E
b it += b_stride ;

112

out _it += out_stride ;
}
}

el se {
/I Nothing to do because:

/I if kernel is even:

/I signal is A B CDE

/I kermnel is a b c cb

/I b_it should point to D and a_it to c already

/I if kernel is odd:

/I signal is A B CDE

/I kernel is a b ¢ -c -b

/I b_it should point to D and a_it to c already

/I is kernel is asymmetric:
/I signal is A B CDE
/I kernel is a b c d e
/I b_it should be b_end

}
if (b_it == b_end)
return ;
if (xra_symretry_it == even) {

/I Now go back with the same f
while (b_it !'= b_end) {
nd_rul tiply_accunul ate_transformw th_symretries_inmpl (
rank - 1,
ait, asize_it + 1, a_stride_it + 1, a_symetry_it + 1,
b_it, b_size it + 1, b_stride_it + 1, signal _is_real,
out _it, out_size_ it + 1, out_stride_it + 1,

f)

a it -= a_stride ;
b it += b_stride ;
out_it += out_stride ;

}

else if (xra_symetry_ it == odd) {
typenanme get_negat ed_functor_i npl <F>::type neg_f(
get _negated_functor(f))

/I Now go back with a negated f
while (b_it !'= b_end) {
nd_rul tiply_accunul ate_transformw th_synmmetries_inmpl (

rank - 1,
ait, asize_it + 1, a_stride_it + 1, a_symetry_it + 1,
b_it, b_size_it + 1, b_stride_it + 1, signal _is_real,
out it, out_size it + 1, out_stride_ it + 1,
neg_f)

ait -= a_stride ;
b_it += b_stride ;
out it += out_stride ;
}
}

el se // rank == 1

/I This branch has the same structure as the branch for rank > 1
/I except that instead of recursively calling this function
/I the code calls the functor f or neg_f instead.
while (a_it !'= a_end) {
f(xout_it, *a_it, *b_it)
a_it += a_stride ;
b it += b_stride ;

113

out _it += out_stride ;

}

/I Get a_it back in the data range

a_it -= a_stride ;

if (signal_is_real || (b_size %2 == 0)) {

/I If using symmetry and signal size is even, point a to
/I the second to last entry.
if (ra_symetry_it == even) {

/I signal is A B CDEF

Il kernel is a b cdcb

/I processing E next so must point kernel to ¢

a it -= a_stride ;

else if (*ra_symetry_ it == odd) {
/I signal is A B CDEF
/I kernel is 0 b ¢ 0 ¢ -b
/I precessing D now so just skip to E
b it += b_stride ;
out it += out_stride ;
}
}
el se {
/I Nothing to do for same reasons as in corresponding
/I case in the rank > 1 branch above.

}

if (b_it == b_end)

return ;

if (ra_symetry_it == even) {

while (b_it !'= b_end) {
f(xout_it, *a it, *b_it) ;
ait -= a_stride ;
b it += b_stride ;
out it += out_stride ;

}

else if (xa_symetry_it == odd) {
typenanme get_negat ed_functor_inpl <F>::type neg_f(
get _negated_functor(f)) ;

/I Now go back with a flipped f

while (b_it !'= b_end) {
neg_f(xout_it, *a_it, *b_it) ;
ait -= a_stride ;
b it += b_stride ;
out _it += out_stride ;

}

}
}
}

Note that the algorithm presented in Listing|7.3 takes atfuric The functorf is used, to-

gether withget _negat ed_f unct or to enable the flexible and efficient configuration of the

function to be performed. For example, the func¢tean be awul ti pl y_accunul at e func-

tor, coupled to aul ti pl y_subtract functor byget negat ed_f unct or. Using functors

to represent the fundamental multiply accumulate operatmes not incur in any perfor-

mance penalty whereas using a factor of 1-drto multiply the Green’s function would

114

be less general and would introduce an unnecessary metiian. It would have been
possible to avoid using functors and to use expression &Be®p[28, 29] instead to rep-
resent the multiply accumulate and multiply subtractas it += *a_it *+b_it and
xout _it -= +a_it * =b_it withoutincurringin performance loss but we opted for using

functors andyet _negat ed_f unct or because it was simpler.

To illustrate the use aid_nul tiply_accunul ate_transformw th_synmetries_inpl,

a driver routine is presented in Listing 7.4 where the appatg instance of the function
is called depending on the symmetries of the Green’s fundiiod on the signal being
real or not. When the Green'’s function is symmetric or antisyatric along all the direc-
tions and it is stored as a set of real values, depending onuimder of directions where
the function is anti-symmetric, the transform values wél faultiplied by -1 and/or by.
The multiplication by -1 is achieved at no cost by usingti pl y_subtract instead of
mul ti pl y_accumul ate. The multiplication by: is achieved at no cost by adapting the
iterator over the transform data such that a special typetignmed when the iterator is
dereferenced. Specializations of the multiplication eparfor the purely imaginary type
are defined and inlined such that using ithegi nary_i t er at or _adapt or does not result
in a performance penalty.

Listing 7.4: Function that calculates the pointwise product of a kernel, with symmetias$a
signal and accumulates the result on a second signal

/I Driver routine for pointwise kernel signal multiply accu mulate
/I operation.
tenplate <
cl ass out put _scal ar _type,
cl ass kernel _scal ar _type,
cl ass input_scal ar_type,
class F>
inline void nd_nultiply_accunul ate_transformw th_symmetries(
nd_si gnal _transf or n<out put _scal ar _type> & accumnul at or,
nd_kernel _transfornkkernel _scal ar_type> const & kernel,
nd_si gnal _transfornxi nput _scal ar_type> const & signal,
F const & f)

conpl ex<i nt> symretry_factor(1, 0) ;

vector<function_symetry_type> const & kernel _symetry = kernel.symretry() ;
size_t const n_dins = kernel _symetry. size() ;

for (size_t dim=0; dim!= n_dins ; ++dim
if (kernel _symetry[din] == odd)
symmetry_factor *= conplex<int>(0, -1) ;

bool const negate = (symmetry factor.real () == -1)
|| (symmetry_factor.imag() == -1) ;

115

bool const use_imagi nary_iterator_adaptor = kernel.transformdata_is_real ()
&& (symmetry factor.real () == 0) ;

if (kernel.transformdata_ is_real ()) {
if (negate) {
if (use_imginary_iterator_adaptor) ({
nd_mul tiply_accunul ate_transformw th_synmetries(
i magi nary_iterator_adaptor(kernel.transformdata_as_real ()),
begi n(kernel . transformsize()),
begi n(kernel .transformstride()),
begi n(kernel . symmetry()),
signal . transformdata_as_conpl ex(),
begi n(signal .transformsize()),
begi n(signal .transformstride()),
nd_si gnal _transfornxi nput _scal ar_type>::signal _is_real,
accunul ator. transform data_as_conpl ex(),
begi n(accumul at or. transform si ze()),
begi n(accurul ator.transformstride()),
get _negated_functor(f)) ;
}
el se {
nd_mul tiply_accunul ate_transformw th_synmetries(
kernel .transformdata_as_real (),
/I Commented out repeated parameters
get _negated_functor(f)) ;
}
}
el se {
if (use_imginary_iterator_adaptor) ({
nd_rnul tiply_accunul ate_transformw th_synmetries(
i magi nary_iterator_adaptor(kernel.transformdata_as_real ()),
.. /I Commented out repeated parameters
f)
}
el se {
nd_mul tiply_accunul ate_transformw th_synmetries(
kernel .transformdata_as_real (),
... [/l Commented out repeated parameters
f)
}
}

el se {
if (negate) {
nd_rul tiply_accunul ate_transformw th_synmetries(
kernel . transform data_as_conpl ex(),
/I Commented out repeated parameters
get _negated_functor(f)) ;

el se {
nd_nul tiply_accunul ate_transformw th_symmetri es(
kernel . transform data_as_conpl ex(),
/I Commented out repeated parameters

Please note that, if the input signal is real and the kernsnsplex, or vice versa, then the
output signal will be complex and the pointwise multiplicatalgorithm will only work if
the uncompressed transform for the input signal is provittad likely that this restriction

can be lifted but it was decided to leave that improvementasé work.

116

In our implementation, compressing the DFT for the Greanifion is left to FFTW’s 2¢

or r 2r routines depending on the Green'’s function symmetriesndJier 2r transforms
has the advantage that the Green’s functions only need teabeaged on a quadrant of the
domain. However, the2r transforms are only applicable when the function is symimetr
or antisymmetric along all the directions and will not wodk the image Green’s functions
because they are not sampled around their center of symmnietmpuld have been pos-
sible, and more general, to just use FFTWX or c2c transforms and to compress the
resulting DFT afterwards. In hindsight, doing so, or usin@a first along the symmetric
directions and then usingc along the non-symmetric directions would have been better
than just relying on 2r to compress storage. Nevertheless, modifying the impléatien

is trivial and it is not the focus of this section. Moreover;, planar topologies, the layered
transforms, presented in Section|7.3 do exploit all possimmetries for both image and

non-image Green’s functions.

7.3 Specializations for planar topologies

Especially for surface micromachined devices, the proldenmensions along the direc-
tion, normal to the substrate, are usually much smaller thh@alimensions along theand

y directions, parallel to the substrate. For these problénesnumber of FFT grid points
along the vertical directionv, is much smaller than the number of grid points along the
x andy directions. It turns out that, for small enoug@h, it is faster and more memory
efficient to compute the grid convolution by layers along thairection and using 2D ac-
celerated convolution for each interacting layer pairnthaing a full 3D FFT accelerated

convolution.

In the layered convolution method the input signal and thee@'s function on the grid
are Fourier transformed along theandy direction but not along the direction. This has
the immediate advantage that it removes the need for paddaénigput and output signals
along thez direction. On the other hand the layered convolution rexpii? layer to layer

2D convolutions, as can be observed in Listing 7.5.

117

A major advantage for the layered convolution method whetieghto problems involving
image Green’s functions is that, the symmetry alongita@dy axis can be fully exploited
and the transform data can be stored a real vector rathertkiaotor of complex values.
Meanwhile, for the 3D FFT convolution method the image Giemctions are evaluated

in a way that symmetry along thedirection cannot be used and so the transform data

cannot be stored as a real vector or computed directly usiiy\Fs r 2r routines.

Another advantage of the layered convolution method is¢hbtulating the transform of
the projected image panel source panel distribution on tisefigpm the transform of the

projected source panel distribution on the grid only reggia simple re-indexing operation.

Listing 7.5: Layered convolution.

tenpl ate <cl ass scal ar_type>

voi d | ayered_kernel _transfornkscal ar _type>:: convol ve_accunul at e(
i nput _si gnal <scal ar _type> const & from
out put _si gnal <scal ar _type> & accunul at or,
scal ar _type const & factor) const

if (factor == scalar_type(0)) return ;

| ayered_si gnal _transfornkscal ar_type> const * fromp =

boost : : pol ynmor phi ¢c_downcast <l ayer ed_si gnal _transfornkscal ar _type> const *>(& rom ;
| ayered_signal _transfornxkscal ar_type> * to_p =

boost : : pol ynmor phi ¢c_downcast <l ayer ed_si gnal _transf ornkscal ar _t ype>*>(&ccunul ator) ;

/I Explicitly perform an N"2 convolution along the layering direction
int const mn_fromlayer = fromp->mn_|ayer_index() ;

int const max_fromlayer = from p->nax_| ayer _index() ;

int const mn_to_layer = to_p->mn_|layer_index() ;

int const max_to_layer = to_p->max_| ayer_i ndex() ;

for (int fromlayer mn_fromlayer ; fromlayer <= max_fromlayer ; ++from.layer)
for (int to_layer mn_to_layer ; to_layer <= nmax_to_layer ; ++to_layer)
| ayer(to_layer - from./layer).convol ve_accumnul at e(
fromp->layer(fromlayer), to_p->layer(to_layer), factor) ;

Note that the convolution interface provides a virtual nragbm to perform the convolu-
tion which hides the actual implementation. In other wottig, user of the convolution
classes does not need to be aware of whether a layered ctomaua full 3D FFT accel-
erated convolution is being used. The convolution interfaso takes care of any necessary

padding and unpadding.

118

7.4

Precorrection

The precorrection algorithm is responsible for subtractime grid based interactions be-

tween nearby source-target pairs. However, a naive impi&tien of the precorrection

algorithm can be very inefficient. In this section the teciugis used in our implementation

of the precorrection algorithm are presented. To facdithe discussion we first introduce

some of the variables and types that will appear below:

i nteraction_val ues iS a sparse matrix with entries of typet er acti on_val ue-
_type. This matrix hasium sour ces columns anchum t ar get s rows.

interaction_list isa collection ohum sour ces collections of target indices and
is basically a representation of the sparse structur@tadr act i on_val ues.

proj ection_coefficients represent the projection weights that map the source
forces to forces and force moments on the grid. This is a ciidie of collections of
projection_coefficient_type

proj ection_grid_coordi nat es represent grid coordinates used to map the source
forces to forces and force moments on the grid.

i nterpol ati on_coef fi ci ents represents the interpolation weights used to map the
grid velocities and velocity moments to velocities on thrgéd evaluation points, if
collocation testing is being used, or integrals of the yoaver the target panels, if
Galerkin testing is being used. This variable is a collectbcollections of elements

of typei nt er pol ati on_coef ficient_type.

i nterpol ati on_gri d_coordi nat es represent the grid coordinates used to map the
grid velocities and velocity moments to velocities on thrg ¢

greens_function(t,s) isa function that takes a target poinand a source point
and returns the value of the Green'’s function of typenel _val ue_t ype.

proj ect ed_kernel _val ue_t ype is the result of the product between a projection
coefficient and a kernel value.

mul ti pl y_accumul at e(pg, p, g) multiplies p of type proj ecti on_coeffi ci ent -
_type andg of typeker nel _val ue_t ype and accumulates the result onto an element
of the typepr oj ect ed_ker nel _val ue_t ype.

mul tiply_subtract(iv,i,pg) multipliesi oftypei nterpol ation_coefficient-
_type by pg of typeproj ect ed_ker nel _val ue_t ype and subtracts the result from
i v of typei nteracti on_val ue_t ype.

119

A straightforward, but inefficient, implementation of theeporrection algorithm is pre-
sented in Listing 7.6 where, for convenience, it is assurhatithex operator works in a
manner that is consistent with tihel ti pl y_accunul at e operation between elements of

proj ection_coefficient_type and ofkernel _val ue_type.

Listing 7.6: Basic precorrection algorithm.

for si =1 : num.sources,
for ti = interaction_list{si}
for pci =1 : length(projection_coefficients(:,si)),
for ici =1 : length(interpolation_coefficients(:,ti)),
mul tiply_subtract(interaction_values(ti,si), ...
interpol ati on_coefficients(ici, ti), ...
proj ection_coefficients(pci, si) * ...
greens_function(...
posi tion(interpolation_grid_coordinates(:,ici,ti)),...
position(projection_grid_coordinates(:,si,ti)))
end
end
end
end

There are several sources of inefficiency in this implentenrta The more important de-
ficiency of the algorithm is that the work done to calculate kiernel projected at a given

point is repeated for multiple panelsiint eraction_li st (si).

The first source of inefficiency can be addressed by sepgrdteéprecorrection for each
source into ascatterphase and gather phase. In thescatterphase, the list of the in-
terpolation points associated with the targets in the ®siiateraction list is computed.
Then the sum of the projected kernel values due to the saupcejection grid points is
calculated at the interpolation points in the list abovee Tontributions from all the pro-
jection points at each interpolation point are accumulated stored in elements of the
typepr oj ect ed_ker nel _val ue_t ype. In thegatherphase, for each target in the source’s
interaction list, the projected kernel values correspogdo the interpolation points as-
sociated with that target are multiplied by the correspogdnterpolation coefficients
and subtracted from the appropriate entryi ineracti on_val ues using the operation

mul tiply_subtract.

Another source of inefficiency is thgt eens_f uncti on(t, s) is evaluated multiple times
forthe samet, s) pair and that the positionsands are also being repeatedly recalculated.

Dealing with this issue is important if the cost of evalugtgineens_f unct i on and comput-

120

ing positions from grid coordinates is high. Unfortunatelchinggr eens_function(t, s)

as a function of both ands would either require a large amount of memory or would
would use some sort of associative container with a nomatraccess time. However, if
greens_function(t,s) istranslation invarianti.e. tir eens_function(t, s) isthe same
asgreens_function(t-s, 0) the values ofreens_functi on can be reused and accessed

as a function of - s without requiring an excessive amounts of storage.

In our implementation, presented in Listing 7.7 the follogiapproach for caching and
accessing the values of the Green’s function was used:, Birstmaximum grid-based
distance between a projection grid coordinate of a sourdeaannterpolation grid coor-
dinate of an interacting target was calculated. Calculatimggmaximum grid-based in-
teraction range benefits significantly from first computingral-aligned bounding box
for the projection grid coordinates of each source and ferititerpolation grid coordi-
nates of each target. Once the maximum interaction rangengputed the values of
greens_function(t-s, 0) in that range are calculated and stored in and akeaywel -
_val ues of ker nel _val ue_t ype elements. LeR,,;, . and R, represent the minimum
and maximum values of — s along directionk, the span of the interactions along that
direction isSy, = Rz — Bmin i + 1. LetTy, be the stride foker nel _val ues, defined in
a manner consistent witbl,. For a source grid coordinaseand a target grid coordinate

the linear index int&er nel _val ues is given by

cached_kernel _i ndex = Z(tk — Sk — Runinx) Tk (7.2)
k
Instead of computing (7.2) for each acceskdonel _val ues, linear indicesr oj ect i on-
_green_of fset =, (sp+Rminx)Tk, fOr each projection point, anaht er pol at i on_gr een-
_offset =), .1}, for each interpolation point, are computed and saved ofbe.dif-

ference between the two linear indices is then used to atetessched kernel values.

Listing 7.7: Precorrection algorithm.

/I project_on_grid performs the scatter operation for each
/I source. See subtract_grid_based_interactions below fo r
/I usage details.
tenplate <...>
voi d project_on_grid(
target_grid_it_type target_grid_it,

121

}

target_grid_it_type target_grid_it_end,
target_green_it_type target_green_it,

proj ection_green_offset_it_type proj ection_green_of f sets_begin,
proj ection_green_offset_it_type proj ection_green_of fsets_end,
projection_coefficients_it_type proj ection_coefficients_begin,
kernel _cont ai ner_type const & ker nel _val ues,

proj ect ed_kernel _contai ner_type & projected_kernel _val ues)

proj ect ed_kernel _val ue_type v ;

/I Calculate the projection of the source onto each target po int.
while (target_grid_it != target_grid_it_end)
{

size_t const target_grid offset = *xtarget_grid_it ;
int const target_green_offset = xtarget_green_it ;

/I Zero out accumulator.
clear(v) ;

proj ection_green_offset_it_type projection_green_offset_it
= projection_green_offsets_begin ;
proj ection_coefficients_it_type projection_coefficients_it
= projection_coefficients_begin ;
while (projection_green_offset_it != projection_green_offsets_end)

int const cached_kernel _index = target_green_offset
- *projection_green_offset_it ;

mul tiply_accunmul at e(
v, kernel _val ues[cached_kernel _i ndex],
xprojection_coefficients_it) ;

++projection_coefficients_it ;
++proj ection_green_offset_it ;

}

proj ected_kernel _values[target _grid _offset] = v ;

++target_grid_it ;
++target_green_it ;

}

tenplate <

cl ass kernel _val ue_type,
cl ass projected_kernel _val ue_type,
class interaction_val ue_type,

>
voi d subtract_grid_based_interactions(

Ker nel Eval uati onFunctor const & kernel _eval uati on_functor,

I nteractionList const & interaction_list,

Proj ecti onGri dCoordi nates const & proj ection_grid_coordinates,

ProjectionOfsets const & proj ection_of fsets,

Proj ectionCoefficients const & proj ection_coefficients,

I nterpol ati onG i dCoor di nates const & i nterpol ation_grid_coordinates,

InterpolationOf fsets const & interpol ati on_of fsets,

I nterpol ati onCoefficients const & interpol ati on_coefficients,

I nteractionVal ueslterator const & i nteraction_val ues)

/I Determine the maximum interaction range.
vector<pair<int, int> > interaction_range =

cal cul ate_maxi mum gri d_based_i nteracti on_range(
interaction_list,

projection_grid_coordinates,

interpol ati on_grid_coordinates) ;

/I Setup a mini-grid from the interaction range. */
size_t const n_dins = interaction_range.size() ;

122

vector<vector<int> > kernel _grid_indices ;
vector<int> green_m n_coordi nates, green_max_coordi nates ;
size_t numgreen_grid_points =1 ;
for (size_t dim=0; dim!=n_dins ; ++dim {
kernel _grid_i ndi ces. push_back(
l'inspace(interaction_range[din.first,
1, interaction_range[dini.second)) ;

green_mi n_coordi nat es. push_back(interaction_range[din].first) ;
green_max_coor di nat es. push_back(i nteracti on_range[di n].second) ;
num green_grid_points *= kernel _grid_indi ces. back().size() ;

}

/I Calculate kernel values

vect or <ker nel _val ue_t ype> kernel _val ues(num_green_gri d_points) ;
vector<size_t> green_stride = kernel _eval uati on_functor(

kernel _grid_indi ces, kernel _val ues.begin()) ;

int green_origin_offset = -linear_index_fromstride_and_mnulti _index(
green_stride, green_m n_coordinates) ;

size_t const n_sources = interaction_list.size() ;
vector<int> interpol ation_green_offsets ;
vector<int> projection_green_offsets ;

/I Allocate workspace to contain the projected kernel value S.
usi ng nmax ;
size_t const n_targets = boost::size(interpolation_offsets) ;
size_t max_interpolation_offset =0 ;
for (size_t ti =0 ; ti != n_targets ; ++ti)
for (size_t poi = 0 ; poi !=interpolation_offsets[ti].size() ; ++poi)
nmax_i nt er pol ati on_of fset = max(
interpolation_offsets[ti][poi], max_interpolation_offset) ;

size_t max_projection_offset =0 ;
for (size_t si =0 ; si != n_sources ; ++si)
for (size_t poi = 0 ; poi != projection_offsets[si].size() ; ++poi)
max_proj ecti on_of fset = max(
projection_offsets[si][poi], max_projection_offset) ;

vect or <proj ect ed_kernel _val ue_type> projected_kernel _val ues(
max(max_i nterpol ati on_of fset, max_projection_offset) + 1);

/I Map grid offsets into (aliased) offsets into the kernel mi ni-grid.
vector<int> green_offset_fromgrid_offset(max_interpolation_offset + 1, 0) ;
for (size_t ti =0 ; ti != n_targets ; ++ti)
for (size_t ioi =0 ; ioi !'=interpolation_offsets[ti].size() ; ++ioi)
if (green_offset fromgrid offset[interpolation_offsets[ti][ioi]] == 0)

green_offset_fromgrid_offset[interpolation_offsets[ti]J[ioi]] =
i near _i ndex_from stride_and_nul ti_i ndex(
green_stride, interpolation_grid_coordinates[ti][ioi]) ;

vector<int> target_green_offset ;
vector<size_t> target_grid_offset ;

/I Subtract the nearby grid based interactions for each sour ce.
for (size_t si = 0 ; si != n_sources ; ++si) {
size_t const n_interactions = interaction_list[si].size() ;
size_t const n_projection_points = projection_coefficients[si].size() ;

/I Map the projection stencil grid offsets to offsets on the m ini grid
/I where the kernel values where cached.
/I psi -- projection stencil index
proj ection_green_of fsets.resize(n_projection_points) ;
for (size_t psi = 0 ; psi != n_projection_points ; ++psi)

proj ection_green_offsets[psi] =

l'inear _index_fromstride_and_multi _index(
green_stride,

123

projection_grid_coordinates[si][psi]) - green_origin_offset ;

/I Determine the projected kernel values that need to be calc ulated.
target_grid_offset.resize(0)
target _grid_offset.reserve(
n_interactions * ((n_interactions !=0) ?
interpolation_offsets[interaction_list[si][0]].size() : 0)) ;

/I ii -- interaction index
for (size_t ii =0 ; ii != n_interactions ; ++ii) {
size_t const ti = interaction_list[si][ii]

copy(interpol ation_offsets[ti].begin(), interpolation_offsets[ti].end(),
back_inserter(target_grid_offset))

}

sort(target_grid_offset.begin(), target_grid_offset.end()) ;
vector<size_t>::iterator new target_grid_offset_end = uni que(
target_grid_offset.begin(), target_grid_offset.end()) ;

/I Convert grid offsets to green offsets
size_t num.uni que_projection_points = new target_grid_offset_end

- target_grid_offset.begin()
target_green_of fset.resize(numuni que_projection_points) ;
vector<size_t>::iterator grid_offset_it = target_grid_offset.begin() ;
vector<int>: :iterator green_offset_it = target_green_offset.begin() ;
while (grid_offset_it !'= new target_grid_offset_end)

xgreen_of fset_it++ = green_offset_fromgrid_offset[~grid_offset_it++]

/I Scatter

proj ect _on_gri d(
target_grid_offset.begin(),
new target _grid_offset_end,
target_green_of fset. begin(),
proj ection_green_of fsets. begin(),
proj ection_green_of fsets.end(),
proj ection_coefficients[si].begin(),
ker nel _val ues,
proj ect ed_ker nel _val ues)

/I Gather
/I For each interacting target interpolate the projected ke rnel values.
/I ii -- interaction index
for (size_t ii =0 ; ii != n_interactions ; ++ii) {
/I ti -- target index
size_t const ti = interaction_list[si][ii]
interaction_val ue_type & accunulator = interaction_values[si][ii] ;
/I isi -- interpolation stencil index
size_t const n_interpolation_points = interpolation_offsets[ti].size() ;
for (size_t isi =0 ; isi != n_interpolation_points ; ++isi)

mul ti ply_subtract(
accunul at or,
proj ected_kernel _val ues[interpol ation_offsets[ti][isi]],
interpolation_coefficients[ti][isi]) ;

It is possible that further performance improvements magdigeved by zeroing out parts

of the Green’s function that are likely to have to be preatige later.

124

Precorrection with image sources

If translational invariance is used to cache the Green'stfan values, the precorrection
for image panels and image Green'’s functions must be caresideparately from precor-
rection for “direct” source kernels. If the precorrectiar the image terms and the direct
terms is performed separately, it might be worthwhile toget separate nearby interaction
lists for the direct panels and for the image panels. Separdie nearby interaction lists
would very significantly reduce the cost of precorrectiontfe image sources but it would
require having two precorrection matrices or a method tolinenthe entries of the image
precorrection matrix with the entries of the direct preeotion matrix. Note that, regard-
less of the position of the source panel and the test poirte&ipanel), the image panel is
always further away from the test point (or test panel) thendriginal source. Therefore,
the precorrection matrix for the image panels will alwayseha sparse structure that is
a subset of the structure for the precorrection matrix ferdhect panels. If the nonzero
structure of the image precorrection matrix is a subset @fmbnzero structure of direct
precorrection matrix it is very likely thatubt ract _gri d_based_i nt eracti ons can be
modified, or passed in a set of adequate iterators, suchdahdiining the two matrices can
be done efficiently and seamlessly. Developing gkt precorrectionapproach is left as

future work.

7.5 Calculating the image transform from a signal trans-

form

When applying the precorrected FFT algorithm to problemslinag image sourcessuch

as the Stokes substrate Green’s function or the Green'sidunfor electrostatics in the
presence of a ground plane, the projection of the sourcdgando the FFT grid and the
projection of the image panels on the FFT grid as well as tD&ifs must be computed.
In this section, a method for computing the image projectiod its transform from their

“direct” counterparts, without requiring an extra FFT, regented.

125

Assuming that the plane of symmetry for defining image sairs¢hez = 0 plane and
that the projection coefficients for the sources@re ,, the projection coefficients of the
image sources are given by, ,, = Cmnmod(N.—pn,)- Similarly, if the DFT ofc is C
thenD,, ., = Crnmod(n.—p,N.)- HOWeVeT, ifc is real its DFTC can becompressedsing
conjugate symmetry, i.e. it may be truncated such that it bak| V, /2| + 1 entries along
the z direction. The Matlab code below illustrates how to prodacempressed from a

compressed’ for 2D and for 3D.

Listing 7.8: Compressed image transform from compressed signal transform in 2D.

c =rand(M N)
C=fftn(c) ;
C=C(:, L:floor(N2)+1) ;

DfromC=C;
D from C(2:end,2:end) = D from C(end: -1: 2, 2: end)
DfromC(:, 2:end) = conj(D fromC(:, 2:end)) ;

% D is the compressed image transform that we want, we can comp are it to
$ DfromC to validate the procedure.

d =c(:, [1 end:-1:2])

D = fftn(d) ;

D =D(:, 1:.floor(N2)+1) ;

Listing 7.9: Compressed image transform from compressed signal transform in 3D.

P=6,; M=6,; N=6,

¢c =rand(P, M N ;
C=fftn(c) ;

c=C:, 1:floor (N 2)+1)

DfromC=C;

D fromC(2:end,:, 2:end) D fromC(end:-1:2,:,2:end) ;

D fromC(:, 2: end, 2: end) DfromC(:,end:-1:2,2:end) ;

% Note that the two steps above are not equivalent to

% D_from_C(2:end,2:end,2:end) = D_from_C(end:-1:2,end: -1:2,2:end)
DfromC(:,:,2:end) = conj(D fromC(:,:,2:end)) ;

% D is the compressed image transform that we want, we can comp are it to
$ DfromCto validate the procedure.

d =c(:, :, [1end:-1:2])

D = fftn(d)

D =0D(:, :, 1l:floor(N2)+1) ;

126

7.6 Preconditioning

To improve convergence of the iterative solver for (2.23) Hhock preconditioner from
[55] was adapted to work with the Stokes flow Green’s funaiofthe maximum block
size is a user controllable parameter that can be used te $etdp time and memory for

improved convergence.

127

Chapter 8

Conclusions and future work

In this chapter, the conclusions that were drawn in prevehapters are summarized and

directions for future work are proposed.

Conclusions

A precorrected FFT accelerated algorithm for solving S¢dl@v problems in the presence
of a substrate was developed and demonstrated. Technmegtend the applicability of
the pFFT algorithm to certain types of non-translation irart Green’s functions were
developed. The modified pFFT algorithm was validated ag&newn theoretical, ex-
perimental and computational results and its performare® sompared with previously

published results.

Using the implicit substrate representation was shownddyce more accurate results with
less memory and significantly less time than explicitly esgnting the substrate. Using the
implicit substrate representation produces more accueatéts because it accounts for the

presence of the substrate exactly.

Surprisingly, a disappointing outcome of this study wag tha-of-plane motion excites
equation modes that reveal the need to refine the structsceetization as the distance
to the substrate decreases. Simulation of out-of-planeomatiso revealed that, when

using an explicit substrate, the substrate discretizatioist be refined faster than than

128

structure discretization for results to match the resuftined using implicit substrate
discretization. So the implicit substrate representatias benefits but does not entirely

decouple structure discretization from distance to thetsate.

An analytical panel integration algorithm for polynomiaté€e distributions over odd pow-
ers of the distance between points on a flat panel and an ¢&ealymint was developed

extending previous results in the area.

Most of the blocks of the precorrected FFT algorithm wherplemented using C++ tem-
plate metaprogramming techniques that will facilitateftitare development of accelerated

boundary element solvers.

A stable velocity implicit time stepping scheme coupling firecorrected FFT solver with
rigid body dynamics was introduced and demonstrated. Th& @iary [27] was inte-
grated with the solver to enable the simulation of systents wollisions, contacts and
friction. Several techniques for speeding up the caloohatf each time step were pre-
sented and tested. The time integration algorithm was fooipdoduce reasonable results.
However, it was found that some work still needs to be donenfwrove the robustness of

the support for collisions and contacts of moving objectcdbed by arbitrary meshes.

Directions for future work

In the future it would be interesting to couple membrane nwslech as those described in
[47], [26] and [1] with the velocity-implicit integrationcheme and the pFFT accelerated

Stokes boundary element solver.

Since, for the microfluidic application examples, the patstribution is not very homo-
geneous, coupling the velocity implicit stepping schemth\aifast solver that can better
deal with non-homogeneous problems, such as the multipetbad [33][20], could prove

useful. Another alternative would be to develop a multieteBon pFFT algorithm.

It would be very useful to integrate the solver with a scrigtianguage such as Matlab,
Python or Lua. Although this integration cannot be congdeas research work it would

greatly enhance the usability and the flexibility of the solv

129

Another possibility for improvement would be supportingliner order panel force distri-
butions to reduce the number of panels and improve conveegégain this would not be
considered to be very interesting research as the techsiiqueloing this are already de-
veloped. However, supporting higher order panels and fdisteibutions would be useful
for simulating smooth structures and would also facilitée integration of the boundary
element solver with a finite element solver for structurathanics where high order shape

and force distributions are commonly used.

Finally it would be both interesting and useful to furthepkte the techniques used for
dealing with contacts, collisions and friction in order t@yide better handling of compli-
cated collision situations and to enable the time domaimkition using large time steps
in the presence of multiple ongoing contacts. Still in trestext, it would be worthwhile
to try using multi-rate simulation techniques to speed @simulation of systems where

there are multiple moving objects, possibly undergoindjsiohs.

130

Bibliography

[1]

C. Pozrikidis.Boundary integral and singularity methods for linearizesicous flow

Cambridge texts in applied mathematics. Cambridge Uniyelsiéss, 1992.

[2] William M. Deen. Analysis of transport phenomen&opics in chemical engineering.

[3]

[4]

[5]

[6]

[7]

Oxford University Press, 1998.

Stephen D. SenturiaMicrosystem designKluwer Academic Publishers, Norwell,
MA, USA, 2001.

Y. H. Cho, A. P. Pisano, and R. T. Howe. Viscous damping mdadelaterally os-
cillating microstructuresJournal of Microelectromechanical Syster8s31-87, June
1994,

Kwok P. Y., Weinberg M. S., and Breuer K. S. Fluid effectsvitrating micro-
machined structuresJournal of Microelectromechanical Systenigl(4):770-781,
August 2005.

Ye Wenjing, Xin Wang, Werner Hemmert, Dennis Freemard dacob White. Air
damping in laterally oscillating microresonators: A nuroakrand experimental study.

Journal of Microelectromechanical Systeri&(5):557-566, October 2003.

Lijie Li, G. Brown, and D. Uttamchandani. Air-damped nicesonators with en-
hanced quality factor.Journal of Microelectromechanical Systeni%:822 — 831,
August 2006.

131

[8] Dale A. Anderson, John C. Tannehill, and Richard H. Pletc®mputational fluid
mechanics and heat transferHemisphere Publishing Corporation, McGraw-Hill,
1984.

[9] Rajat Mittal and Gianluca Iccarino. Immersed Boundary iels. Annual Review of
Fluid Mechanics37:239-261, January 2005.

[10] O. C. Zienkiewicz, R. L. Taylor, and P. Nithiaras@The Finite Element Method for

Fluid Dynamics Butterworth-Heinemann, 2005.

[11] Ladyzhenskaya O. AThe mathematical theory of viscous incompressible.flGor-
don & Breach, 1969.

[12] Happel J. and Brenner H.ow Reynolds number hydrodynamiddantinus Nijhoff,
1973.

[13] Greengard L. and Rokhlin V. A new version of the fast npdte method for the
Laplace equation in three dimensions. 6:229-270, 1997.

[14] Hackbusch W. and Nowak Z.P. On the fast Matrix multigtion in the boundary
element method by panel clusterifgumer. Math.54:463—-491, 1989.

[15] J. Phillips and J. K. White. A Precorrected-FFT methadEtectrostatic Analysis of
Complicated 3-D Structure$EEE Trans. on Computer-Aided Desjdi6(10):1059—
1072, October 1997.

[16] A. Frangi. A fast multipole implementation of the question mixed-velocity-
traction approach for exterior stokes flowskngineering Analysis with Boundary
Elements29:1039-1046, 2005.

[17] G.Biros, Ying L., and D. Zorin. A fast solver for the stakequations with distributed
forces in complex geometrie3. Comput. Phys193(1):3170348, 2004.

[18] Xin Wang. FastStokes: A Fast 3-D Fluid Simulation Program for Micrteé&iro-
Mechanical System#$hD thesis, MIT, June 2002.

132

[19] J. Tausch. Sparse BEM for potential theory and Stokes tlsing variable order
wavelets.Computational Mechani¢82(4-6):312-318, 2003.

[20] Ying Lexing. An Efficient and High-Order Accurate Boundary Integral Solfor the
Stokes Equations in Three Dimensional Complex Geome®ieb thesis, New York

University, May 2004.

[21] Dino Di Carlo, Nima Aghdam, and Luke P. Lee. Single-ce&lkgme concentrations,
kinetics, and inhibition analysis using high density hydinsamic cell isolation ar-
rays. Analytical Chemistry78(14):4925-4930, 2006.

[22] Dino Di Carlo, Liz Y. Wu, and Luke P. Lee. Dynamic singlelcsulture array.Lab
Chip, 6:1445-1449, 2006.

[23] Dino Di Carlo and Luke P. Lee. Dynamic single-cell an@yfer quantitative biology.
Analytical Chemistry78:7918-7925, 2006.

[24] J.R. Rettig and A. Folch. Large-scale single-cell tragpgand imaging using microw-

ell arrays.Analytical Chemistry77:5628-5634, 2005.

[25] Anil. K. Vuppu, Sanjoy K. Saha Antonio A. Garcia, Paki€. Phelan, Mark A.
Hayes, and Ronald Calhoun. Modeling microflow and stirringiadba microrotor in

creeping flow using a quasi-steady-state analysab. Chip 4:201-208, 2004.

[26] A. Beskok G. Karniadakis and N. AluriMicroflows and Nanoflows, Fundamentals

and Simulationvolume 29 ofinterdisciplinary Applied MathematicSpringer, 2005.
[27] Russell Smith. Open dynamics engine - user guide. wwavard, February 2006.

[28] David Abrahams and Aleksey Gurtovdy++ Template Metaprograming - Concepts,

tools and techniques from Boost and beyoAdison-Wesley, 2005.
[29] Andrei AlexandrescuModern C++ Design Adison-Wesley, 2001.

[30] Frangi A. and Tausch J. A quallocation enhanced appréacstokes flow problems
with rigid-body boundary conditionsEngrg. Analysis Boundary Elemen®9:886—
893, 2005.

133

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

J. N. Newman. Distribution of sources and normal dipaleer a quadrilateral panel.

Journal of Engineering Mathematic20:113-126, 1986.

Y. Saad and M. Schultz. GMRES: A generalized minimaldeal algorithm for solv-
ing nonsymmetric linear systemSIAM Journal of Scientific and Statistical Comput-
ing, 7:856-869, 1986.

L. Greengard and V. Rokhlin. A fast algorithm for paréidimulations.Journal of
Computational Physics3:325-348, 1987.

Stephen D. Senturia, Narayan Aluru, and Jacob White. ufitimg the behavior of
MEMS devices: Computational methods and neéd&EE Computational Science &
Engineering4(1):30-43, /1997.

N.R. Aluru and J. White. A fast integral equation techr@dar analysis of microflow

sensors based on drag force calculationsintarnational Conference on Modeling
and Simulation of Microsystems, Semiconductors, Sensdréetuatorspages 283—

286, Santa Clara, April 1998.

Ronald Cools. An encyclopedia of cubature formulagournal of Complexity
19(3):445-453, June.

J. L. Hess and A. M. O. Smith. Calculation of potential flaaout arbitrary bodies.
Progress in Aeronautical Sciengeés1-138, 1967.

S. M. Rao, A. W. Glisson, D. R. Wilton, and B. S. Vidula. A silepumerical
solution procedure for statics problems involving arbitrahaped surfaceslEEE

Transactions on Antennas and Propagati@ii:604—608, 1979.

D. R. Wilton, S. M. Rao, A. W. Glisson, D. H. Schaubert, O.AkBundak, and C. M.
Butler. Potential integrals for uniform and linear sourcgibutions on polygonal and
polyhedral domainslEEE Transactions on Antennas and Propagati8g:276—281,
1984.

134

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

L. Knockaert. A general gauss theorem for evaluatimgsiar integrals over polyhe-
dral domainsElectromagneticsl1:269-280, 1991.

Charles F. Van Loan.Computational Frameworks for the Fast Fourier Transform
SIAM Publications, 1992.

M. E. O'Neill. A slow motion of viscous liquid caused bysdowly moving solid
sphere Mathematikal1l:67—74, 1964.

Howard Brenner. The slow motion of a sphere through aotisdluid towards a plane
surface.Chem. Engrg. Scil6:242-251, 1961.

Ye Wenjing, Joe Kanapka, and Jacob White. A fast 3d sdbrarnsteady stokes flow
with applications to micro-electro-mechanical system$?roceedings of the Second
International Conference on Modeling and Simulation of Maystemspages 518—
521, San Juan, April 1999.

Carlos Pinto Coelho, Lis Miguel Silveira, and Jacob K. White. A precorrected fft
algorithm for stokes flow in the presence of a substrgsibmitted to) Journal of

Microelectromechanical Systen007.

Hairer E., Lubich C., and Wanner WGeometric numerical integration: structure-
preserving algorithms for ordinary differential equat®n Number 31 in Springer

series in computational mathematics. Springer, 2004.

C. Pozrikidis, editorModeling and simulation of capsules and biological ceCRC

Mathematical Biology and Medicine Series. Chapman & Hall,200

David Baraff. An introduction to physically based madet Rigid body simulation
| - unconstrained rigid body dynamics. Online Siggraph '91fSe notes, Carnegie

Mellon University - Robotics Institute.

S. A. Sheynin and A. V. Tuzikov. Explicit formulae for [ypedra momentsPatter
Recognition Letters22:1103-1109, 2001.

135

[50] R. Barzel and A. Barr. A modeling system based on dynamistcaimts. Computer

Graphics 22(4), August 1988.

[51] David Baraff. An introduction to physically based madegt Rigid body simulation
Il - nonpenetration. Online Siggraph '97 Course notes, Caenégllon University -

Robotics Institute.

[52] Andrew Witkin. An introduction to physically based malthg: Constrained dynam-
ics. Online Siggraph '97 Course notes, Carnegie Mellon Usitier Robotics Insti-

tute.

[53] William H. Press, Saul A. Teukolsky, William T. Vetterg, and Brian P. Flannery.
Numerical Recipes in C: The Art of Scientific ComputinGambridge University
Press, New York, NY, USA, 1992.

[54] Matteo Frigo and Steven G. Johnson. The design and mmaiéation of FFTWS3.
Proceedings of the IEED3(2):216-231, 2005. special issue on "Program Genera-

tion, Optimization, and Platform Adaptation”.

[55] J. Tausch and J. White. Preconditioning first and secamdliktegral formulations of
the capacitance problem. Rroceedings of the 1996 Copper Mountain Conference

on Iterative MethodsApril 1996.

136

	Introduction
	Background
	Boundary Integral Equation Formulation
	Green's function for a flow bounded by a plane wall
	Nullspace and defect in the range
	Boundary Element Method

	Panel integration
	Analytical panel integration
	Assembling the Stokes free space kernel integral
	Assembling the Stokes substrate kernel integral
	Testing
	Notes

	Precorrected FFT solver for Stokes flow
	Precorrected FFT algorithm
	Projection and interpolation
	Collocation
	Convolution on regular grid

	Dealing with the substrate Green's function
	Results and discussion
	Sphere moving near a plane wall
	Cylinder over substrate - Effect of substrate discretization
	Substrate shadow
	MEMS accelerometer
	Proof mass with holes

	Conclusions and future work

	A surprising result
	Lateral motion
	Vertical motion
	Observations

	Time domain simulation
	Boundary integral formulation
	Background flow
	Protuberances on substrate
	Holes in the substrate
	Boundary element method

	Time constants and scaling
	Stiffness

	Time stepping schemes
	Forward Euler
	Velocity implicit method

	Coupling the Stokes BEM solver and rigid body dynamics
	An explicit coupled solved
	Velocity implicit coupled solver

	Interaction with structures
	Updatable solver
	Results
	Microwell trap
	Pachinko trap

	Conclusions and future work

	Implementation details
	Projection and interpolation
	Exploiting kernel symmetries to reduce memory usage
	Specializations for planar topologies
	Precorrection
	Calculating the image transform from a signal transform
	Preconditioning

	Conclusions and future work

