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ABSTRACT 
 
This thesis presents the development of a small planar array of microfabricated traps for holding 
single cells and performing assays on them.  The traps use the phenomenon of 
dielectrophoresis—the force on polarizable bodies in a non-uniform electric field—to make 
potential energy wells.  These potential energy wells are electrically switchable, arrayable, and 
amenable to batch fabrication.  The trapping arrays have potential use as a cytometer for 
monitoring the dynamics of populations of single cells and then sorting those cells based upon 
those dynamics. 
 To design such traps, I have developed a modeling environment that can absolutely 
predict the ability of DEP-based traps to hold particles against liquid flows, which are the 
dominant destabilizing force in these systems.  I have used the common easy-to-fabricate planar 
quadrupole trap to verify the accuracy of these modeling tools, and in the process determined 
why planar quadrupole traps behave as they do. 
 I next used the modeling tools to design an improved quadrupole trap—the extruded 
quadrupole—that has the potential to hold particles 10x-100x stronger.  The extruded quadrupole 
trap consists of a set of microfabricated gold posts arranged in a trapezoidal fashion, to ease trap 
loading, and includes metal substrate shunts to improve performance.  The fabrication process 
for small arrays of these traps uses electroplating of gold into an SU-8 mold to achieve the 
required geometries. 
 The final section of the thesis details experiments using small arrays of these extruded 
quadrupole traps.  Experiments were performed with beads to verify the strong nature of the trap 
and then with cells to demonstrate qualitative operation of the arrays and the ability to perform 
dynamic fluorescent assays on multiple single cells followed by sorting.  The technology is now 
well poised to enable the development of biological assays that are currently unavailable. 
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Chapter 1: Introduction 
 
 
This thesis describes the development of arrays of microfabricated electric-field traps for 

holding single bioparticles—beads and cells.  The traps use dielectrophoretic forces to hold 
particles in a non-contact fashion and can be individually toggled to release selected particle 
subpopulations. 

In this chapter I will begin with an overview of microsystem technology as applied to 
bioscience.  This will lead to an introduction to the overall project goal—a cytometer for probing 
the dynamic behavior of many single cells.  The cytometer consists in large part of a planar array 
of traps, and so I will then discuss the physics behind these traps and how they fit into their field.  
I will conclude the chapter with an overview of the effects of electric fields on cells and an 
outline of the rest of the thesis. 

1.1 Bio-microsystems 
Microsystems have great potential to affect bioscience.  The first applications arose in the 

1970s, beginning with the development of cortical implants at the University of Michigan [1] 
and the commercialization of intravenous blood-pressure sensors [2].  One way to examine 
where bioscience and microsystems intersect is to look at the properties of microsystems that 
suite them for application to bioscience [3].  When applied in the right instances to exploit these 
properties, microsystems can significantly enhance existing devices or even enable entirely new 
ones.   

The most obvious property of microsystems is their intrinsically small size.  For clinical 
applications, this can allow the development of point-of-care devices for use “at the bedside” 
rather than at a central facility, reducing the time is takes to get results [4].  The small size of 
microsystems also means that small volumes of samples and reagents are necessary.  This 
decreases costs, reduces waste, and increases the number of assays that can be performed with 
expensive chemical libraries [5].   

Another useful property of microsystems is their high surface-area-to-volume ratio, 
which enhances processes that are dominated by surfaces—such as heat transfer.  This allows 
microfabricated chambers for polymerase chain reactions to ramp temperatures very quickly [6].  
Integration with electronic components such as circuits can buffer and amplify low-level 
electrical signals, such as those recorded from neurons [7], making them easier to detect.  
Parallelization of microsystems allows for high throughput, which is crucial for such 
technologies as DNA sequencing [8].  The geometrical control inherent in microfabrication 
technology allows one to make structures that can constrain diffusion of components [9] or 
control cell-cell interactions [10].  Finally, batch processing, common in the semiconductor 
industry, has the potential to reduce the costs and increase the homogeneity of microsystems, 
allowing them to be disposable.  This property is important for clinical applications because 
there is no need to resterilize devices and also for analytical assays to eliminate issues of sample 
carryover.  In addition, batch fabrication is important for lithographically defined DNA chips, 
where it enables the creation of highly dense arrays of nucleic acids [11]. 

A different way to look at the intersection of microsystems and bioscience is by 
examining where in bioscience the applications have been.  Examining the literature reveals that 
the most interest to date has been in molecular biology and biochemistry.  There are several 
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reasons for this.  First, and most importantly, the Human Genome Project has resulted in great 
need for high-throughput technologies for sequencing DNA and analyzing the RNA transcripts 
in cells.  This led to the development of capillary electrophoresis [12]—and its subsequent 
miniaturization [13]—and DNA chips [11].  In addition, molecular biology and biochemistry, as 
opposed to cell biology, do not entail working with living cells, which adds a layer of 
complexity. 

Working at the cellular level is an area that has lagged behind in comparison to the 
research at the molecular level and microfluidics applications.  While examples exist of excellent 
recent research in this field, the integration of living cells into microsystems (or microdevices) is 
still in its infancy.  With this knowledge in mind, our research group has been interested in 
developing tools to manipulate multiple single cells. 

1.2 The µµµµDAC 

1.2.1 Overview 
The motivation behind developing arrays of single-particle traps is a system for 

monitoring the dynamics of biological cells and sorting them based on those dynamics. This 
system, called the “µDAC” (microfabrication-based dynamic array cytometer), combines the 
strengths of two established biological instruments—the microscope and flow cytometer—to 
yield a device capable of performing biological assays that are currently unavailable.  
Microscopy enables researchers to study the dynamic response of cells in a field of view to a 
stimulus.  A common example is monitoring the concentration of intracellular Ca2+ with a 
fluorescent dye as a cell-membrane receptor-mediated pathway is provoked [14].  While one can 
measure fast dynamics (<seconds) with sub-cellular resolution, it is difficult to measure the 
dynamics of many cells using microscopy.  This is due to the limited field of view of microscope 
objectives coupled with the fact that cell location is not known and so must be determined via 
software.  In addition, removing the cells after analysis is tedious.  Flow cytometry can perform 
similar analyses on large numbers of cells, but only tracks each cell at one time point.  Dynamic 
analyses can be performed by exposing a cell population to a stimulus and looking at the cells 
one at a time over time, but this assumes a homogeneous population, and sorting based upon 
those dynamics is still a challenge.   

The area of analysis missing from both flow cytometry and microscopy is the ability to 
look at many cells, each individually, over time, and sort them using dynamic response as a sort 
variable.  This is the goal of the µDAC.   

As shown in Figure 1-1, the system will consist of four parts: 1) a microfabricated chip 
(cell-array chip) that will capture and hold many cells (e.g., 10,000) in an array; 2) a fluidic 
system to introduce the cells and stimuli to the chip, and to collect released cells with fraction 
collectors; 3) an optical system to fluorescently interrogate the cell array and record an ensemble 
of single-cell data; and 4) a control system to selectively release those cells that display a given 
behavior or signal pattern.   

Although both the optical system and the cell-array chip present significant engineering 
challenges, this thesis concerns the implementation of the cell-array chip, which will capture, 
hold, and selectively release the cells.  This chip contains a two-dimensional planar array of 
single-cell traps, each of which must be individually addressable to have the ability to turn on 
and off.  Traps in general are potential energy wells, and I use electrical potential energy via the 
phenomenon of dielectrophoresis to construct these wells.  
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Figure 1-1: System diagram of the µDAC. 

1.2.2 Applications 
The µDAC will be useful for luminescence-based single-cell assays that measure the 

dynamics of many cells individually and sort those cells into arbitrary sub-populations based 
upon those dynamics (or any other response).  The basic premise underlying its development is 
that information is encoded into the dynamics of cellular behavior—not just the steady-state 
values—and that tools designed to investigate those dynamics can probe that information.  It is 
possible to imagine applications that utilize part of the µDAC’s capabilities—e.g., observing 
differential dynamics but not sorting, or sorting based upon single time-point responses.  The 
most powerful assays, of course, will be those that combine all these capabilities. 

Applications can be roughly divided into basic cell-biological studies to elucidate cell 
behavior and applied technological uses, such as for drug discovery.  Both of these applications 
will likely involve single-cell-based reporter gene assays, in which the gene product of interest is 
monitored, or “reported”, by a visble protein that is either fused to the protein of interest or under 
the same regulatory control [15].  Examples of reporter proteins include GFP [16], luciferase 
[17], and β-lactamase [18].  One can investigate many different cellular pathways in this way, 
especially for drug discovery applications [19, 20].  A challenge for the µDAC is that while 
many reporter proteins exist, fewer are amenable to single-cell use, either because of sensitivity 
requirements or difficulty in assaying with intact cells [21]. 

For basic cell biology, the µDAC can be used to investigate how differences in genotypes 
affect the dynamics of phenotypic response, especially as applied to cellular signaling 
pathways.One example is the aforementioned Ca2+

 response assay [14].  In such an assay, one 
might discover that a statistically significant subpopulation of cells had a lag in the calcium 
response to an upstream agonist.  By sorting out this subpopulation and sequencing the DNA 
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encoding for the proteins in that pathway, one could investigate the gene mutations that may be 
responsible for the dynamical changes.  Then one could go back and introduce those mutations 
into new populations to begin to determine what is happening in the cell.  The key part, though, 
is the assay to probe this information, which is enabled by the µDAC. 

One might envision performing such an assay with a system like the Laser Scanning 
Cytometer (LSC), which uses a scanned laser to record fluorescence data from cells on a slide, 
forming a planar cytometer [22].  Cells, distributed randomly on the slide, are located via 
software from a minimum fluorescence intensity value.  The LSC has been used for many 
applications, including cancer research [23], apoptosis [24], and cytogenetics [25].  Two 
problems present themselves, however.  First, one cannot sort with the LSC, as the cells are 
attached to the substrate and there is no way to selectively remove subpopulations.  Thus, it 
would be difficult to select the interesting subpopulation for further analysis.  Second, the scan 
time limits dynamic analyses (<100 cells/second [26]).  The µDAC, because all the cells are 
precisely registered to the substrate, has the potential for a simpler and thereby much faster 
optical subsystem.   

Another alternative for dynamic assays is to use a flow cytometer.  Flow cytometers 
currently (and for the foreseeable future) have the highest throughput for any single cell-based 
sorting device.  Researchers have investigated the use of flow cytometers for dynamic assays.  
One system, described by Dunne in 1992, describes modifications to a conventional flow 
cytometer that allows sorting based upon dynamic responses for general applications [27].  His 
system modifies a conventional flow cytometer, adding a reference bead solution to precisely 
calibrate the stimulus time (t=0) and a delay line so that he can precisely vary the transit time to 
the detector, thus removing the time uncertainties involved in stimulating cells with conventional 
flow cytometric setups.  He performed proof-of-concept assays, such as stimulating a responsive 
sublcone of rat pheochromocytoma PC12 with bradykinin and measuring the calcium response 
dynamics.  This system, though, and all other flow-based systems can only view cells at one time 
point, and so the sort is based upon the premise that the population is homogeneous, which is the 
exact opposite premise envisioned for the calcium-response assay.  Thus, flow cytometry is not 
appropriate for this assay. 

Other interesting problems in basic cellular signaling could be investigated with the 
µDAC.  For instance, there is much current interest in constructing and analyzing genetic 
regulatory networks [28-30].  In endogenous regulatory networks, there is interest in determining 
the origin of heterogeneity across cell populations.  For instance, researchers have investigated 
different models to explain the whether the distribution in T-cell division rates across 
populations following stimulation with the cytokine IL-2 is due to stochastic mechanisms in a 
homogeneous population or due to heterogeneity in either genotype or expression levels of cell-
cycle regulating proteins [31].  For cell-cycle induction by IL-2, at least, the differences are due 
to differential expression of the IL-2 receptor, rather than stochastic differences.  The µDAC 
could be used with the appropriate reporter to investigate such pathways because of its ability to 
see acquire dynamic data on statistically significant cell populations with single-cell resolution.  
For instance, one could look for subpopulations that displayed significantly different kinetics in 
response to IL-2 and then determine whether those differences were due to varying genotypes 
that could be reconciled with the model. 

The µDAC could also be used as a convenient platform to investigate exogenous 
regulatory networks, such as the recently introduced genetic toggle switch [30].  In these 
systems, researchers introduce complete regulatory networks that exhibit some predicted 
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dynamic behavior, in this case bistability.  Assays could be performed with the µDAC to both 
test the predicted responses and to sort cells into subpopulations depending on their responses for 
further study.  As the complexity of these regulatory networks increases, the uses for a platform 
capable of dynamic assay followed by selection will increase. 

Other assays could be used to investigate how differential time responses of cells affect 
downstream fates, such as differentiation.  For instance, it is known that treatment of the PC12 
cell line with nerve growth factor (NGF) leads to differentiation while treatment with epidermal 
growth factor (EGF) leads to cell proliferation, even though the two growth factors excite the 
same intracellular signaling pathway [32].  The difference in response to the two growth factors 
is thought to lie in the dynamics of activation of an intermediate signaling protein—extracellular 
signal-regulated kinase (ERK).  Specifically, NGF leads to sustained (~hrs) activation of ERK, 
while EGF leads to transient activation (<1 hr).  Thus, the information determining the fate of the 
cell is encoded in the dynamic response of ERK.  Using the µDAC, one could fluorescently 
monitor intracellular ERK levels and therefore have an assay for this signaling system.  
Researchers could then, for example, investigate how mutations in the upstream signaling 
proteins affect the dynamics of ERK activation, thus gaining insight into exactly how a dynamic 
signal is encoded and translated by the cell.  

This assay also bridges into possible drug discovery applications.  For instance, a 
company might be interested in finding a small molecule that will affect the fates of cells.  A 
simplistic example would be to search for ligands that would send cells into their differentiated 
states, such as to develop tissues for tissue engineering applications.  By monitoring an 
intermediate messenger (such as an ERK-β-lactamase fusion) whose dynamics determines 
whether a cell will differentiate or not, one could test for drugs that induced differentiation 
without waiting for the cell to actually differentiate. 

Other assays with both drug discovery and basic cell biology applications include 
mapping the kinetics of a signaling pathway, thus gaining insight into how to perturb it to exert 
therapeutic influences.  IL-2 has shown promise in treating AIDS and as an adjuvant in cancer 
therapy [33].  However, the systemic doses needed to exert therapeutic affects can cause toxicity.  
Mapping the kinetics of IL-2 and its receptor has led to specific insight into that pathway as well 
as generic insight into how to design drugs that exert maximum therapeutic effect by optimizing 
their binding properties to receptors [33].  Another example is determining drug resistance in 
tumor cells by examining uptake and efflux rates of anti-cancer agents [34].  This assay can be 
performed with flow cytometry, but using the µDAC eliminates the homogeneous population 
assumption.  This makes it possible to search for cell subpopulations within a tumor that are drug 
resistant and would not be affected by the anti-cancer agent.  Both of these examples involve 
mapping of kinetic parameters involving dynamic assays.  The µDAC provides an alternative 
platform for performing such experiments and additionally for selecting mutants that display 
interesting dynamic behaviors. 

Another generic assay is the use of β-lactamase as a reporter for drug discovery 
applications, because it can be easily detected in single cells.  This reporter system has already 
been used to monitor gene induction dynamics in single living cells and perform clonal selection 
[18].  It has also been used for genome-wide gene trapping, whereby promoterless β-lactamase is 
randomly inserted into the genome to find genes that are activated by specific signaling 
pathways, their case T-cell activation [35].  One could use the same system with the µDAC to 
investigate the dynamics of different pathways, identifying promoters and genes that display 
differential dynamic responses.  
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In related work, several companies are interested in high-throughput cell-based assays for 
drug discovery, such as could be performed by the µDAC.  Biolog (www.biolog.com) makes a 
set of Phenotype MicroArrays™ that can probe several hundred metabolic phenotypes of E. coli.  
However, these are not single-cell assays and cannot be sorted, and so do not replace the µDAC.   
Another company, Cellomics, is developing assay technology for both single- and multi-cellular 
assays.  The idea here is to monitor the intracellular behavior of multiple single cells patterned 
on a substrate—as opposed to a bulk parameter on an aliquot of cells—to extract “high content 
information” from cellular assays [36, 37].  While they can monitor dynamics, and are moving 
towards a microfabricated format, they cannot sort cells with their method nor have they 
established methods for use with non-adherent cells in their approach. 

Finally, one could approach the µDAC simply as a microfabricated cell sorter.  It could 
conceivably compete with the throughput of other microfabricated cell sorters, which tend to be 
extremely slow (~cells/sec), although it is doubtful that it could compete with conventional flow-
activated cell sorters, which have very high throughputs (~104 cells/sec).  Thus, the value-added 
by the µDAC will most likely be the combination of cell sorting with dynamic assays [38-40]. 

In summary, the µDAC has many potential uses for basic and applied cell biology, most 
likely for assays that probe the dynamics of signaling pathways in single cells and then sort those 
cells into subpopulations based upon those dynamics. 

1.3 Micron-sized particle manipulation 
One might envision several methods to position cells in a planar array, such as is needed 

for the µDAC.  Among the forces most suitable for positioning micron-sized particles are 
acoustic, optical, physical, and electrical forces.  Ultrasonic fields use acoustical energy to either 
trap particles at field nulls [41, 42] or to actually levitate small volumes of liquids in air with one 
or a few cells inside [43].  Ultrasonic particle manipulation, however, suffers from problems of 
arrayability and sufficient localization to trap single particles and is thus unsuitable for our 
application. 

Optical tweezers use optical gradient forces to trap particles at the focal point of strongly 
focused laser beams [44, 45].  Optical tweezers can be used to manipulate single particles in 
three-dimensions and allow concurrent imaging, but they do not scale well—manipulation of two 
particles requires two beams, and so on.  Recent work has tried to overcome this limitation by 
either scanning the beam [46] or manipulating its phase in the Fourier plane [47, 48].  The work 
is still preliminary, in that it is unclear whether truly real-time manipulations and trap toggling is 
possible and whether the laser power scales favorably with the number of traps.  In addition, 
such systems are limited in the area they can occupy because they require the use of high 
numerical aperture (and thus high magnification) objectives, which do not cover a large area; the 
possibility of a 1cm x 1cm array of optical traps is doubtful.   

Nonetheless, researchers have attempted to use optical tweezers to develop an automated 
planar cytometer [49].  The idea here was to use imaging algorithms to determine cell locations 
on a coverslip in a field of view and then use optical tweezers to automatically move cells of 
interested to specified locations.  The system, however, to my knowledge was never developed 
beyond the proof-of-concept stage.  Other researchers have used optical tweezers with low-NA 
objectives, to attain only radial confinement and thus propel cells along the beam axis [50].  
Using this apparatus they were able to pattern ~100’s of cells into arbitrary geometries.  
However, the current throughput is very low (~2.5 cells/min) and there is no way to remove cells 
following assay. 
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Another particle-manipulation technology is simply to use physical forces to contain 
particles.  This can take the form of arrays of microfabricated wells into which particles can be 
deposited and shielded from destabilizing fluid flows, thus effecting trapping [51, 52].  These 
methods cannot effect sorting, however, as they use passive holding.  Active release 
mechanisms, such as by using microbubbles, could be implemented, but the research is still 
preliminary [51].  Alternatively, researchers have used electrically responsive polymers to grab 
100-µm-sized beads and move them around [53].  The applicability of this work to cells is 
doubtful at best, because 1) it is unclear if the technology can be used to hold cells, which are 
generally smaller (e.g., <20-µm), and 2) the method is user-intensive and unlikely to be scalable.  
In addition, all physical trapping techniques may cause contact-induced cellular responses that 
may interfere with assay results [54]. 

Electrical forces are well suited for manipulating cells and for the µDAC in general.  
Electric fields can be used to manipulate cells either by a Coulomb force on a particle’s charge or 
a dielectrophoretic (DEP) force on a particle’s dipole.  To create stable traps, however, only the 
dielectrophoretic forces can be used, as it is impossible to stably trap charges in an 
electroquasistatic field.  DEP-based particle traps have many advantages over the 
aforementioned forces for manipulating micron-sized particles.  First, they are amenable to 
microfabrication, meaning that they have the potential to be arrayed and thus scale well.  Second, 
they can trap particles of various sizes—sub-micron to tens of microns in diameter—depending 
on the trap geometry.  In addition, since they are active traps, they can be turned off, releasing 
particles and effecting sorting.  Finally, because they are electrical, they can be individually 
addressed, as needed for the µDAC.  Because of these advantages, I have chosen to use DEP-
based particle traps in this thesis. 

1.4 Dielectrophoresis 
Having chosen dielectrophoresis (DEP) as the trapping force, in this section I will 

describe the physics behind this phenomenon and give an overview of the field. 

1.4.1 Physics: dipole approximation 
Dielectrophoresis refers to the action of a body in a non-uniform electric field when the 

body and the surrounding medium have different polarizabilities.  DEP is easiest illustrated with 
reference to Figure 1-2.  On the left side of Figure 1-2, a charged body and a neutral body (with 
different permittivity than the medium) are placed in a uniform electric field.  The charged body 
feels a force, but the neutral body, while experiencing a dipole moment, does not feel a net force.  
This is because each half of the induced dipole feels opposite and equal forces, which cancel.  
On the right side of Figure 1-2, this same body is placed in a non-uniform electric field.  Now the 
two halves of the induced dipole experience a different force magnitude and thus a net force is 
produced.  This is the dielectrophoretic force. 
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Figure 1-2: Dielectrophoresis.  The left panel shows the behavior of particles in uniform electric fields, while the 
right panel shows the net force experienced in a non-uniform electric field. 

Depending on the relative polarizabilities of the particle and the medium, the body will 
feel a force that propels it toward field maxima (termed positive DEP) or field minima (negative 
DEP).  If one sets up a situation with negative DEP (n-DEP) then one can make stable trapping 
structures to trap particles [55].  In addition, the direction of the force is independent of the 
polarity of the applied voltage; switching the polarity of the voltage does not change the 
direction of the force—it is still towards the field maximum.  Thus DEP works equally well with 
both DC and AC fields. 

DEP should be contrasted with electrophoresis, where one manipulates charged particles 
in a dissipative medium with electric fields [56], as there are several important differences.  First, 
DEP does not require the particle to be charged in order to manipulate it; the particle must only 
differ electrically from the medium that it is in.  Second, DEP works with AC fields, whereas no 
net electrophoretic movement occurs in such a field.  Thus, with DEP one can avoid problems 
such as electrode polarization effects [57] and electrolysis at electrodes.  Even more importantly, 
the use of AC fields reduces membrane charging of biological cells.  While explained fully in 
§1.5.2, membrane charging is due to the potential developed across cell membranes in electric 
fields.  This potential, which can impact cell physiology, can be diminished by the application of 
high-frequency fields.  Third, electrophoretic systems cannot create stable traps, as opposed to 
DEP—one needs electromagnetic fields to trap charges.  Finally, DEP forces increase with the 
square of the electric field (described below), whereas electrophoretic forces increase linearly 
with the electric field. 

This is not to say that electrophoresis is without applicability.  It is excellent for 
transporting charged particles across large distances, which is difficult with DEP.  Second, many 
molecules are charged and are thus movable with this technique.  Third, when coupled with 
electroosmosis, electrophoresis makes a powerful separation system.  However, for trapping 
particles in place, DEP is the method of choice. 

The force in Figure 1-2, where an induced dipole is affected by a non-uniform electric 
field, is given by ([58] & Appendix A) 

)]()(Re[2 23 rEF ∇⋅= ωπε CMRmdep  (1-1)
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where εm is the permittivity of the medium surrounding the particle, R is the radius of the 
particle, ω is the radian frequency of the applied field, r refers to the spatial coordinate, and E is 
the complex applied electric field.   

The Clausius-Mossotti factor (CM)—CM factor—gives the frequency (ω) dependence of 
the force, and its sign determines whether the particle experiences positive or negative DEP.  The 
Clausius-Mossotti factor comes from solving Laplace’s equation and matching the boundary 
conditions for the electric field at the surface of the particle (Appendix A).  For a homogeneous 
spherical particle in an electric field, the CM factor is given by 
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where mε  and pε are the complex permittivities of the medium and the particle, respectively, 
and are each given by )/( ωσεε j+= , where ε is the permittivity of the medium or particle, σ is 
the conductivity of the medium or particle, and j is 1− .   

Other CM factors can be derived for spherical shells (to approximate white blood cells) 
and oblate spheroids (to approximate red blood cells) [58].  When working with shells, one 
solves for boundary conditions at all the interfaces, generating a CM factor with the same form 
as (1-2) but with an effective permittivity '

pε  in place of pε , where '
pε  contains the multi-layer 

information.  For cells with a membrane (but no cell wall), this effective permittivity can be 
derived as [58] 
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where the membrane is described as a shell with a complex surface capacitance Cm=Cm+Gm/jω.  
Cm and Gm are the surface capacitance and conductance, respectively, given by Cm=εs/∆ and 
Gm=σs/∆, where ∆ is the membane thickness and the εs and σs are the permittivity and 
conductivity of the membrane. 

There are several important elements to Eqn. (1-1).  First, the frequency dependence of 
the force resides solely in the CM factor, while the spatial dependence resides in the electric field 
term.  Thus, investigations into the spatial and frequency dependencies of the DEP force only 
need to examine those terms.  Second, the specific properties of the particle only emerge through 
the CM factor, so determining the force on different types of particles only involves recalculating 
the CM factor (and the R3 factor, of course).  Third, the force increases with R3 and so is strongly 
dependent on the particle size. 

Much insight into the frequency dependence of the force can be gained by examining the 
CM factor for a homogeneous sphere.  First, the CM factor can only vary between +1 (εp»εm, 
e.g., the particle is much more polarizable than the medium) and –0.5 (εp«εm, e.g., the particle is 
much less polarizable than the medium).  Thus n-DEP can only be half as strong as p-DEP.  
Second, by taking the appropriate limits, one finds that at low frequency the CM factor (Eqn. 
(1-2)) reduces to  
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while at high frequency it is 
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Thus, similar to many electroquasistatic systems, the CM factor will be dominated by relative 
permittivities at high frequency and conductivities at low frequencies; the induced dipole varies 
between a free charge dipole and a polarization dipole.  The relaxation time separating the two 
regimes is 
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and is denoted τMW to indicate that the physical origin is Maxwell-Wagner interfacial 
polarization [59]. 
 This Maxwell-Wagner interfacial polarization causes the frequency variations in the CM 
factor.  It is due to the competition between the charging processes in the particle and medium, 
resulting in charge buildup at the particle/medium interface. If the particle and medium are both 
non-conducting, then there is no charge buildup and the CM factor will be constant with no 
frequency dependence (Figure 1-3A).  Adding conductivity to the system results in a frequency 
dispersion in the CM factor due to the differing rates of interfacial polarization at the sphere 
surface (Figure 1-3B).  A spherical shell electrically approximates a membrane-bound cell.  
Since it has two interfaces, there are two dispersions in its CM factor, as shown in Figure 1-3C.  
In general, all three situations depicted in Figure 1-3 can result in p-DEP or n-DEP at various 
frequencies depending on the sign of the CM factor. 

Combining the –0.5 limit of the CM factor with the results of Eqn’s (1-4) & (1-5), one 
sees that maximizing n-DEP requires a particle that is much less conductive or polarizable than 
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Figure 1-3: CM factor for three situations. (A) a non-conducting uniform sphere with εp=2.4 in non-conducting 
water (εm=80). The water is much more polarizable than the sphere, and thus the CM factor is ~-0.5.  (B) The same 
sphere, but with a conductivity σp=0.01 S/m in non-conducting water. Now there is one dispersion—at low 
frequencies the bead is much more conducting than the water & hence there is p-DEP, while at high frequencies the 
situation is as in (A).  (C) A spherical shell (approximating a cell), with (εcyto=75, Cm=1 µF/cm2, σcyto=0.5 S/m, Gm=5 
mS/cm2) in a 0.1 S/m salt solution, calculated using results from [58].  Now there are two interfaces and thus two 
dispersions.  Depending on the frequency, the shell can experience n-DEP or p-DEP. 
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its medium at some frequency.  Latex beads in salt water easily meet this requirement as they are 
electrically insulating and have lower permittivities than the high (εwater~80) permittivity of 
water.  Cells are more complicated because they are multi-walled structures, but are essentially 
bags of salt water.  The membrane insulates the cell at low frequencies, but at medium and high 
frequencies the cell properties are dominated by either the cytoplasmic conductivity or 
permittivity, respectively.  Since these are both high and similar to salt water, it is difficult to get 
n-DEP and large CM factors in this frequency range.  However, one needs to work in this 
frequency range to minimize membrane charging.  Thus, to get trapping of cells in this frequency 
range one needs to work in medium that is more conductive than the cytoplasm (~0.5 S/m), such 
as saline (σ~1 S/m).  This leads to need for microscaling of DEP traps, as I will explain below.  

1.4.2 Physics: Multipolar theory 
Although the DEP force can be obtained using Eqn. (1-1), the force calculated using that 

expression assumes that only a dipole is induced in the particle.  In fact, arbitrary multipoles can 
be induced in the particle, depending on the spatial variation of the field that it is immersed in.  
Specifically, the dipole approximation will become invalid when the field non-uniformities 
become great enough to induce significant higher-order multipoles in the particle.  This can 
easily happen in microfabricated electrode arrays, where the size of the particle can become 
equal to characteristic field dimensions.  In addition, in some electrode geometries there exists 
field nulls.  Since the induced dipole is proportional to the electric field, the dipole 
approximation to the DEP force is zero there.  Thus at least the quadrupole moment must be 
taken into account to correctly model these forces. 

Multipole DEP theory has recently been developed, by two groups of researchers, to 
address the limitations of the dipole theory.  One group has used an effective moment approach 
to calculate all the induced moments and the forces on them [60-63].  The other group has taken 
a more rigorous approach using Maxwell's stress tensor [64].  Fortunately, both sets of results are 
identical, meaning that it is now possible to calculate the DEP forces on lossy particles in 
arbitrarily polarized non-uniform electric fields.  A compact tensor representation of the final 
result in a form similar to Eqn. (A-11) is  
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where n refers to the force order (n=1 is the dipole, n=2 is the quadropole, etc.), )(np
�

 is the 
multipolar induced-moment tensor, and n][⋅ and ( )n∇  represent n dot products and gradient 
operations.  Thus one sees that the n-th force order is given by the interaction of the n-th-order 
multipolar moment with the n-th gradient of the electric field.  For n=1 the result reverts to the 
force on a dipole (Eqn. (A-11)). 

A more explicit version of this expression for the time-averaged force in the i-th direction 
(for sinusoidal excitation) is 
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for the dipole (n=1) and quadrupole (n=2) force orders [61].   The Einstein summation 
convention has been applied in Eqn. (1-8).  I will use this formulation in later chapters to 
calculate the DEP forces given the electric fields.  The multipolar CM factor for a uniform lossy 
dielectric sphere is given by 
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It has the same form as the dipolar CM factor (Eqn. (1-2)) but has smaller limits.  The 
quadrupolar CM factor (n=2), for example, can only vary between +1/2 and –1/3. 

1.4.3 Microscale DEP: separation systems 
DEP has been increasingly coupled with microfabrication for a variety of reasons.  First, 

the surface-area-to-volume ratio of the system increases as the electrodes are scaled down, 
enhancing the ability of the system to remove heat generated by ohmic conduction in the media.  
This enables the use of DEP with cells at high frequencies.  As explained above, such use entails 
operation in highly conductive saline (~1 S/m), which leads to high power densities (σE2 ~ 109 
W/m3).  Were it not for the high surface-area-to-volume ratio, the temperatures created in these 
systems would prohibit their use with live cells. 

Second, reducing the size of structures reduces the applied voltage and slew rates needed 
to obtain certain electric fields/gradients, thus allowing the use of less expensive driving 
electronics.  Third, microfabrication allows the creation of almost any two-dimensional extruded 
geometry, which is useful for electrode design.  Fourth, microscale electrodes produce forces in a 
range well suited for cell manipulation.  General reviews of microscale DEP are found in [65-
67]. 

One main thrust of published microscale DEP research has been to make devices that can 
separate cells into subpopulations based upon differences in their electrical properties 
(manifested thru the CM factor).  The separations are achieved using two different methods.  The 
first method finds operating conditions where one subpopulation experiences p-DEP and the 
other n-DEP.  In such a situation, the p-DEP subpopulation will be attracted to the electrodes 
whereas the n-DEP subpopulation will be pushed away.  Since particles under p-DEP can 
experience a stronger DEP force, one can then impose a fluid flow to remove only the n-DEP 
subpopulation, effecting a separation.  The other major class of separations is based upon 
differing DEP force magnitudes, due to either differences in particle radius or some electrical 
property.  In this case, the force magnitudes are of the same sign, but of differing strength, 
allowing separation. 

Using the first method, researchers have separated many types of cells, including HeLa 
cells from blood cells [68], human breast cancer cells from blood cells [69], yeast based upon 
viability [70-72], CD34+

 stem cells from bone marrow and peripheral blood cells [70, 73], and 
bacteria from blood cells [71, 74].  One group has been using DEP to separate very small 
particles such as viruses and sub-micron beads [75-78]. 
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The other separation method has not seen as extensive use.  It has been coupled with 
field-force fractionation to separate different sized beads and HL-60 cells from peripheral blood 
mononuclear cells [79-82] and to perform differential analysis of leukocyte subpopulations [83].  
Here, the differing electrical properties result in different levitation heights, which exposes the 
sub-populations to dissimilar hydrodynamic drag forces, effecting separation.  Size-based 
separation using a chaotic ratchet effect with dielectrophoresis has also been demonstrated [84].  

Using a different approach, Fielder et al., have created a dielectrophoretic cell sorter that 
operates by switching DEP forces to propel incoming cells into one of two output channels [85]. 

1.4.4 Microscale DEP: traps 
The other main thrust of DEP research has been to make particle traps.  Almost any 

electrode arrangement, operated in a suitable fashion, can make a rudimentary particle trap.  
Much of the early work used non-microfabricated electrodes to levitate air bubbles and cells in 
either a n-DEP situation [55, 86] or feedback-controlled p-DEP [87, 88], with the primary focus 
being the validation of the dipole theory (Eqn. (1-1)).  One can also trap particles at electrode 
surfaces using p-DEP [89], although it is difficult to subsequently remove them (i.e., turn the trap 
off) and they are subjected to extremely high electric fields there; this technique is thus seldom 
used with cells, although it has been used to trap DNA [90] and proteins [91]. 

Probably the first major reports of microscale n-DEP traps appeared in 1992 & 1993 by 
the group at the Institute for Biology at Humboldt University in Germany [92, 93].  They 
motivated the use of the opposed octopole (Figure 1-4A) to make a strong DEP trap and have 
used it almost exclusively since then.  Other electrode geometries, such as interdigitated 
electrodes or castellated electrodes ([75], Figure 1-4B) can make rudimentary traps, although 
these are usually used for particle separation rather than particle trapping. 

Other research has investigated the particle-size limits of DEP traps.  As the particle size 
decreases, the DEP force decreases as R3 (Eqn. (1-1)) while Brownian motion increases with the 
inverse of the radius [94].  Thus, there should exist a minimum particle size that can be trapped 
in a given field.  Much work has focused on determining these limits [95-97], with the 
confounding issue being that other trapping forces, most notably electrohydrodynamic flows 
[77], make it difficult to determine the actual trapping mechanism.  Current results indicate that 
trapping of sub-100-nm particles is possible solely with n-DEP forces [78]. 

Figure 1-4: n-DEP trapping structures.  (A) A diagram and photograph of a three-dimensional opposed octopole 
(from [98]).  The octopole consists of two planar quadrupoles on substrates placed apart (and often slightly rotated) 
from each other.   (B) An SEM of a castellated electrode structure (from [75]). 

(A) 
(B) 
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Quantifying the forces in DEP traps is a necessary prerequisite to designing stronger 

ones.  Besides the early quantification work mentioned above [55, 86-88], other researchers have 
also explored DEP forces in a quantitative manner.  While the frequency dependence included in 
the Clausius-Mossotti factor has long been verified, analyses of the magnitude of the DEP forces 
in various geometries is a less mature field.  The group at Humboldt university have performed 
semi-quantitative analyses of the DEP force contours on their structures [92, 93]. These 
researchers, using the same structures, have also measured particle height to infer DEP force 
trends, although no quantitative agreement was shown.  Bahaj and Bailey measured levitation 
heights of divinyl benzene particles in macroscale ring-disc geometries to attempt to match the 
DEP forces to theory [99].  Results only marginally agreed with predictions, probably due to the 
approximations in the calculations of the electric field and the lack of knowledge of the bead 
properties. X.-B. Wang et al., used spiral electrodes and measured radial velocity and levitation 
height of breast cancer cells as they varied frequency, particle radius, and medium conductivity 
[100].  They then matched the data to DEP theory, using fitting parameters to account for 
unknown material properties, and obtained good agreement.  This same set of researchers 
performed similar analyses using erythroleukemia cells in interdigitated electrode geometries, 
again obtaining good fits of the data to the theory [101].  One issue with both of these studies is 
that use of fitting parameters may make it easier to force data to agree with theory.  While the 
above-mentioned work does begin to provide a quantitative basis for DEP forces, a system that 
can quantitatively predict how well DEP traps of arbitrary geometry can hold cells is lacking.  
Such a system would be particularly valuable as a design tool. 

1.4.5 Other microscale electromechanics 
Still other examples use dielectrophoretic forces in manners different than described 

above.  For example, Washizu has used p-DEP to move isolated water droplets on a hydrophobic 
surface [102].   Desai et al. used traveling-wave DEP forces to move solid micron-sized particles 
in air above a surface, the stated application being to concentrate airborne particles [103]. 

Several other techniques closely related to DEP can induce microscale manipulations.  
Besides generating forces on an induced dipole, one can generate torques on the dipole by 
placing it in a rotating electric field.  This technique is called electrorotation [104].  Measuring 
the particle rotation rate as the field frequency changes can be used to determine the electrical 
properties of micron-sized particles.   

Pearl chains are strings of particles that can be produced when the induced dipoles 
generated by electric fields interact [58].  At certain frequency ranges the induced dipoles from 
neighboring particles will attract each other, forming long chains of particles resembling pearl 
necklaces.   

In addition, induced dipoles can cause electrodeformation of the cells, either contractile 
or tensile, depending upon the sign of the CM factor [105, 106].  If the forces are large enough, 
they can be used to cause cell fission and budding of membrane vesicles [107]. 

Electrohydrodynamic forces are another microscale electromechanical technique that can 
be used to induce particle motion, this time by dragging induced dipoles or charges through a 
fluid, entraining the fluid and thus causing pumping.  Pump can be made by varying the phase on 
a series of interdigitated electrodes to induce either particle or fluid transport [94, 108].  

Finally, a number of electrical techniques specifically for use with cells deserve mention.  
Electropermeabilization (also known as electroporation or electroinjection) uses large (kV/cm) 
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electric-field pulses (µs-ms) to reversibly permeabilize cell membranes, allowing the transport of 
reagents into and out of the cell [105, 106, 109].  Application of the pulses, usually by parallel-
plate electrodes, causes reversible short-term (~sec) permeabilization of the membrane when the 
transmembrane potential reaches ~1V.  Electrofusion uses similar electric field pulses, but can 
cause two cells to fuse when they are brought into contact [106, 110].  Electrofusion is often 
coupled with DEP and pearl chain formation to align and bring the cell populations into contact. 

1.5 Electric fields and cells 
Since dielectrophoresis involves manipulating cells in strong electric fields, one needs to 

know how these electric fields might affect cell physiology.  Ideally, one would like to determine 
the conditions under which the electric fields will not affect the cells.  Of course, cells are 
complex systems and thus extra caution needs to be exercised for any device that uses electric 
fields to manipulate cells in order to prevent or minimize any potential influences of the electric 
fields on the cells.   The physiological impact of fields on the cells can be split into the effects 
due to current flow, which causes heating, and direct interactions of the fields with the cell.  I’ll 
consider each of these in turn. 

1.5.1 Current-induced heating 
Electric fields in a conductive medium will cause power dissipation in the form of Joule 

heating.  The induced temperature changes can have many effects on cell physiology.  As 
mentioned in §1.4.3, microscale DEP is advantageous in that it minimizes temperature rises due 
to dissipated power.  However, because cells can be very sensitive to temperature changes, it is 
not assured that any temperature rises will be inconsequential.  In this thesis I have not 
specifically examined the temperature distributions caused by DEP traps.  Performing a 
quantitative analysis would involve solving for the temperature distribution caused by the 
electric field-induced Joule heating, taking into account the perturbation of the fields by the cells. 

Temperature is a potent affecter of cell physiology [111-114].  Very high temperatures 
(>4 ºC above physiological) are known to lead to rapid cell death, and research has focused on 
determining how to use such knowledge to selectively kill cancer cells [115].  Less-extreme 
temperature excursions also have physiological effects, possibly due to the exponential 
temperature dependence of kinetic processes in the cell [116].  One well-studied response is the 
induction of the heat-shock proteins [113, 117].  These proteins are molecular chaperones, one of 
their roles being to prevent other proteins from denaturing when under environmental stresses.   

While it is still unclear as to the minimum temperature excursion needed to induce 
responses in the cell, one must try to minimize any such excursions.  A common rule of thumb is 
to keep variations to <1 ºC, which is the approximate daily variation in body temperature [116].  
Alternatively, one could determine by experiments that imposed temperature loads do not affect 
the particular pathway being investigated. 

1.5.2 Direct electric-field interactions 
Electric fields can also directly affect the cells.  A simple electrical model of the cell 

describes it as a membrane-covered sphere consisting of the cytoplasm and the cell membrane 
(Figure 1-5) [59, 118-121].  The cytoplasm is modeled as a uniform medium with some 
permittivity and conductivity, while the membrane is described as a shell with the surface 
electrical properties defined in Eqn. (1-3).  
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Figure 1-5: Electrical model of the cell.  The model consists of three capacitor-resistor pairs in series representing 
the cytoplasm, cell membrane, and extracellular medium.  The transmembrane voltage is equivalent to the voltage 
across the middle capacitor. 

By determining where the fields exist in the cell as the frequency is varied, one can 
determine likely pathways by which the fields could impact physiology.  In the model shown in 
Figure 1-5, the imposed fields can exist across the cell membrane or the cytoplasm.  The 
qualitative electrical behavior of the cell can be explained with reference to this model.  The 
conductance of the cell membrane is usually much smaller than that of the medium and 
cytoplasm, while the RC-pairs of the medium and cytoplasm usually have similar values.  At low 
frequencies (<MHz) the circuit looks like a resistive divider and because the membrane 
resistance is large the voltage is primarily dropped across it.  This voltage is distinct from the 
endogenous transmembrane potential that exists in the cell.  Rather, it represents the voltage 
derived from the externally applied field.  The total potential difference across the cell would be 
given by the sum of the imposed and endogenous potentials.   

At higher frequencies the impedance of the membrane capacitor comes into play and the 
voltage across the membrane starts to decrease.  Finally, at very high frequencies (100’s MHz) 
the model looks like a capacitive divider and the membrane voltage saturates.   

Quantitatively, the imposed transmembrane voltage can be derived as [59] 
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where ω is the radian frequency of the applied field and τ is the time constant given by  
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where ρcyto and ρmed are the cytoplasmic and medium resistivities (Ω-m).  At low frequencies |Vm| 
is constant at 1.5|E|R but decreases above the characteristic frequency (1/τ).  This model does 
not take into account the high-frequency saturation of the voltage. 

At the frequencies used in DEP—10’s kHz to 10’s MHz—the most probably route of 
interaction between the electric fields and the cell is at the membrane [122].  There are several 
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reasons for this.  First, electric fields already exist at the cell membrane, leading to 
transmembrane voltages in the 10’s of millivolts (Vtm in Figure 1-5).  Changes in these voltages 
could affect voltage-sensitive proteins, such as voltage-gated ion channels [123].  Second, the 
electric field across the membrane is greatly amplified over that in solution.  From Eqn. (1-10) 
one gets that at low frequencies  
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and thus the transmembrane field (Etm) is multiplied by a factor of 1.5R/∆ (~1000), which can 
lead to quite large membrane fields.  This does not preclude effects due to cytoplasmic electric 
fields.  However, these effects have not been as intensily studied, perhaps because 1) those fields 
will induce current flow and thus heating, which is not a direct interaction, 2) the fields are not 
localized to an area (e.g., the membrane) that is likely to have field-dependent proteins, and 3) 
unlike the membrane fields, the cytoplasmic fields are not amplified. 

Several studies have investigated possible direct links between electric fields and cells.  
At low frequencies, much investigation has focused on 60-Hz electromagnetic fields and their 
possible effects, although the studies thus far are inconclusive [124].  DC fields have also been 
investigated, and have been shown to affect cell growth [125] as well as reorganization of 
membrane components [126].  At high frequencies, research has focused on the biological 
effects of microwave radiation, again inconclusively [127].   

In the frequency ranges involved in DEP, there has been much less research.  Tsong has 
provided evidence that some membrane-bound ATPases respond to fields in the kHz-MHz 
range, providing at least one avenue for interaction [122].  Electroporation and electrofusion are 
other obvious, although more violent, electric field-membrane coupling mechanisms [106]. 

Still other research has been concerned specifically with the effects of DEP on cells, and 
has investigated several different indicators of cell physiology to try to elucidate any effects.  
One of the first studies was by the Fuhr et al., who investigated viability, anchorage time, 
motility, cell growth rates, and lag times after subjecting L929 and 3T3 fibroblast cells in HBSS 
to short and long (up to 3 days) exposure to 30-60 kV/m fields at 10-40 MHz near planar 
quadrupoles [131].  They estimated that the transmembrane load was <20 mV.  The fields had no 
discernable effect. 

Another study investigated changes in cell growth rate, glucose uptake, lactate and 
monoclonal antibody production in CHO & HFN 7.1 cells on top of interdigitated electrodes 
excited at 10 MHz with ~105 V/m in DMEM (for the HFN 7.1 cells) or serum-free medium (for 
the CHO cells) [128].  Under these conditions they observed no differences in the measured 
properties between the cells and control populations. 

Archer et al. subjected fibroblast-like BHK 21 C13 cells to p-DEP forces produced by 
planar electrodes arranged in a sawtooth configuration [129].  They used low-conductivity (10 
mS/m) isoosmotic solutions and applied fields of ~105 V/m at 5 MHz.  They monitored cell 
morphology, cell doubling time, oxidative respiration (mitochondrial stress assay), alterations in 
expression of the immediate-early protein fos, and non-specific gene transcription directly after a 
15 minute exposure and after a 30-min time delay.  They observed 20-30% upregulation of fos 
expression and a upregulation of a few unknown genes (determined via mRNA analysis).  
Measured steady-state temperatures near the cells were <1 ºC above normal, and their calculated 
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transmembrane voltage under their conditions was <100 µV, which should be easily tolerable.  
The mechanism—thermal or electrical—of the increased gene expression was left unclear.  It is 
possible that artifacts from p-DEP attraction of the cells to the electrodes led to observed 
changes.  Either way, this study certainly demonstrates the possibility that DEP forces could 
affect cell physiology. 

Glasser and Fuhr attempted to differentiate between heating and electric-field effects on 
L929 mouse fibroblast cells in RPMI to the fields from planar quadrupoles [130].  They imposed 
~40kV/m fields of between 100 kHZ and 15 MHz for 3 days and observed monolayers of cells 
near the electrodes with a video microscopy setup, similar to their previous study [131].  They 
indirectly determined that fields of ~40 kV/m caused an ~2 ºC temperature increase in the cells, 
but did not affect cell-division rates.  They found that as they increased field frequency (from 
500 kHZ to 15 MHz) the maximum tolerable field strength (before cell-division rates were 
altered) increased.  This is consistent with a decrease in the transmembrane load with increasing 
frequency. 

Wang et al. studied DS19 murine erythroleukemia cells exposed to fields (~105 V/m) of 1 
kHz-10 MHz in low-conductivity solutions for up to 40-min [132].  They found no effects due to 
fields above 10 kHz.  They determined that hydrogen peroxide produced by reactions at the 
electrode interfaces for 1 kHz fields caused changes in cell growth lag phase, and that removal of 
the peroxide restored normal cell growth. 

In summary, studies specifically interested in the effects of kHz-MHz electroquasistatic 
fields on cells thus far demonstrate that choosing conditions under which the transmembrane 
loads and cell heating are small—e.g., >MHz frequencies, and fields in ~10’s kV/m range—can 
obviate any gross effects.  Subtler effects, such as upregulation of certain genetic pathways or 
activation of membrane-bound components could still occur, and thus DEP, as with any other 
assay technique, must be used with care. 

1.6 Scope of the thesis 
The primary concern of this thesis is the development of methods to design DEP traps 

and implementation of these methods in a proof-of-concept small array as a demonstration of the 
µDAC. I have not concerned myself with the other substantial problems involved in developing 
the cytometer—imaging the cytometer, scaling up the number of traps, or designing the control 
systems to operate the traps.  These are whole theses unto themselves. 

In Chapter 2 I will describe the modeling tools that I developed to enable the quantitative 
design of DEP traps, such as for the µDAC, as well as the reasoning behind their development.  
In Chapter 3 I’ll present experiments that I performed on a specific trap design—the planar 
quadrupole—to validate the modeling tools and investigate how that trap works.  Once this is 
done, in Chapter 4 I will demonstrate one use of these modeling tools—for designing trap arrays 
that can meet the requirements of the cytometer.  Chapter 5 describes how I fabricated and 
packaged these improved trap arrays as well as the setup used for testing them.  In Chapter 6 I’ll 
describe experiments with beads designed to validate the extruded trap performance, while in 
Chapter 7 I’ll describe exploratory assays with cells meant to show proof-of-concept operation of 
the cytometer.  I will finish in Chapter 8 with remarks on the significance of the thesis as well as 
directions for future work. 
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Chapter 2: Modeling environment 
 
 
Now that I have presented an overview of the µDAC project and DEP-based traps, I will 

describe in this chapter the modeling tools that I developed to allow for quantitative trap design.  
Most of the description in this and the next chapter will be directed toward planar quadrupole 
traps as this was the vehicle with which I initially validated the modeling.  I will first motivate 
the need for modeling and then describe the modeling program and some results in detail. 

Throughout the chapter there will be references to Matlab commands and the m-files that 
comprise the modeling environment.  They will be displayed in this font. 

2.1 Motivation 
Much DEP-based-trap design to date has been of a qualitative nature, for a variety of 

reasons.  One reason is that many current microscale DEP traps are meant to capture many 
particles at once.  The electrostatic interactions between the many particles in such a trap make it 
very difficult to quantitatively analyze—although Schnelle et al. [93] performed pioneering work 
on the validation of the shape of the force fields in these systems.  Additionally, traps for large 
particles (such as cells) are "easy" to make—many electrode configurations and experimental 
conditions will generate some sort of trapping, and thus detailed analysis may not be necessary.  
The maturation of microscale DEP-based systems, however, has led to the need for microscale 
DEP-based systems that effect quantitative functions, such as precise single-cell holding and 
manipulation.  For these applications—such as the µDAC—one needs to quantitatively 
understand and design DEP-based traps. 

In order to understand and predict the interaction of forces on particles in these 
microsystems, I have developed this modeling environment to quantitatively predict the behavior 
of single particles in DEP-based systems, with particular emphasis on predicting the "strength" 
of DEP-based cell traps at steady state.  Strength is defined as the ability of a trap to hold a 
single particle against a fluid flow.  It is the destabilizing flow that will be encountered in our 
cytometer, and is likely to be the destabilizing force in many cell-based microsystems. 

Furthermore, the modeling environment allows for the investigation of multipolar DEP 
forces (Eqn. (1-7)).  Most previous analyses incorporate only the dipole approximation to the 
DEP force [71, 89], which, while dominating the responses of many systems, does not 
adequately describe the physical situation at electric-field nulls or where the particle size 
becomes significant compared to electric field non-uniformities.  An important exception is work 
by Washizu and Jones [133], who used the quadrupolar force order to explain particle size-
dependent levitation in quadropole traps.  To extend this work, I have implemented in the 
modeling environment an iterative algorithm to compute the multipolar DEP forces, trivializing 
the ability to compute these higher-order force terms, which can now accurately describe the 
DEP forces in arbitrary electrode geometries. 

2.2 Overview 
An overview of the modeling environment is given in Figure 2-1.  It has been written 

using the Matlab computing environment (R13, The Mathworks, Inc., Natick, MA) to take 
advantage of the diverse numerical and visualization algorithms available within.  The modeling 
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has undergone approximately five major algorithmic revisions since its inception.  Only the final 
state is detailed here.  I originally also wrote code to analyze 2D geometries, but have not 
continued developing it to the sophistication of the 3D program described herein.  The 2D 
program is simpler and faster to run, however, and could be resurrected if needed. 

The modeling environment, though general, has been written expressly to analyze the 
problem encountered in microscale DEP traps—that of single particles held in such traps against 
fluid flows, as illustrated in Figure 2-2.  In this chapter I will describe its application to planar 
quadrupole traps.  I will show the actual use of this modeling environment for a priori trap 
design in Chapter 4.   

The model takes electric-field data and other experimental parameters and computes the 
total force on the particle everywhere in space.  From this, zero-force isosurfaces are constructed, 
one for each force component, to determine where the forces in each direction are zero.  (An 
isosurface is the three-dimensional equivalent of a contour line.)  The modeling environment 
then looks for intersections of these three zero-force isosurfaces, which correspond to locations 
where the total force on the particle is zero and thus where the particle can be held.  These points 
are called holding points and by varying the applied flowrate for a given experimental condition, 
the modeling environment can determine when the holding points cease to exist and therefore the 
strength of the DEP particle trap. 

Obtain 3-D electric 
field data

Compute total force on 
particle

The particle will be 
trapped under 

these conditions

The particle will be 
released under 
these conditions

Find points where the total 
force is zero & stable
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Calculate 
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force

Calculate 
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YES NO

 
Figure 2-1: Overview of modeling environment, showing the major steps.  From user-provided electric field data 
and other experimental parameters, the forces on the particle (DEP, HD drag, and gravitation) are computed in all 
space and the zero-force isosurfaces are determined.  Following this, points of zero net force are searched for.  If 
they exist, they can represent holding points for particles in traps.  
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2.2.1 Model Parameters 
Unless specified otherwise, all simulations performed in this chapter had the following 

parameters.  The voltage was 1 V, the particles were beads with a density of 1.062 gm/cm3, the 
solution relative permittivity was 80 (water), the solution conductivity was 0.01 S/m, the bead 
relative permittivity was 2.5, the bead conductivity was 0.2 mS/m, the bead radius was 5 µm, the 
flow chamber height was 0.73 mm and its width was 7 mm.  These parameters approximate the 
situation used in the validation experiments of Chapter 3.  

2.2.2 Electric field calculation 
Many methods exist to calculate electric fields in electroquasistatic systems.  Some of the 

commonly used electrode geometries have analytical solutions, such as the point quadrupole and 
octopole, the cone-plate geometry [87], and the polynomial electrodes [134].  Other commonly 
used geometries, such as the interdigitated electrodes, have been solved using commercial field 
solvers [75].  Still other approaches have involved developing efficient algorithms to calculate 
the electric fields in two and three dimensions [71, 89, 135-137].  Due to the diversity of 
methods available to obtain the electric fields in these systems, I have developed the modeling 
tools to "assume" that the fields are known, and therefore allow the user to calculate the electric 
fields any way they wish. 

The modeling environment computes all quantities on a regularly spaced grid, and so 
requires that electric field data be given in a regularly spaced grid in all space.  The field data can 
be obtained from any source that can generate such data.  Since the DEP force calculations 
involves taking multiple derivatives of the field variables (Eqn. (1-8)), care must be taken to 
obtain fine-enough simulation results in order to minimize errors.  

I have successfully used field data from both the commercial FEM solver Maxwell 3D 
(Ansoft, Pittsburgh, PA) and the commercial BEM solver Coulomb3D (Integrated Engineering 
Software, Winnipeg, Canada).  For the planar quadrupole electrode structure shown in Figure 2-2 
(discussed in this and the next chapter) I used results from Maxwell 3D.  Using this simulator, 
one can export field solutions into an ASCII file and use subroutines to massage the data into a 
matrix form that the program can handle (dload3).  I simulate only the upper-half of the trap, 
using symmetry boundary conditions at the glass substrate.  Field data from the central portion of 
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Figure 2-2: Schematic of simulated planar quadrupole geometry.  Shown is central portion of the planar quadrupole, 
which is driven with 180-degree out-of-phase alternating voltages on adjacent electrodes.  The gap between opposite 
electrodes is 24 µm, while the radius of curvature of the electrode tip is 4 µm.  The electrodes increase in width 
away from the electrode tip to reduce resistive losses, with a final width of 500 µm.  A bead, trapped at the electrode 
gaps, will experience the DEP forces, HD drag forces from the parabolic flow profile, a gravitational force due to its 
weight, and, if it is on the substrate surface, an upward force due to the substrate. 
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the quadrupole is written to a grid, using a grid spacing of 0.5-2 µm, and smoothed using a 
Gaussian low-pass filter.  Simulations are run using a 1V potential difference between electrodes 
and field results for other voltage differences are obtained by linearly scaling the electric field to 
different voltages, using the linearity of the electric field with voltage.   

In Figure 2-3 I plot the electric field intensity at various heights above the substrate.  One 
sees the circular contours of the familiar quadrupole field near the origin and its perturbation 
near the electrodes, which lessens as the height above the substrate is increased. 
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Figure 2-3: Plots of the electric field intensity for the quadrupole geometry shown in Figure 2-2 at various heights 
above the substrate for 1 V applied to the electrodes.  The heights are 0 (A), 10 µm (B), and 20 µm (C). 
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2.2.3 DEP force calculation 
To calculate the full multipolar DEP force, the program (depforce3) uses the induced-

multipole theory developed by Jones and Washizu [61] and shown in Eqns. (1-7) and (1-8).  The 
CM-factor is calculated using the solutions for either a solid dielectric sphere (Eqn. (1-9))—to 
model plastic beads—or a dielectric shell—to model cells—using expressions from the literature 
[58].   

To allow for an iterative force calculation algorithm, I need to catalog the multiple 
derivatives of the electric field, which are evaluated using nested loops.  I do this with 6-
dimensional matrices for the electric field and its derivatives arranged as E(x,y,z,p,q,r) where p, 
q, and r correlate to the number of derivatives of the electric field taken in the x, y, and z 
directions,  respectively.  Since Matlab only allows non-zero addressing into matrices, the 
following scheme is used 

�

2

22

)2,1,3(

122

211
121
112

x
E

zx
Ex,y,z,E

x
E

y
E ) ,,E(x,y,z,

 E) ,,E(x,y,z,
 E) ,,E(x,y,z,
 E) ,,E(x,y,z,

zx

yx

z

y

x

∂
∂=

∂∂
∂=

∂
∂

=
∂

∂=

=

=
=

 (2-1)

 
The algorithm for generating the field derivatives is 

for in=2:nmax 
  for p=1:in 
    for q=1:(in-p+1) 
      r = in - (q + p) + 2; 
      [E(:,:,:,p+1,q,r),E(:,:,:,p,q+1,r),E(:,:,:,p,q,r+1)] = gradient(E(:,:,:,p,q,r),dx,dy,dz); 
    end 
  end 
end 

Here, nmax refers to the number of force orders to calculate, and dx, dy, and dz refer to the 
spacing of the field grid. 

 
The DEP force calculation algorithm is given by 
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where F0
(n) is a constant calculated once.  For the systems described in this thesis, the electric 

fields are real and so I do not need to worry about complex values except for the CM factor.  The 
resulting forces are stored in five-dimensional arrays. 

This iterative DEP force calculation is one of the strengths of the modeling environment 
because it makes it simple to compute multipolar DEP forces in all space.  From the electric field 
data in Figure 2-3 I can easily obtain the vector force field plots of Figure 2-4, which show the 
in-plane components of the calculated DEP forces on a polystyrene bead, up to n=2, at the same 
heights as Figure 2-3.  One can see that a particle will be brought to and trapped at the z-axis 
(with no fluid flow) as long as it is brought within a certain distance (~20 µm for  Figure 2-4B) 
of the origin. 

2.2.4 Other forces 
The modeling includes three other forces—the gravitational force, the hydrodynamic 

(HD) drag force on the particle, and a rigid substrate bottom boundary.  The magnitude of the 
gravitational force is given by 

gRF mpgrav )(
3
4 3 ρρπ −=  (2-3)

where ρm and ρp refer to the densities of the medium and the particle, respectively, and g is the 
gravitational acceleration constant.  Cells and beads are denser than the medium and thus have a 
net downward force. 

The HD drag force imposed on a stationary particle by a moving fluid is governed by the 
creeping flow approximation because of the small dimensions and low flow rates involved in 
these microsystems.  For these simulations I have used a self-consistently solved analytical 
formulation for the drag force on a stationary sphere in shear flow [138] or plane Poiseuille flow 
[139].  Other solved flow profiles could be implemented.  Although parabolic Poiseiulle flow 
(from parallel-plate flow chambers) is often used with DEP traps, the shear flow approximation 
is justified when the levitation height and particle radius are much less than the height of the 
chamber.  The HD drag force has the general form of the Stokes drag on a sphere 

( ) zFhURF dragcdrag ⋅⋅⋅= *46πη  (2-4)
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where η is the viscosity of the fluid, Uc is the fluid velocity at the channel midline, h is the 
channel height, *

dragF  is a non-dimensional factor incorporating the wall effects, and z is the 
height of the center of the sphere.  I also calculate flow-induced lift forces on the particle, 
although I do not incorporate them into the force balance because they are much smaller than 
other forces in this system.  It would be trivial to incorporate them for other system designs. 

The final "force" is the implementation of a rigid bottom boundary defined by the 
substrate.  This lets me simulate particles sitting on the substrate surface.  To do this I 
automatically adjust the z-directed total force on the particle so that it is zero (or positive) when 
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Figure 2-4: Plots of the DEP force (up to n=2) in the x-y plane derived from the electric field pictured in Figure 2-3 
at heights of 0 (A), 10 µm (B), and 20 µm (C).  The z-directed DEP forces are not shown here (for clarity).  Note 
that the arrow length in each plot is scaled independently. 
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the particle is sitting on the substrate. 

2.2.5 Holding point determination 
At this point, I have calculated the total force experienced by the particle in all of space 

for a given electrode geometry and a given set of conditions (Figure 2-1).  Now I must determine 
whether the particle can indeed be held by the trap in this circumstance.  To do this, the program 
must find points in space (called holding points) where the particle experiences zero net force.  
These are the only points where one can expect to find a particle (at steady state).  If I then 
increase the destabilizing fluid forces and determine when the holding points cease to exist, I can 
compute the strength of the trap. 

The algorithm proceeds as follows.  For each of the three total-force components (Fx, Fy, 
Fz) the program finds the surface where that force component is zero—the zero-force isosurface.  
Once it has the three isosurfaces, it must find where they intersect to find points where the net 
force is zero—holding points.  I implement this by checking for three-way intersections among 
the polygons comprising the surfaces.  Since the majority of the polygons comprising each 
surface will be too far away from each other to possibly intersect, the program first does a quick 
check to exclude such pairings.  This reduces the number of computationally intensive 
operations.  The program performs this quick check by first looking for possible intersections 
between polygons comprising the isosurfaces of two force components.  Then it takes the 
polygons of those two isosurfaces that might be intersecting and checks them against the third 
isosurface.  This produces a set of polygons that represent areas where the three surfaces might 
be intersecting.  It then perform computations on this set of polygons to determine whether any 
three-way intersection points actually exist and whether they are stable holding points. 

Finding zero-force isosurfaces (asspol) 
The isosurfaces are easily computed in Matlab using the isosurface command.  This 

returns a set of triangles (known as patches) that comprise the surface.  To keep the number of 
triangles reasonable, I first limit the volume within which the isosurfaces are computed with the 
reducevolume command.  This requires knowing where the surfaces are likely to intersect, i.e., 
where the region of interest is.  This is not usually a problem—one simply runs coarse 
simulations covering the full volume and then refines.  The second tactic that I use to limit the 
number of triangles is to limit the number of faces in the surface with the reducepatch command.  
This commands reforms the isosurface with fewer patches while trying to minimize any errors.  I 
usually use 700 patches (triangles) per isosurface.   

Examples of the three isosurfaces for the planar quadrupole are shown in Figure 2-5.  The 
Fx=0 (Figure 2-5A) and Fy=0 (Figure 2-5B) isosurfaces are predominately composed of planes at 
x=0 and y=0, respectively.  In fact, due to the symmetry of this electrode configuration, the two 
isosurfaces are the same, just rotated 90-degrees with respect to each other.  This makes sense in 
the context of Figure 2-4 where one sees that the x-directed DEP force is zero at the x=0 plane, 
and that the y-directed DEP force is zero at the y=0 plane.  The symmetry in the Fx=0 and Fy=0 
isosurfaces will disappear when an x-directed flow is imposed.  The other parts of the isosurfaces 
in these plots represent other regions where those force components are zero.  However, 
subsequent analysis, such as by examining Figure 2-4, shows that these correspond to unstable 
force minima; particles at those points would not be stably held.  Figure 2-5C shows the Fz=0 
isosurface, which is cone-shaped.  In Figure 2-5D one sees a closeup of the three isosurfaces 
superimposed, showing the putative holding point located at (x,y,z) = (0,0,12 µm).   
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Figure 2-5: Zero-force isosurfaces.  Shown are the three isosurfaces corresponding to the Fx=0 (A), Fy=0 (B), and 
Fz=0 (C) isosurfaces calculated from the electric fields in Figure 2-3, when no flow is applied.  Panel D shows a 
close-up of the intersection of the three isosurfaces, illustrating the existence of a holding point at (x,y,z)=(0,0,12 
µm). 

Finding possible two-way intersections (asspol) 
Now that the three isosurfaces have been computed, I need to check them against each 

other to find the intersection point.  As stated above, this is first done by performing a quick 
check for possible intersections and then checking those possible intersection points.  The first 
stage of the quick check is to check two surfaces against each other (checkpol2).  Since the vast 
majority of the patches making up the two sets of isosurfaces won't intersect, I first do a gross 
test to winnow down the list of possibly intersecting patches (checkpol, minmax).  This test, called 
a bounding box test, is well known in computer graphics and is illustrated in two dimensions in 
Figure 2-6. Basically, if two patches' bounding boxes do not intersect, then the two patches 
cannot intersect.   

To optimize the algorithm for Matlab, I tried to remove for loops and replace them with 
vectorized operations.  In addition, keeping all variable sizes small enough to fit into memory 
(without writing to disk) keeps the algorithm fast.  My approach was to create large matrices—
called minmax matrices—representing all possible two-way combinations from a pair of 
surfaces.  Thus, is one surface had n triangles and the other had m triangles then each matrix (one 
for each surface) would have m⋅n rows.  Each row contains the extreme coordinates of each 
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triangle—e.g., the maximum x-coordinate of the triangle, the minimum x-coordinate of the 
triangle, etc.  Since these matrices could get very large, the program can chop up the surfaces to 
make smaller comparisons if necessary.  These minmax matrices are set up in such a way as 
adding two corresponding rows together and checking the sign of the result performs the 
bounding box comparison.  The final step is to look through the list of comparisons to find ones 
that meet the test, and export those as a new matrix ready for the set of three-way comparisons.   

Finding possible three-way intersections (asspol) 
At this point I have a matrix where each row is a pair of possibly intersecting patches.  

The first patch of each pair is compared against the third isosurface using the bounding-box 
algorithms to find possible three-way intersections.  The result is a matrix where each row 
contains the coordinates of triangles that might intersect.   

Finding intersection points (findint) 
The final step is to check if these possible intersections actually intersect.  Using the 

bounding-box algorithms to minimize the number of intersections that actually need to be 
checked greatly reduces execution time since this final step is computationally intensive.  
Essentially, the algorithm finds the intersection point of the three triangles and determines 
whether the intersection point actually lies within all three triangles.  Only points that lie within 
all three triangles represent zero-force points. 

The intersection point of three planes is given by [140] 
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∆ will be zero if the three planes intersect in a straight line or not at all. 
For each polygon, the code takes the three vertices and computes the A, B, C, and D 

coefficients for the plane formed by those vertices.  The conversion between the A, B, C, and D 
coefficients and the coordinates is given by 

Polygon

Bounding Box
 

Figure 2-6: Bounding box algorithm in two dimensions.  If the bounding boxes of the two patches do not intersect, 
then the patches cannot intersect.  Extension to three dimensions only involves checking one more dimension.  In 
the program, the two polygons are actually both triangles. 
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where xn, yn, and zn refer to the coordinates of each vertex.  This generates three planes (one for 
each polygon). 

The program then computes ∆ and checks to see if it is zero.  If it is not zero, it calculates 
the intersection point.  The task now is to find the subset of intersection points that lie within all 
three polygons; only these represent intersections between the zero-force isosurfaces.  Checking 
whether a point is in a polygon is another classic computational geometry problem.  The 
particular algorithm I use was obtained from [141] (pnpoly2).  As shown in Figure 2-7, the 
algorithm goes around the polygon and checks to see if the point is always on the same side of 
each line segment.  For convex polygons, this will be true if the point is inside the polygon.  
Practically, this is done by computing the cross product between the line segment of the polygon 
and the vector formed by the point and one of the line segment's vertices.  If this cross product 
always has the same sign, then the point is inside the polygon. 

Unfortunately, the point-in-polygon test will not necessarily judge points on the vertices 
or sides of the polygon to be inside the polygon.  Therefore, if a point is deemed to not be in the 
polygon, the program tests to see if the point is "near" the polygon.  The near distance is set to 
10-4 µm.  The code determines the perpendicular distance from the point to each line segment, 
makes sure that this perpendicular intersection point is "within" the line segment, and then uses 
the perpendicular distance to see if the point is "close" to the line segment.  If it is, then the point 
is deemed inside the polygon. 

The point-in-polygon routine only works in two dimensions.  To account for this, I wrote 
a set of operations to rotate each polygon and point onto the xy-plane to remove the 3rd 
dimension (rotatept).  This is done by picking the three vertices and computing the surface 
normal and tangent.  Each point is then transformed according to the following 
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where p1, p2, and p3 are the three points in the polygon, p are all the points in the polygon, and 

polygon
points

 
Figure 2-7: Schematic of point-in-polygon tests.  The point inside the polygon is always to the right of the vectors,
whereas the point outside the polygon is sometimes to the left and sometimes to the right. 
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p' are the rotated points.   
The code finally returns a set of points describing the intersection of the three isosurfaces.  

Due to the way in which the bounding-box comparisons were made earlier, the intersection-
finding routine often generates multiple identical points.  Another m-file (expts) takes these 
points and returns only unique points. 

The last important thing to check is whether the zero-force points represent stable force 
minima (minpts).  To check this, I have implemented an algorithm that determines whether 

0<⋅ rF d  for each direction away from a putative holding point [142].  This essentially checks 
whether the particle needs to perform work on the system in order to move away from the zero-
force point, in which case the point is stable.  Other more heuristic methods, such as volume 
exclusion, are also used. 

2.2.6 Holding force simulation 
An overall program (hforce3) is wrapped around the above code to determine the end 

variable—usually the flowrate needed to release the particle, which I call the release flowrate.  
The program varies the flowrate in the model to find the threshold where no holding points exist.  
That threshold flowrate is the release flowrate and is found using a simple relaxation algorithm.  
The holding force can then be easily extracted from the release flowrate.   

A schematic of the algorithm is shown in Figure 2-8.  The code involves two loops, one 
inside the other, letting me cycle through two sets of initial conditions—for instance, sweeping 
the bead diameter while also varying the applied voltage.  The program only increments to the 
next set of conditions when the current set has converged.  For each set of conditions, it goes 
through a loop, guessing at the release flowrate until it finds it.  The first time through the loop, 
the program calculates all the field variables, while it only calculates the variables that change 
with flowrate during subsequent iterations.  Also during subsequent iterations, the program only 
looks for three-way possibly intersecting polygons—it reuses the two-way polygons from the 
non-changing force directions (Fy and Fz).  Both of these strategies greatly diminish the 
execution time.  After all field variables are calculated and possibly intersecting polygons found, 
the program finds the holding points, if any exist.  Then the program takes this information and 
feeds it to the relaxation algorithm, which decides if this is indeed the release flowrate.  If it is 
then the program records interesting values and increments to the next set of conditions.  If not, 
the relaxation algorithm generates a new guess to try the next time. 

The relaxation program (relax) implements a simple bisection algorithm with some 
modifications.  The program asks a series of questions to determine the particular situation that it 
is in and then takes appropriate action (Figure 2-9).  First, it tests to see if it has found the release 
flowrate by looking at the current and previous guesses and seeing if they are close enough to 
each other (within some tolerance).  If it has converged, then all is well and it tells that to the 
holding force program.  If it hasn’t, then it must decide whether it has overshot or undershot the 
release flowrate.  This is done by looking to see if there are any holding points.  If there are, then 
it means that the flowrate is not high enough.  If there aren't any, then it means that it has 
overshot the flowrate.  Once it knows if it is too high or too low, it must determine a new suitable 
guess.  It does this by first looking to see if there is a "good" previous guess.  If so, then it means 
that the actual answer lies somewhere between the current guess and the previous guess.  It 
simply bisects the two for the next guess.  If it has never found a good guess, then it means that it 
hasn’t approached the critical region yet, and so must keep hunting.  If it is too high, it divides 
the previous guess by a factor, usually between 1.3 and 2.  If it is too low, then it multiplies by 
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the same factor.  If it is too high, it also must check to make sure that it is at a reasonable value.  
If it falls below some absolute minimum, then it means that for this particular situation, no 
holding force exists.  In this case, the program just moves to the next set of conditions.  This 
most often happens at the voltage extremes, depending on the geometry. 

2.2.7 Effect of particle density and fluid flow on isosurfaces 
To illustrate the use of the modeling environment for understanding physical phenomena 

in these microsystems, I address two trends—changes in particle density and the addition of fluid 
flow (HD drag forces).  Figure 2-10 shows the effect of particle density (and thus weight) on the 
Fz=0 isosurface (which is the only one affected).  As the particle density is increased from 1.020 
g/cm3 (Figure 2-10A) to 1.250 g/cm3 (Figure 2-10C), the particle weight would increase, and 
from Eqn. (2-3), one would expect the particle to be levitated at lower heights.  Observing Figure 
2-10, one sees that this is indeed the case.  Two important features are apparent.  First, the whole 
isosurface decreases in height, corresponding to lower levitation heights, as expected.  Second, at 
some critical particle density, the cone of the isosurface will reach z=5 µm (and flatten), 
whereupon the particle (with R=5 µm) will no longer be levitated (Figure 2-10C).  This shows 
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Figure 2-9: Flowchart for relaxation program. 
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the effect of the bottom boundary “force” that I have implemented. 
One also sees that a sharp edge is produced where the Fz=0 isosurface cone flattens into a 

plane in Figure 2-10C.  This will cause difficulties in the holding point extraction, as discussed 
below. 

The effect of fluid flow is important to understanding how these traps work, as fluid flow 
is the destabilizing force that encountered in most DEP-based traps.  When fluid flow in the x-
direction is imposed, only the Fx=0 isosurface is affected.  In Figure 2-11 I show the effect of 
fluid flow by examining the intersection of the Fx=0 and Fz=0 isosurfaces as the flowrate is 
increased.  In Figure 2-11A, I show the isosurfaces under conditions of no flow.  This is similar 
to the situation depicted in Figure 2-5D, except that now the Fy=0 isosurface is not shown 
because it will be consist of an x-z plane at y=0 that will be unaffected by changes in an x-
directed HD drag force.  One sees that the Fx=0 isosurface “bends” over as the flow is increased 
(Figure 2-11B-C), because the HD drag force increases with height (see Eqn. (2-4)), causing the 
region where Fx=0 to move to x>0.  However, for moderate flows (Figure 2-11B), the two 
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Figure 2-10: The effect of particle density on the holding points.  Shown are the results of three simulations where 
the particle density is varied from 1.020 gm/cm3 (A) to 1.062 gm/cm3 (B) to 1.250 gm/cm3 (C).  Only the Fz=0
isosurface is shown. 
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isosurfaces (and also the Fy=0 isosurface) will still intersect, and thus a holding point will exist 
and the particle will be held.  At a certain threshold flowrate, the Fx=0 isosurface will "bend" 
over so far as to no longer intersect the Fz=0 isosurface (Figure 2-11C).  At this point, no three-
way isosurface intersections will exist.  Thus, no holding points will exist and the particle will be 
liberated from the trap.  This is the release flowrate, and the corresponding force is the holding 
force of the trap. 

In the case illustrated one sees that the release flowrate is ~10 µl/min (Figure 2-11C).  If I 
vary the applied voltage the release flowrate will vary because the DEP forces and levitation 
height will both vary.  Predicting and the measuring the relationship between the applied voltage 
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Figure 2-11: The effect of flow on the holding points.  Shown are the results of three simulations where the volume 
flow rate (Q) is varied from 0 µl/min (A) to 5 µl/min (B) to 10 µl/min (C).  Only the Fx=0 and Fz=0 isosurfaces are 
shown because the Fy=0 isosurface is a flat sheet in the y-z-plane at x=0 (see Figure 2-5B) and does not vary with 
applied flow.  The highest flowrate (C) corresponds to the release flowrate, since it is the threshold at which the
three isosurfaces no longer intersect and thus no longer generate holding points.  



 46

and the release flowrate forms a good method to validate the model, which is what I have done in 
Chapter 3. 

2.3 Discussion 

2.3.1 Modeling environment 
The various manipulations performed, starting with the electric field and experimental 

parameters, show the utility of the type of integration that I have chosen for these simulations 
and the suitability of the modeling environment for the design of microscale DEP-based traps.  
With this design tool, I can now quickly evaluate different designs using a combination of 
interactive and automatic means. 

The interactivity comes from the combination of Matlab's numerical and visualization 
capabilities with the modeling environment, and lets me simultaneously investigate the various 
fields and forces on particles.  One can, for instance, jump quickly from the zero-force 
isosurfaces (Figure 2-5) to the force plots (Figure 2-4) to determine whether zero-force points 
represent holding points by examining the directions of the force arrows around the zero-force 
points. 

In addition to these interactive possibilities, the automatic computation of the release 
flowrate allows one to run comparative analyses of different traps rather easily.  In large 
measure, this is enabled by the iterative DEP force calculation, which trivializes the ability to 
compute multipolar DEP forces in all space.  This is needed for either highly symmetric, small, 
or complicated trap geometries.  Highly symmetric traps, such as the quadrupole described here, 
have symmetries that necessitate higher-order moments to properly explain levitation, even in 
the limit of large traps, as was recognized in 1993 [133].  This is illustrated in the cone-shaped 
Fz=0 isosurface of Figure 2-5C.  The isosurface minimum at the origin corresponds to the field 
null, where the dipole term in the DEP force goes to zero and the quadropolar force order 
dominates.  Computing only the dipole force order would give an Fz=0 isosurface that instead of 
being cone-shaped would look like a cylinder near the origin and never intersect the z-axis; such 
an isosurface would not predict levitation. 

While highly symmetric traps always need multipolar force calculations, the modeling 
environment enables the designer to design arbitrary traps—unencumbered by the need to keep 
the particle much smaller than the field non-uniformities.  Analytical approaches, such as 
undertaken by Washizu and Jones [133], while effective for the simple quadropole geometry and 
providing analytical representations of the various parameter dependencies, would be difficult to 
extend to these situations.  Arbitrary trap design has two benefits.  One is for single-cell traps.  
As traps are scaled down to the size necessary to trap single cells, the cells invariably become a 
significant fraction of any characteristic dimension, and thus quadrupolar and higher-order 
moments may come into play.  The other is for non-analytical electrode geometries, which can 
shape the electric field or introduce steric effects for more effective trapping.  Both of these 
approaches could be implemented with extruded quadrupole traps.  Non-analytical effects are 
even seen in the planar quadrupole structures, which, although well approximated near the origin 
by four point charges, deviate significantly from the point-charge quadrupole away from the 
origin, especially near the plane of the substrate (Figure 2-3A). 

In addition to arbitrary trap design, there is a direct extension from the beads modeled 
here to more complex and biologically relevant cell-based systems.  The extension to cells 
involves manipulation of the CM factor, and the appropriate forms of the CM factor for various 
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types of cells, such as mammalian cells and protoplasts, have been determined assuming various 
electrical models [58, 120] and are generally accepted in the community.  The accuracy of the 
models is determined by the extent to which the various parameters describing them (such as 
membrane capacitance, etc.) are known and homogeneous among a cell population. 

2.3.2 Parameter-space exploration 
A primary use of the modeling environment is to explore the effects of experimental 

parameters on the interplay of forces.  The forces considered in the model all vary differently 
with such experimental parameters as voltage, frequency, particle radius, etc, which can make it 
difficult to predict how parametric variations will affect holding.  The model allows one to make 
these predictions easily and quantitatively.  One way to visualize the interplay of forces is 
through the zero-force isosurfaces, which provide a convenient bridge between the vector force 
fields and the holding points.  This can either be used to confirm ones’ intuition, as when 
predicting that "heavier" particles will be "harder" to levitate (Figure 2-10), or can provide 
insight into situations that are more difficult to grasp initially—such as the interaction between 
DEP and HD drag forces (Figure 2-11). 

This interaction is actually the primary concern in developing DEP-based cell traps that 
can hold cells against flow.  One can expect that for a given situation, a particle will be held in 
the trap until some threshold destabilizing flowrate (the release flowrate) is applied, whereupon 
the particle will be released.  Figure 2-11 shows this development, where the Fx=0 isosurface 
"bends" over until holding points cease to exist.  Since the system aim of the µDAC is to develop 
traps where the flow needed to "bend" the isosurface is "large" as determined by some external 
specification, this amounts to increasing the "stiffness" of the isosurface. 

Since this isosurface represents the interplay between HD drag and DEP forces, I can 
alter either force to effect greater holding.  Realizing that the HD drag forces increase away from 
surfaces (Eqn. (2-4)), one sees that keeping the particle close to the substrate will increase the 
holding.  Manipulating the shape of the electric fields to remove the decay in DEP force away 
from the substrate can also increase holding.  This can be done by using an octopole cage [93, 
143] or by introducing extruded electrodes that remove the z-directed DEP variation.  This is in 
fact what I will proceed to do in Chapter 4 when designing the extruded traps.  Thus the insights 
obtained via the modeling environment will guide future microscale DEP design. 

2.3.3 Limitations 
While the modeling environment provides for the types of analyses required by the 

µDAC, others may encounter limitations.  First, the implementation of rigid surfaces, such as 
might be found in hybrid DEP-mechanical traps, is difficult to do.  This requires more 
sophisticated particle-boundary intersection algorithms than the simple one implemented for the 
substrate surface.  Second, algorithms have not been optimized for memory usage, and thus 
analyses using large (or very fine) grids can quickly command >100 Mb of memory.  If this is 
larger than the available physical memory, the time needed to swap in and out of the hard disk 
will dramatically slow the analysis.   

Another limitation concerns the use of discrete grids and polygons.  This discretization 
introduces numerical "noise" into the isosurface intersection algorithms.  The "noise" makes the 
location algorithms very sensitive where two non-smooth isosurfaces are intersecting.  The most 
pronounced case of this is when the particle is on the substrate, because the Fz=0 isosurface has a 
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sharp corner near the origin in this case (Figure 2-10C).  This effect is seen in the holding 
characteristics of both systems later in this thesis. 

An additional limitation is the inability to perform analyses of non-linearly-polarized 
DEP excitations (such as for electrorotation and traveling-wave DEP studies), although this was 
not the intent of the modeling environment and could be implemented since the relevant 
multipolar theories have been worked out [60].  Also, dynamic analyses cannot be performed, 
although the force matrices allow the determination of force streamlines (and hence particle 
trajectories in certain situations).  Finally, electrohydrodynamic forces, which can be substantial 
in some experimental situations [144], are not incorporated.  This would require the calculation 
of the temperature and charge distribution in the fluid, which is not a simple addition to the code.  
EHD forces will become important in the analysis of the planar quadrupole in the next chapter. 

2.4 Conclusion 
In this chapter I have presented an integrated modeling environment for the development 

of DEP-based single-particle traps.  The modeling environment can take user-supplied electric 
field data and other experimental parameters and determine the efficacy of DEP-based cell traps.  
I have shown that the modeling environment gives insight into the interplay between forces in 
DEP-based microsystems, such as those describing the balance between DEP and HD drag 
forces.  In addition, the use of an iterative DEP force calculation makes it easy to compute the 
DEP forces to arbitrary order, allowing for exact analyses of arbitrarily complex electrode 
geometries.  Experimental validation of the modeling environment is presented in the next 
chapter.  With these modeling tools it is now possible to perform a priori quantitative designs of 
various DEP traps for high-performance applications, which is what I will do in Chapter 4. 
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Chapter 3: Holding forces of the planar quadrupole 
 
 
Much information can be learned by experimentally determining the holding forces of 

planar quadrupole traps.  First, the results can be used to validate the modeling environment and 
determine the parameter space within which its predictions are valid.  Second, the results can be 
used to gain insight into the functioning of the planar quadrupole and DEP-based single-particle 
traps in general, as well as to determine whether the planar quadrupole can meet the 
requirements of the µDAC.  In this chapter I will describe experiments with planar quadrupole 
traps, varying the trapped particle size, the applied voltage, the applied frequency, and the 
solution conductivity, to determine this information. 

3.1 Experimental vehicle—the planar quadrupole 
I have decided to use the planar quadrupole shown in Figure 2-2 as the experimental 

vehicle for the following reasons.  First, the planar quadrupole is perhaps the most commonly 
used DEP trap, and there thus exists a rich set of comparisons to make.  Second, correct 
modeling of the planar quadrupole demands that one use at least the 2nd-order multipole 
(quadrupole), thus providing the ability to demonstrate the ease to which these multipoles can be 
calculated.  Third, the planar quadrupole is easy to fabricate for experimental verification of the 
model. 

Instead of using living cells as the test particle, I have used beads for the verification 
studies.  The reason for this is that during the verification stage it is important to minimize 
variations in the test parameters so that the true accuracy of the models can be rigorously 
determined.  This is possible by using latex beads, which have precise and accurately determined 
physical and electrical properties. 

3.2 Experimental methods—fab, packaging, test setup, methodology 
In this section I will describe in detail the materials and methods used in the verification 
experiments. 

3.2.1 Stock Solutions 
Solutions of two different conductivities—0.01 S/m and 0.75 mS/m—were made by taking DI 
water with 0.05% Triton X-100 (Sigma, St. Loius, MO) added and adding appropriate amounts 
of Hank's Balanced Salt Solution (HBSS, GibcoBRL, Grand Island, NY), also with 0.05% Triton 
X-100, until the nominal conductivity was reached, as indicated by a Orion Model 125 
conductivity meter (Beverly, MA).  Solutions were filtered through a 0.45-micron filter (Micron 
Separations, Inc., Westborough, MA) and their conductivity measured before each use. 

3.2.2 Beads 
Polystyrene beads (incorporating 2% divinyl benzene), with density 1.062 g/cm3, in three 
diameters—7.58 µm (0.08 µm std. dev.), 10.00 µm (0.09 µm std. dev.), and 13.20 µm (0.89 µm 
std. dev.)—packaged as 10 % solids in water were purchased from Bangs Laboratories (Fishers, 
IN).  15 µL of each bead solution was washed twice in 1.5 mL of the appropriate conductivity 
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stock solution and finally resuspended in 1.5 mL of stock solution.  All bead solutions were 
refrigerated and used within two months. 

3.2.3 Electrode Traps 
Thin-film quadrupole electrodes were fabricated using conventional microfabrication processes.  
Standard (25 mm x 75 mm) microscope slides were cleaned for 10 minutes in a Piranha solution 
(3:1 H2SO4:H2O2) and blow dried.  Photolithography was then performed using the image-
reversal photoresist Hoechst AZ-5214 (Somerville, NJ)—which gives re-entrant resist profiles—
to define the electrode patterns.  200 Å of chrome and 5000 Å of gold were then evaporated onto 
the slides followed by resist dissolution and metal liftoff in acetone.  Finally, the slides were 
cleaned in methanol and isopropanol and blow-dried.  An image of the completed electrodes is 
shown in Figure 3-1A, along with relevant dimensions. 

3.2.4 Packaging 
The packaging scheme is shown in Figure 3-1B.  Fluid inlet and outlet holes were drilled 

in the glass slides with 0.75-mm diamond drill bits (C.R. Laurence, Los Angeles, CA).  
Poly(dimethylsiloxane) gaskets, cast in machined molds from monomer (Sylgard 184, Dow 
Corning, Midland, MI), above and below the slide functioned as the spacer material and bottom 
sealing gasket, respectively.  The top of the chamber consisted of a glass slide that had been cut 
to a width of 16 mm and clamped down using an aluminum block.  With this setup, the flow 
chamber sustained >200 µL/min flows without leaking. 

 
Figure 3-1: (A) Photograph of the completed quadrupole electrodes, showing a single 10.00 µm bead captured in 
trap; (B) Schematic of packaging assembly, showing the stack of layers comprising the flow chamber along the with 
the electrical connections via spring-contact probes; (C) Schematic of fluidic subsystem. 
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3.2.5 Chamber height measurement 
The chamber height of the fully assembled unfilled package was measured at various points with 
an optical interferometer coupled to a z-axis linear gage (543 Series, Mitutoyo/MTI Corp., 
Aurora, IL) on a Nikon microscope (UM-2, Nikon Inc., Melville, NY).  Corrections were made 
for the indices of refraction of the different materials.  The measured chamber height was 0.73 ± 
0.01 mm. 

3.2.6 Electrical Excitation 
Sine wave excitation up to 20 MHz and 10 Vpp (into 50 Ω) was generated by an HP 3314A 
signal generator (Hewlett-Packard, Palo Alto, CA).  This signal was split and sent into 4 high-
speed amplifiers (LM7171, Analog Devices, Norwood, MA)—2 non-inverting and 2 inverting—
that amplified the signal 2x.  The amplifiers delivered 180° phase-shifted signals with negligible 
gain and phase error up to 10 MHz.  The output from the amplifiers was sent via coaxial spring-
contact probes (Interconnect Devices, Inc., Kansas City, KS) to the contact pads at the edge of 
the glass slide (Figure 3-1B). 

3.2.7 Fluidics 
Fluidic connection to the package was made via HPLC connectors and tubing (Figure 3-1C).  
The fluidic test subsystem consisted of a 4-way valve (V-101D, Upchurch Scientific, Oak 
Harbor, WA) that allowed the interchange of syringes without introducing bubbles.  The bead 
solution was injected into the flow using an injection valve (V-450, Upchurch Scientific, Oak 
Harbor, WA).  Flow was initiated by a syringe pump (KD-101, KD Scientific, Boston, MA) 
using a 5 mL Hamilton luer-lock syringe (1005TLL, Reno, Nevada). 

3.2.8 Optics 
The beads were viewed using a Microzoom microscope (Wentworth Labs, Brookfield, CT) with 
long-working distance objectives on a semiconductor probe station.  Images could be captured 
using a Panasonic WV-D5000 video camera (Secaucus, NJ) and a Sony VCR. 

3.2.9 Release flowrate measurements 
Once beads were captured in the quadrupole trap, flow was initiated.  In the parallel-plate flow 
chamber, beads experienced a transverse hydrodynamic force that tended to dislodge them from 
equilibrium at the center of the trap and thus acted as a destabilizing force (Figure 3-2).  If the 
bead was held in the trap at the end of two minutes, the bead was considered captured. This time 
was chosen empirically by observing that beads >90% of beads held for two minutes would be 
held indefinitely (tested up to ~5-10 minutes).  The flowrate was adjusted to find the minimum 
flowrate (within 1 µL/min) at which the bead was released within two minutes. This is termed 
the “release flowrate”.  The flowrate was adjusted above and below the release flowrate to ensure 
that the true release flowrate was determined.  In practice, a given bead could be used repeatedly 
by stopping the flow immediately after it was released, in order to pull the bead back into the 
trap. 

3.2.10 Modeling 
The modeling was performed with the specifications described in §2.2.1, using FEM data 
obtained from Maxwell 3D (Ansoft, Pittsburgh, PA).  For the current work I simulated the upper-
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half of the trap in Figure 3-1A, using symmetry boundary conditions at the glass substrate.  Field 
data from the central portion of the quadrupole was written to a grid, using a grid spacing of 0.5-
2 µm, and smoothed using a three-dimensional Gaussian low-pass filter with the following 
parameters: three-grid-point convolution kernel (in each direction) with a standard deviation of 
1.3 grid points.  The filtering was used in lieu of long simulation times to reduce high-spatial 
frequency noise.  The modeling performed in this chapter used an older version of the simulation 
program that represented the isosurfaces not only with triangles but also with 4-, 5-, and 6-sided 
polygons.  All computations on these isosurfaces are as described in Chapter 2.  This 
representation was later abandoned in favor of the simplicity of using only 3-sided polygons. 
 

3.3 Results 

3.3.1 Single-bead holding 
Figure 3-1A shows a trap holding a single 10.00-µm bead.  This shows that the traps do work, at 
least rudimentarily.  Interestingly, even with these un-optimized traps, I have demonstrated 
single-bead capture: when two beads are captured in a trap, the second bead will be held with 
less force than the first, meaning that I can apply a flowrate that will selectively remove the 
second bead while still holding the first.  Thus, I can get single-particle trapping, which is a 
necessary requirement for the µDAC.  In practice this discriminating flowrate is determined 
empirically because the modeling tools are unable to accommodate the interactions of two 
particles in a trap.  Schematically, the number of particles held in a trap varies with the imposed 
flowrate as in Figure 3-3.  One way to think about it is that the size of the potential-energy well 
that comprises the trap decreases as the flowrate is increased.  Thus, there will exist a range of 
flowrates such that the size of the well is larger than one but less than two particles.  In this flow 
regime, only one particle can be held per trap.  Empirically, this occurs at approximately 90% of 
the release flowrate for a given set of experimental parameters. 

 
Figure 3-2: (A) Schematic of flow chamber, showing a bead in the trap experiencing a parabolic HD drag force; (B) 
Release flowrate and holding force measurements.  The flowrate (force) is increased until the bead is liberated from 
the trap.  The parabolic flow profile is approximately linear at when the particle is close to the substrate. 
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Figure 3-3: Schematic showing how the number of particles per trap varies with applied flow.  Close to but below 
the release flowrate only one particle can “fit” in the trap.  

3.3.2 Release flowrate as the voltage is varied—the holding characteristic 
By varying the voltage and measuring the release flowrate, I can generate what I call the 

holding characteristic of the trap for a particular set of experimental conditions.  By comparing 
the shape and absolute values of the measured holding characteristic with the predictions based 
upon the modeling environment, I can evaluate the accuracy and completeness of the modeling 
environment.   

The typical shape of the holding characteristic for these traps is shown in Figure 3-4A for 
7.58-µm beads in 0.01 S/m solutions at a frequency of 1 MHz.  The characteristic behavior in 
these traps is that the release flowrate increases from zero until a maximum release flowrate (the 
peak release flowrate) is achieved (at the peak voltage), after which it decreases quickly and then 
reaches a plateau (the baseline release flowrate).  To validate the model, I have compared the 
match between these three parameters, as they define the shape of the holding characteristic. 

To get a sense of the scatter in the experimental results, I repeatedly took data for the 
10.00-µm beads using more than ~10 different beads over three months. Individual release 
flowrates were measured between one and nine times, with each measurement being double-
checked.  I have included this scatter and the flowrate discretization error in Figure 3-4B.  The 
other data shown in the rest of the chapter can be assumed to possess similar scatter over this 
time frame.  I then used these results as an internal control when acquiring the rest of the data 
presented in this paper.  I did this by taking data from equivalent conditions during subsequent 
runs to establish experimental precision.  When this was inconvenient (as with different solution 
conductivities) I used the prior knowledge that the curves should not greatly shift to check 
against the previous data.  In addition, equivalent data points were taken before and after each 
experimental run to estimate any short-term drift (usually <5%).  I did observe a long-term 
downward drift (towards lower release flowrate) in the release characteristic of ~16% (which 
therefore accounts for the majority of the scatter). Several factors could account for this trend, 
such as changes in the chamber geometry, experimental solutions, or room temperature.  

Turning back to Figure 3-4A, I also show the predicted holding characteristics calculated 
including either only the dipole (n=1, ‘⋅⋅⋅⋅’) or dipole and quadrupole () DEP force terms.  One 
sees that the computing only the dipole term gives a monotonically increasing holding 
characteristic (⋅⋅⋅⋅) because the z-directed force from the dipole term is unable to induce levitation 
near the field null, where the particle is located.  As described below, this levitation is the key to 
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the shape of the holding characteristic.  Including the quadrupole term accurately models the 
problem, since it correctly accounts for the levitation force in quadrupole traps, in agreement 
with previous work [133, 145, 146].  Incorporating the octopole term does not qualitatively or 
quantitatively change the results, indicating that induced octopoles are negligible in this situation 
(data not shown). 
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Figure 3-4: Experimental (○) and simulated () holding characteristics for beads in the planar quadrupole trap of
Figure 3-1A as the bead diameter was varied.  Bead diameters were 7.58 µm (A), 10.00 µm (B), and 13.20 µm (C), 
respectively.  Subplot (B) shows the long-term scatter in the data, which can be taken as typical of the other curves.
Also shown in (A) are the simulated holding characteristics including only dipole DEP force terms (⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅).  The 
frequency is 1 MHz and the solution conductivity is 0.01 S/m.  Note the break in the voltage axis. 
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The match between the experiment and the 2nd-order simulations is significant, especially 
considering that there are no adjustable parameters.  All parameters needed in the model have 
come from either measurements, company data, or literature values.  The simulations predict a 
higher release flowrate (27%) at the peak voltage, a higher peak voltage (5%), and a higher 
baseline release flowrate (8%). 

The trend in release flowrate as the voltage is varied (Figure 3-4A) is initially non-
intuitive, but becomes apparent when one recognizes that the DEP force influences the height of 
the particle.  This is shown in Figure 3-5, where I plot the predicted release flowrate along with 
the predicted holding force and the predicted height of the particle at release for a 7.58-µm bead 
in the quadrupole trap. 
 When no voltage is applied, there is no confining force, and neglecting any stiction 
effects between the bead and the surface of the glass slide—which have been measured at less 
than 1-2 µl/min—the release flowrate should be zero.  As the voltage is increased, the DEP 
forces will create a confining well (Figure 3-5A).  In this pre-levitation regime, the z-directed 
component of this force, which serves to levitate the bead, will initially not be large enough to 
overcome the gravitational force and thus the bead will remain on the slide surface.  The force 
pushing the bead from the trap—the fluid flow—varies linearly with height of the bead and 
volume flow rate (Eqn. (2-4)).  Thus, if the bead height does not change but the confining forces 
increase, the release flowrate will also increase. 
 At some threshold voltage, the z-directed DEP force will exactly balance the gravitational 
force and the bead will start to be levitated (Figure 3-5B).  This voltage corresponds to the peak 
voltage and peak flowrate.  Any increase past this voltage and the bead will be levitated upwards 
and then experience larger HD drag forces (Eqn. (2-4)).  As can be seen from Figure 3-5, the 
height of the particle (---) increases quickly with voltage once it is levitated, and particle will 
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Figure 3-5: Explanation of holding characteristics as voltage is varied, showing the simulated release flowrate (), 
the holding force (−⋅−⋅), and the height of the particle when it is released (---). (A) Pre-levitation.  At very low 
voltages, the gravitation force cannot overcome the z-directed DEP force, and the bead is not levitated; (B) Rapid 
ascent.  At a certain voltage the bead will just become levitated and the holding characteristics will peak; (C) 
Saturation.  At high voltages, the increase in holding force is balanced by the increased particle levitation height,
resulting in a flat release flowrate profile. 
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experience a rapid ascent.  Therefore, the increased exposure to the HD drag forces with little 
increase in the DEP force causes the release flowrate characteristic to decrease. This can be 
contrasted with simulations involving only the dipole DEP-force term (Figure 3-4A, ‘⋅⋅⋅⋅’) where 
the release flowrate never decreases because the particle never becomes levitated. 

Observing the particle height versus voltage curve (Figure 3-5, ---), one sees that after an 
initial rapid ascent, the slope of the curve decreases and saturates because the z-directed DEP 
forces decrease rapidly as the bead is levitated away from the electrodes.  This is in accord with 
the measured height versus voltage characteristics of other researchers [92].  At this point, the 
holding force increases with voltage (Figure 3-5,’–⋅–⋅’) are matched by the increases in the HD 
drag forces due to the increased particle height (Figure 3-5,’---‘).  They thus balance each other 
and give a saturated flat release-flowrate characteristic (Figure 3-5C,’’).   

3.3.3 Holding characteristic as the particle diameter is varied 
Since the DEP forces vary as R3 (dipole) and R5 (quadrupole), the gravitational force varies with 
R3, and the HD drag forces vary with R, I can use differing particle sizes to evaluate the accuracy 
of the modeling environment to see if it predicts the correct particle size effects.  This will help 
determine whether the model accounts for these forces adequately and whether other forces are 
significant.  I have performed experiments with three different bead sizes to explore this trend.  
The results are shown in Figure 3-4, along with the predicted results (simulated including up to 
the n=2 DEP force term).  Although all three bead diameters show the same characteristic 
peaking-declining-plateau response, the values of the peak release flowrate, peak voltage, and 
baseline release flowrates all differ as the bead diameter changes.   

These differences are shown Figure 3-6, where the three parameters that define the 
holding characteristic have been extracted from the simulation and experimental results.  In 
making this comparison I extracted parameters from only one data set consisting of three runs at 
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Figure 3-6: Comparison of extracted experimental (○) and simulated () peak voltage (A), peak release flowrate 
(B), and baseline release flowrate (C) from one data set.  The frequency is 1 MHz and the solution conductivity is
0.01 S/m. 
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different bead diameters to eliminate the long-term drift seen in Figure 3-4B (and thus I only use 
a subset of the data displayed in Figure 3-4B).  The scatter was estimated from the uncertainty in 
the peak height (n=7 data points for 10.00-µm beads, n=2 for other diameters) and position (n=5 
for 10.00-µm beads, n=2 for others) during these runs and from the release flowrates collected at 
voltages greater than 0.8 V for the baseline (n≥6 for each diameter).  In all cases, the scatter was 
<17% and usually was <5%. 

As the bead diameter is increased, the baseline release flowrate (Figure 3-6C) increases 
while both the peak voltage (Figure 3-6A) and peak release flowrate (Figure 3-6B) decrease.  The 
agreement between simulations and experiment is good, with the dependencies captured 
quantitatively—the maximum differences are 30% for the peak voltage, 27% for the peak 
flowrate, and 9% for the baseline release flowrate. 

The trends (Figure 3-6) can be explained in accordance with DEP theory.  As the bead 
diameter is increased, the voltage necessary to initially levitate the bead (which corresponds to 
the peak voltage) will decrease because the levitation forces increase with bead diameter.  These 
smaller voltages cause the bead to experience smaller DEP confining forces before being 
levitated.  This leads to the decrease in peak release flowrate with bead diameter.  Finally, the 
increasing baseline release flowrate with diameter is due to the fact that while the HD drag forces 
increase only linearly with diameter, the DEP confining forces increase as R3 and R5. 

3.3.4 Holding characteristic changes with frequency 
While the first two trends (voltage and bead diameter) evaluate the spatial aspects of our model, 
the frequency trends are a test of the CM factor of the DEP force, which is the only frequency-
dependent component that I have included.  The CM factor (Eqn. (1-2)) for 10.00-µm diameter 
beads is shown in Figure 3-7.  Although only the dipole term of the CM factor is shown, the 
quadrupole and higher terms display similar behavior, although at slightly different dispersion 
frequencies and smaller ranges (e.g., the quadrupole term can only vary between –1/3 and +1/2).  
To generate Figure 3-7, the conductivity of the beads was estimated by using very-low-
conductivity stock solutions and measuring the n-DEP to p-DEP transition frequencies, when the 
beads would switch from being repelled to being attracted to the electrodes, respectively.  Fitting 
these to the zeros of the CM factor gave a conductivity estimate of 2e-4 S/m, which is in accord 
with literature values for unmodified polystyrene beads of this size [147].   

As the frequency is decreased, the CM factor goes from being permittivity dominated to 
conductivity dominated (Eqns. (1-4) & (1-5)).  For the high-conductivity solution (0.01 S/m), no 
dispersion is apparent because the CM factor is dominated by the properties of the stock solution.  
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Figure 3-7: Calculated CM factor (dipole term) for a polystyrene bead in salt solution. 



 58

For the low-conductivity solution (0.75 mS/m), the CM factor decreases in magnitude as the 
frequency is decreased.  Since the CM factor directly multiplies the DEP force equation (Eqn. 
(1-1)), changes in the CM factor will cause corresponding changes in the DEP force at a given 
voltage.  Thus, I expect little frequency dependence of the forces at 0.01 S/m and some 
dependence at 0.75 mS/m.  In essence, the CM factor changes are equivalent to scaling along the 
voltage axis, and should thus only shift the holding characteristic along that dimension. 

Two frequency sweeps were performed, at both high (0.01 S/m) and low (0.75 mS/m) 
solution conductivities.  Both of the 1 MHz holding characteristics (Figure 3-8A,D) agree well 
with predictions, although the peak flowrates and peak voltages are smaller than predicted.  
While these predictions can be partly explained by the sensitivity of the simulations around the 
peak flowrate, they could also be due to temperature changes in the measurement room—causing 
the chamber height and experimental properties to change—or experimental observations of 
neglected forces.  The 100 kHz holding characteristics (Figure 3-8B,E) for both solutions also 
have the predicted shape, although the low conductivity characteristic (Figure 3-8E) deviates 
more from predictions than the 0.01 S/m characteristic (Figure 3-8B).  The 10 kHz holding 
characteristics (Figure 3-8C,F) for both solution conductivities exhibit very different shapes that 
cannot be explained by our modeling environment.   

The only frequency dependence included in the model is through the CM factor.  The 10 
kHz curves, which show completely different holding characteristics, can clearly not be 
explained through manipulation of the CM factor.  The 100 kHz curve at the low conductivity 
solution has the same characteristic shape, but is shifted towards lower voltages and release 
flowrates.  As explained before, the release flowrate shift cannot be caused by changes in the CM 
factor.  For the voltage shift to be caused by changes in the CM factor, the CM factor would have 
to decrease (become more negative) at low frequencies.  Not only would this require an 
extremely small (and physically dubious) bead conductivity (~1e-6 S/m), but because the CM 
factor is already near its theoretical minimum, the increase in the magnitude of the CM factor 
would be much too small to account for the experimental observations (data not shown).   

The shifts in the 100 kHz (and also possibly the 1 MHz) holding characteristics can be 
more readily explained by the existence of an upward destabilizing force on the bead.  The 10 
kHz characteristics are consistent with the existence of an extra confining force on the bead.  
Thus, I conclude that the cause of the discrepancies is due to other forces that are not accounted 
for in the model, as discussed below. 

3.4 Discussion 

3.4.1 DEP force measurements 
The development of the multipolar DEP theory coupled with the decreasing cost of 

computing power and the increasing sophistication of microscale DEP researchers has led to 
several recent attempts to construct quantitative DEP microdevices that are amenable to 
modeling.  Recent work [143, 148] has even started to concentrate on the interaction between 
DEP and HD forces, in their case determining the flow needed to break through a DEP barrier, 
similar to our case.  The difference between their situation and the one presented here is that the 
particles in that work are located at the centerline of Poiseuille flow, and thus the drag force is 
well-defined by the Stokes drag on a sphere.  This allows them to derive analytical 
representations for the force balance.  As particles approach surfaces, this analytical formulation 
becomes hopelessly complicated, necessitating a numerical approach as taken here. 
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The experimental approach—the determination of release flowrate—has many 
advantages over direct measurements of the DEP force.  First, the efficacy of particle traps in 
many applications will be the ability of the trap to hold a particle against fluid flow.  Thus, this 
measurement, even if not correlated to theory, would still be valuable.  The comparison with 
theory, however, is ultimately more useful, since the validation of the modeling environment 
allows for future trap design with confidence that the fundamental physics in a specific operating 
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Figure 3-8: Experimental (○) and simulated () holding characteristics for 10.00 µm beads for three different 
frequencies at solution conductivities of 0.01 S/m (A-C) and 0.75 mS/m (D-F).  Results are shown for frequencies of 
1 MHz (A,D), 100 kHZ (B,E), and 10 kHz (C,F).  The 10 kHz holding characteristic at 0.01 S/m (C) increases 
quickly with voltage and so is truncated in the plot. Note the break in the voltage axis. 
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regime of interest are being accounted for. 
There are several implications of these results for such future trap design.  First, larger 

voltages are not necessarily better; optimal holding occurs in our structures at ~0.3V.  The best 
trapping occurs when particles are “deep” in a potential energy well.  For these planar 
quadrupole traps, this occurs when the particles are on the substrate or just barely levitated.  
Second, planar quadrupoles are quite weak traps (holding at <20 µl/min), and so exploring 
alternate geometries may lead to much higher holding forces.  While operating at low 
frequencies is one route to higher holding (Figure 3-8C,F), this regime most likely involves 
forces other than those accounted for in the model, complicating such designs.  If these forces 
could be understood and harnessed, however, they might themselves provide routes to higher 
holding. 

The agreement with predictions also allows one to extract DEP forces, which themselves 
are useful for testing the DEP theory itself or determining the electrical properties of particles.  
Other researchers testing the theory have used particle levitation [88, 145], flow-induced particle 
displacement in DEP traps [143, 149], and particle velocity measurements in DEP force fields 
[150].  The release flowrate method described represents a new addition to this list.  The close 
coupling with our numerical modeling environment removes limits that other methods may have 
with respect to electrode geometries or experimental conditions. 
 Finally, examining Figure 3-5, one sees that the forces are in the sub-pN range.  This 
gives an indication to the sensitivity of the measurement methodology.  This is comparable to the 
force sensitivities of optical tweezers [151, 152], which is the most closely related biophysical 
measurement.  The agreement in shape and actual value of the predicted and measured holding 
characteristics gives strong validation that the model correctly accounts for the DEP, HD drag, 
and gravitational forces in our system. 

3.4.2 Shear flow approximation to Poiseuille flow 
I have used shear-flow drag forces instead of Poiseuille flow (which actually exists 

within the parallel-plate flow chamber) to compare predictions to experiments.  At the bead 
heights encountered in these experiments, the deviation between the shear and parabolic flow 
profiles is less than 2%, and thus both models should be expected to give the same drag force 
and thus holding characteristic.  I checked this assumption by comparing predictions using 
analytically solved drag forces for each flow profile [138, 139].  The two drag force formulations 
gave release flowrates that differed by 10%, which was found to be due to a 10% difference in 
drag forces predicted by the two theories near the substrate.  The reason for the differences is not 
entirely clear, but I have chosen to use the shear flow model for the following reasons: 1) it 
involves interpolating within a 1-D parameter space, versus 2-D for the Poiseuille flow; 2) the 
regions of operation are well within its parameter space, whereas I am at the asymptotes of the 
Poiseuille flow model; and 3) it predicts release flowrates that agree better with experiments.  
Regardless of the flow profile chosen, the predictions are only affected by 10%. 

3.4.3 Agreement between predictions and experiments 
The agreement between predictions and experiments in Figure 3-4 and Figure 3-6 is 

remarkable, especially since no fitting parameters were used.  This leads to the conclusion that 
the model accurately accounts for the DEP, gravitational, and HD drag forces.  One possible 
cause of the existing discrepancies that one can rule out would be errors associated with physical 
and experimental parameters such as bead radius, chamber width, etc.  Using the modeling 
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environment to perform sensitivity analyses shows that reasonable errors in these quantities 
would not result in the observed deviations between prediction and experiment.   

Other causes of error include the sensitivity of the release flowrate determination around 
the peak height due to noise in the numerics, brownian motion of the particle into lower force-
confining regions [78], and electrohydrodynamic (EHD) flows, as discussed below.  In addition, 
although the symmetry of the ideal quadrupole electrode structure precludes any substrate-liquid 
material interface or charge relaxation effects from affecting the electric fields, the actual 
physical situation could have asymmetries that cause these effects to appear.  A final source of 
error is that heat generation will cause inhomogeneities in the electrical properties of the system, 
which could alter the electric fields. 

To remove this final source of error and to include the interfacial effects properly in non-
symmetrical electrode geometries, the electric field would need to be calculated self-consistently 
including frequency and temperature effects, as others have done [148].  Here one sees the 
benefit of the arbitrary choice of field solver, as it allows easily implementation of such a 
change. 

3.4.4 Forces responsible for anomalous frequency effects 
The experimental results agree with predictions at high frequencies, but as the frequency 

is lowered, anomalies surface that cannot be explained by manipulating the model.  The source 
of the discrepancies most consistent with observations is forces unaccounted for in the model, 
which I conclude are induced by EHD flows.  I have ruled out flow-induced lift forces and linear 
polarization effects; calculated flow induced-lift forces for this experimental situation are much 
too small (~1017 N) [153], and linear polarization effects, which would reducing the electric field 
in the medium [57], would affect predictions much as the CM factor does and thus only shift the 
curves toward higher voltages. 

EHD flows, induced by the interaction between either thermally generated or double-
layer charge with electric fields in fluids [154-156], can impart either confining or destabilizing 
forces.  The type of force is dictated by the origin of the charge (thermal of double-layer) and the 
applied frequency relative to the relaxation frequency of the medium (which has the form σ/ε) 
[144, 154]. 

Several lines of evidence are consistent with EHD flows being the cause of the release 
flowrate deviations.  First, flows not predicted by DEP theory alone (and attributed to EHD 
phenomena) have been observed repeatedly by DEP researchers working on microscale 
electrodes [77, 94, 97, 144, 154, 157-160].  Second, small debris (~µm) inadvertently introduced 
into the chamber will flow in circulatory patterns (reminiscent of other reported EHD flow 
patterns) around the electrodes at various voltages and frequencies.  Third, the observed 
increases (Figure 3-8C,F) and decreases in the holding forces (Figure 3-8E) with frequency are 
consistent with frequency-dependent changes in the magnitude and direction of the EHD flows 
(for systems such as the planar quadrupole that possess both thermally induced and double-layer 
charge).  Future work could incorporate these effects into the modeling environment. 

Thus, based on both the experimental observations and a plausible rational for frequency-
related deviations between model and experiment, I conclude that the modeling environment 
accounts for DEP, HD drag, and gravitational forces, and thus is valid under conditions where 
other forces are negligible.  Avoiding possible EHD effects necessitates design at relatively high 
frequencies or for relatively large particles.  For the cell-based single-particle DEP traps, such as 
would be used in the µDAC, this regime provides a great deal of latitude in design since one 



 62

would normally like to operate at high frequencies to minimize induced transmembrane 
potentials (§1.5.2). 

3.5 Conclusion 
In this chapter I have used a microfabricated planar quadrupole as an experimental 

vehicle for evaluating modeling tools that can quantitatively predict DEP-based trap 
performance.  I have been able to compare the predicted and experimental results and found 
them to be quite close, with no adjusted parameters.  In addition, I have determined HD and DEP 
forces at the sub-pN level.  Anomalous frequency-dependent behaviors were observed, most 
likely caused by electrohydrodynamic flows, and do not affect the validity of the modeling 
environment, but rather provide bounds on the design space where the environment is valid.  The 
combination of modeling and experiments gives insight into the nature of DEP traps and can act 
as a guide in the design of stronger single-particle traps for various biological applications.  The 
design of such stronger traps is the focus of the next chapter. 
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Chapter 4: Extruded trap design 
 
 
Now that I have demonstrated the validity of the modeling environment for modeling the 

relevant forces (DEP, gravity, HD drag) in these microsystems, the next step is to design a trap 
that can meet the system requirements of the µDAC, where the strength of the trap is paramount.  
The design will start by motivating the use of a quadrupole trap, but this time using extruded 
electrodes, as opposed to the planar electrodes described earlier.  I will continue the design by 
determining the exact geometry of the trap—post diameters, spacings, etc.—and how to 
electrically connect the trap to the outside world while maintaining holding.  After choosing the 
trap dimensions, I will conclude with a system-level design to determine the chamber geometry 
and operating conditions necessary to meet the requirements of the µDAC.    

4.1 Materials and Methods 

4.1.1 Modeling 
All modeling performed in this chapter used the modeling environment described in Chapter 2.  
Drag forces were computed using a parabolic (as opposed to shear) flow profile, to better 
represent the physical situation.  Unless noted otherwise, the simulations were performed on 
beads with f=20 MHz, R=10 µm, ρp=1.062 g/cm3, εp=2.5, σp=10-4 S/m, σm=1 S/m (to 
approximate physiological saline), w=5 mm, h=150 µm, and simulating the dipole and 
quadrupole force orders (nmax=2).  All extruded traps had 50-µm-tall posts unless noted 
otherwise.  Although the final traps will use cells, beads are appropriate for the relative design 
employed throughout much of the chapter. 

4.2 The extruded trap - introduction 
The major reason for the weakness of the planar trap is that the electric field (and hence 

the confining force) decays away from the substrate.  One approach for making a stronger trap, 
therefore, is to eliminate this decay.  Another problem with the planar trap is that increases in 
voltage cause the particle to levitate higher, exposing it to stronger drag forces.  Designing a trap 
where the height does not increase with voltage will increase its strength. 

An extruded three-dimensional trap solves both of these problems and is amenable to 
microfabrication.  First, extending the electrodes in the z-direction can eliminate the field decay 
away from the substrate.  Second, extruded traps add an element of axial symmetry to the field, 
which to a first approximation (away from the electrode top & bottom) eliminates z-directed 
DEP forces.  Given that bioparticles will have weight, the absence of any z-directed DEP force 
means that the particle will always be found on the substrate.  Since the drag force is smallest 
near the substrate, the particle is effectively “shielded” from the drag forces.  As I will show, 
deviations from perfect axial symmetry will affect this, but the conclusions remain—the 
extruded trap may be an avenue towards meeting the µDAC system requirements. 
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4.2.1 Electrode number 
The next major issue to deal with is the electrode structure.  Several questions arise. How 

many electrodes are necessary?  How should they be shaped?  How should they be arranged?  I 
will answer these in turn. 

Minimizing the number of discrete electrodes to hold a single cell directly minimizes the 
number of interconnections and is therefore desirable.  The question that presents itself is 
whether strong three-dimensional confinement can be achieved with two electrodes.  Several 
lines of argument lead to the conclusion that it is difficult, if not improbable.  The approach is to 
start from one-dimension and determine how many electrodes are necessary for one-dimensional 
holding.  I can then extrapolate to three-dimensions, making the necessary corrections. 

In order to get DEP confinement, one needs a non-zero electric field (to induce the 
dipole) and a variation in that field (to get a non-zero ∇|E|2).    Figure 4-1 shows the electric field 
and |E|2 factor for one and two point electrodes in one dimension.  The |E|2 factor is proportional 
to the potential energy of the DEP force UDEP, 
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and so plotting |E|2 gives the profile of the potential energy.  One sees that Figure 4-1B exhibits a 
well in the DEP potential energy around x=0, while the single-electrode case (Figure 4-1A) does 
not, and thus only the two-electrode configuration results in confinement. 

Now imagine the two point electrodes on a two-dimensional plane (Figure 4-2).  The 
holding in the x-direction, along the x-axis, will be similar to the above.  Since the field and its 
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Figure 4-1: DEP holding in one dimension.  (A) Plots of the electric field E () and |E|2 (---) in 
arbitrary units due to one point electrode at x=5 in one dimension.  (B) Same as (A), but for two 
point electrodes (x=-5,+5) in one dimension.  With two electrodes, a potential energy well
appears (---) around x=0 and thus would provide one-dimensional holding. 
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slope go to infinity in the vicinity of the electrodes, the x-directed holding will also go to infinity.  
In a real device, this means that the x-directed holding will be large with this configuration.  The 
y-directed holding, on the other hand, will be much smaller because there are no electrodes on 
the y-axis to cause an infinite force.  Thus, the cage will be orders of magnitude large in x than in 
y, and one can regard the two electrodes as possessing one dimension of holding.  (In actuality, 
there is a small y-directed confining force on the y-axis at x=0, but this will be negligible 
compared to the x-directed confining force). 

From the above discussion, one learns that two electrodes are necessary for one-
dimensional confinement, while more are needed for two-dimensional confinement.  
Extrapolating, I can see that to get strong holding in n-dimensions requires 2n electrodes, 
arranged two per direction.  This is consistent with the planar quadrupole, which with 4 
electrodes holds in two dimensions; it does not by itself hold in the z-direction—the weight of 
the particle counterbalances the destabilizing z-directed DEP force. 

One could imagine a trap involving three electrodes arrange triangularly to give two-
dimensional confinement.  However, it is not trivial in this case to determine the proper voltages 
to apply to the electrodes—more than two discrete potentials are needed.  This is not to say that 
three electrodes arranged in some fashion cannot meet these requirements.  However, it is a 
difficulty that can be easily circumvented by going to a 2n electrode configuration.  

For the µDAC, I am primarily concerned with strong trapping in two dimensions, and 
thus four electrodes will be sufficient.  Trapping in the z-direction can be handled by the weight 
of the particle, as with the planar quadrupole. 

A few caveats must be mentioned as per the above discussion.  First, the above 
discussion concerns highly symmetric charge distributions on each axis.  For actual extruded 
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Figure 4-2: DEP holding in two dimensions.  A surface plot of |E|2 near two point electrodes.  Two electrodes give 
an effective potential well in the x-direction only.   There is negligible confinement in the y-direction. 
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structures, the tops and bottoms of the electrodes will break axial symmetry and affect the 
holding.  For the extruded traps used in this thesis, these effects will be beneficial.  Careful 
design exploiting these effects could possibly lead to even better traps, as defined by some 
metric. 
 

4.2.2 Electrode shape/arrangement 
If I now assume that the trap will have four electrodes, how should they be arranged and 

how should they be shaped?  The two questions can be answered together by noting that almost 
any arrangement of four electrodes will result in a field minimum somewhere, and that near that 
minimum the field will look quadrupolar.  Since the particle will be trapped at the field 
minimum, arrangement and shaping of the electrodes, while drastically affecting the fields near 
the electrodes, will only slightly affect the fields near the minimum. 

Since the shaping and electrode arrangement are second-order effects, I have not shaped 
the electrodes at all (apart from making them cylindrical) and have only slightly disturbed the 
true quadrupole arrangement, as described below.  If one desires additional functionality besides 
trapping, such as fluid guiding then shaping of the electrodes may be appropriate. 

One final point, related to the aforementioned questions, concerns the proper driving 
voltages and phases.  One could make a cage by applying +V to all electrodes, as opposed to the 
alternating (+/-) voltages applied to quadrupoles.  In general, it is beneficial to alternate voltages 
on the quadrupole since it tends to enhance the fields—and hence the holding—inside the trap.  
One way to see this is to note that if one applies +V to all the electrodes and increases the number 
of electrodes, the field will eventually decrease to zero inside the trap—for the same reason that 
there is no field inside an infinite cylinder of charge. 

4.3 The extruded trap—optimization 
Up to now I have demonstrated that a good trap—for the µDAC—can be achieved by 

using four extruded cylindrical electrodes, arranged and excited in a quadrupole configuration.  
Thus, the trap looks as in Figure 4-3A.  Further optimization can now be used to improve the 
performance of the trap. 
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Figure 4-3: Evolution of the extruded trap. (A) Four cylindrical electrodes arranged in a square, along with the 
reference axes and the direction of flow.  (B) Four cylindrical electrodes arranged trapezoidally.  Also shown are the 
geometric variables used in the trap optimization simulations and numerical labels for individual electrodes.  (C) 
Introduction of wiring between two electrodes.  (D) Final electrode configuration, showing the two shunts that 
restore the symmetry to the trap.  For all these configurations, flow is applied as in (A).  The axes shown in (A) also 
apply to the other three traps. 
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4.3.1 Electrode height 
For perfectly cylindrical electrodes, the electrodes need to be at least as high as the 

diameter of a cell and additionally encounter a good fraction of the cells in the flow.  The 
constraint is that high-aspect-ratio posts will be fragile and difficult to fabricate.  Later on in this 
chapter I will perform a system-level design of the chamber, the result being that the chamber 
will be 150 µm high.  I have thus chosen an electrode height of 50 µm, which is >4x as high as 
the cell radius, and 1/3 of the chamber height.  Thus, this height should allow traps to encounter 
at least 1/3 of the cells in the flow (more if the cells are allowed to settle) and be much taller than 
the cell size, so that a cell can fit within the trap. 

4.3.2 Electrode arrangement/diameter 
The next characteristic to pin down is the electrode arrangement.  I want to have a low 

barrier for entry into the trap, but a high barrier to exit.  This will make it easy to load the traps 
but still result in strong traps.  The entry barrier field is in large measure determined by 
electrodes 3 & 4, while electrodes 1 & 2 largely determine the exit barrier (see Figure 4-3B).  
Thus, by increasing the separation of electrodes 3 & 4 with respect to the separation between 1 & 
2, the trap should be easier to load and still remain strong.   

Indeed, this is the case.  Figure 4-4 shows a plot of the |E|2 term (proportional to the DEP 
potential energy) along the y-axis for two differently asymmetric trap geometries under the same 
experimental conditions.  The change in the entrance-electrode spacing from 50 µm to 70 µm 
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Figure 4-4: Comparison of x-directed barriers for two trap geometries.  The first geometry () is only slightly 
asymmetrical, with an entrance-electrode separation (l1) of 50-µm and an exit-electrode separation (l2) of 40-µm. 
The second geometry (---) has the same exit-electrode separation but a 70-µm entrance-electrode geometry.  Plotted 
is the |E|2 factor along the y-axis at a height of 16 µm.  The height of the rightmost peak (at x=40 µm), corresponding 
to entrance barrier, is lowered more than the second peak upon changing to more asymmetric trap geometry. The
axes are as defined in the inset. 
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barely affects the exit barrier height (at x=0) but lowers the entrance barrier height ~5x, making 
the trap much easier to load.   

For a final optimization of the trap geometry—electrode diameter, absolute spacings, 
etc.—I performed a series of simulations within a matrix of variations (Table 4-1), varying each 
parameter while holding the others constant, to determine the final geometry.  The simulations 
are all for beads in these traps, and so the absolute release flowrates predicted will not be the 
same as when using cells.  In fact, the traps can be expected to be weaker with cells because of 
their smaller CM factor.  However, since I am only interested here in the relative performance of 
the different trap designs, simulations with beads are appropriate.  In the system-level design 
section later on, I will perform simulations with cells to converge to an absolute design.   

The results are shown in Figure 4-5, where I plot the calculated release flowrate and 
imposed electric field at 3V.  This choice of parameters is because the release flowrate is an 
indicator of performance whereas the imposed electric field is a variable that must be minimized, 
as I will discuss below in the system-level design section.  Knowing that all traps have 
monotonic holding characteristics with the same basic shape, only one simulation point is 
necessary to compare them.    

In agreement with the result in Figure 4-4, the variation of l1 has a negligible effect on 
performance (Figure 4-5B), as does the variation of the trap length d (Figure 4-5D).  Changes in 
the post radius r and the exit-barrier separation l2 dramatically affect both the holding and the 
electric field in fairly linear manners.  This makes sense by noting that the inner distance 
between the posts is l2-2r and that this is the primary variable that will affect the imposed electric 
field (at a given voltage) near the exit and thus the trap strength.  Choosing an electrode radius of 
10 µm for fabrication ease, I have chosen an overall exit-post spacing (l2) of 40 µm to give 
clearance for the cells, a trap length d=40 µm, and an entrance-electrode spacing of l1=60 µm.  
The final electrode arrangement is shown in Figure 4-3B and in the figure in Table 4-1.  

4.3.3 Trap switching 
The µDAC requires the ability to individually control trap sites.  To minimize external 

connections, it would be advantageous if only one electrode needed to be switched to “turn off” a 
whole trap.  One way to accomplish this is to switch the polarity of one electrode in the 
quadrupole, thus eliminating the symmetric arrangement of potentials.  The result of doing this is 
shown in Figure 4-6.  Here I plot the vector force fields in the xy-plane at the height of 16 µm 
when the quadrupole is stimulated with alternating polarities (Figure 4-6A), and when the 

Initial geometry 

l2=40 mµ

d=40 mµ
r=10 mµ

l1=60 mµ
Variable Range of variation 

r 5 µm, 10 µµµµm, 15 µm 
l1 50 µm, 60 µµµµm, 70 µm 
l2 30 µm, 40 µµµµm, 50 µm 
d 30 µm, 40 µµµµm, 50 µm 

Table 4-1: Matrix for trap optimization.  Shown is a top-down view of the initial trap geometry.  Below that are the 
variables that were varied, one at a time, to trace out the design space.  Bold numbers indicate the starting trap 
geometry on which the variations were made. 
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polarity of electrode #2 is reversed (Figure 4-6B).  The change in polarity of one electrode is 
enough to disrupt the potential energy well and eject the particle.  Thus, in the final trap design 
this electrode is wired to be switchable in this way.  The imposition of flow during release would 
change the trajectory of the ejected particle.  Although it is unclear in this analysis what exactly 
that trajectory will be, the particle will be ejected in either situation, which is the goal.  

4.3.4 Wiring 
For ease of fabrication, I have chosen to limit metalization to one layer with no dielectric 

insulation between the metal and the fluid.  The following discussion of how to compensate for 
this becomes moot if multilayer metalizations and/or insulators can be used. 

The optimal way to wire an array of traps within a small area and keep the lead count low 
is to tie one pair of electrodes to the same potential by connecting them through the middle of the 
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Figure 4-5: Results of trap optimization simulations. Plotted are the release flowrate (, left y-axis) electric field 
experienced by the particle at release (---, right y-axis) for various trap geometries defined in (Table 4-1) under 
identical experimental conditions.  Shown are variations in (A) electrode radius r, (B) entrance-electrode spacing l1, 
(C) exit-electrode spacing l2, and (D) trap length d. 
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trap, as shown in Figure 4-3C.  Simulating the holding characteristic of this trap, I show in 
Figure 4-7 that the trap is much weaker than the ideal trap with no wiring (Figure 4-3B).  This 
figure also reinforces the monotonic nature of the holding characteristic for the extruded trap 
regardless of the specific trap geometry.  The reason that the interconnected trap is much weaker 
than the “ideal” trap is that the interconnect disrupts the symmetry of the trap, reducing its 
quadrupolar nature and thus its strength.  One approach towards restoring the strength of the trap 
given the need for the interconnect would be to restore its symmetry.   

I empirically designed and simulated a number of possible wiring schemes to try to 
restore the trap strength.  To efficiently compare the wiring schemes, I simulated their behavior 
at one voltage under identical experimental conditions (R=10 µm bead, f=20 MHz, w=5 mm, 
σm=1 S/m).  The designs and simulated release flowrates are shown in Figure 4-8. Although 
several wiring schemes (#4-#6) perform equally well in restoring the trap strength, wiring 
scheme #4 delivers the most restoration of the holding while minimizing the encountered electric 
field.  As described below in the system-level design, minimizing the electric field encountered 
by the particle is essential for optimal performance.  I have thus chosen wiring scheme #4 for 
these traps, shown in Figure 4-3D. 
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Figure 4-6: Trap switching via one electrode. (A) A vector plot of the DEP force in the xy-plane at a height of 16 
µm when the trap is excited conventionally (as shown in the figure).  Within the trap, all arrows point to the center, 
indicating that a particle will be trapped in this circumstance.  (B)  Plot of the same situation when the polarity of the 
top-left electrode is changed from +V to –V.  There is no longer a trapping region in this configuration.  The black 
line shows the trajectory of a particle at the trapping point in (A) upon initiation of the excitation pattern in (B).  The 
particle is ejected from the trap.  This particular trap had 100-µm-tall posts with d=50 µm, l1=40 µm, and l2=80 µm.    
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Figure 4-8: Results from various wiring schemes.  (A) Shown are various empirically designed wiring schemes.  
The two left-most schemes are, from left to right, no internal wiring and a single interconnect.  The rest of the 
schemes are designed restore the performance of the trap.  (B) The release flowrate at 2V due to the wiring schemes 
in (A).  The left-most result, from a trap with no interconnect, possesses the highest release flowrate and is the ideal 
trap.  (C)  The electric field encountered in the various traps in (A) at 2V.  The schemes that improve the symmetry 
of the trap tend to restore most of the holding.  Wiring scheme #4 is most effective at restoring holding while 
minimizing the encountered electric field.  
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Figure 4-7: Holding characteristic of the single-wire trap.  Plotted is the release flowrate versus voltage for the 
trapezoidal trap with (---) and without () a substrate interconnect between electrodes #1 & #4.   The introduction 
of the substrate interconnect drastically reduces the holding in the trap and thus its performance. 
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To ensure that the wiring does not affect cross-wise holding, I have plotted the x- and y-
directed holding forces for this wiring scheme at a height of 16 µm under the same conditions as 
above in Figure 4-9.  The surfaces display both the x-directed (similar to Figure 4-4) and y-
directed barriers to the particle.  Even though the x-directed barrier is high (~500 pN along the 
central axis) as expected, the y-directed barrier is also quite substantial (300-500 pN).  Thus, 
optimizing the x-directed barrier height does not affect y-directed barrier for this trap.  One can 
expect that any cross-flows necessary to remove the particle from the trap would have to be of 
the same magnitude as the imposed (x-directed) flow, and thus not likely to occur. 

4.4 System-level design 
I can now undertake a system-level design to determine the chamber geometry and 

operating regimes for the final trap design.  This step will move the design from a relative 
comparison between geometries to an absolute analysis of holding with cells in defined 
situations.  The system-level requirements are to find an acceptable flowrate and operating 
voltage such that trap operation with the µDAC is feasible.  In essence, these two requirements 
are even more important than the holding force; if it was possible to find a trap with a low 
holding force but that was able to meet the system requirements, then this trap would be 
acceptable for the µDAC.  As described in Chapter 3, the planar quadrupole, which is such a 
weak trap, could not meet the system requirements, and it is this fact that motivated the search 
for a higher-performing trap. 

The primary quantitative requirements, as described in Table 4-2, are that the time 
needed to introduce reagents into the chamber be less than 2 minutes, the maximum shear on the 
cells be less than 0.1 Pa (1 dyne/cm2), and the maximum externally imposed transmembrane 
potential by the cells be <70 mV.  In addition, it requires one-electrode electrical switchability 
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Figure 4-9: In-plane holding of selected wiring scheme.  Shown are surface plots of the magnitude of the x- and y-
directed DEP forces at a height of 16 µm for wiring scheme #4.  The results were obtained for beads at V=2 V.  The 
placement of the posts is indicated by the circles.  The x- and y-directed holding are adequate with this design.  
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and a trap geometry that is easily arrayable.  Most of these parameters are more strongly 
dependent on chamber height than width because the flow approximates plane Poiseuille flow—
the width simply sets the volume flowrate.   

4.4.1 Fill time 
In order to operate the µDAC in a timely manner, it must not take too long to introduce 

reagents into the chamber.  For the µDAC, I have chosen 120 s as an appropriate fill time.  This 
fill time will be dependent on the void volume of the system and the maximum flowrate that the 
trap can withstand.  Thus, I can trade off void volume for flowrate if the fill time is fixed (as it 
is).  For a rectangular chamber, the volume flowrate (Q) needed is 

ftVwlhQ /)( 0+=  (4-2)
Where w, l, and h are the chamber width, length, and height, respectively, V0 is the void volume 
of the tubing, and tf is the fill time.  The chamber will be approximately 8x2x0.15 mm or 2.4 µl, 
and thus its volume will be dwarfed by any tubing void volume.  In this case, Eqn. (4-2) can be 
approximated as  

ftVQ /0≅  (4-3)
and to 1st order the chamber dimensions do not affect the fill time.  A reasonable void volume to 
expect is 20 µl, which corresponds to about 10 cm of standard 0.020”-diameter HPLC tubing.  
This gives a target flowrate of 10 µl/min that the trap must withstand. 
 In many respects these parameters—fill time, chamber volume, and void volume—are 
extrinsic to the performance of the trap itself.  One can always redesign the experimental setup 
and protocol to vary these parameters. 

4.4.2 Shear on cells 
Stationary cells in the traps will experience shear forces from the flow.  The maximum 

shear experienced by the cells must be less than that which will cause any physiological 
disturbance.  Arterial shear stress is about 1.5-2.0 Pa (15-20 dyne/cm2) [161], and so I want to 
keep shear stress levels well below that value, or about 0.1 Pa (1 dyne/cm2).  To get an estimate 
of the shear, two extreme cases can be considered—1) the cell against the substrate, and 2) the 
cell in the center of flow. 

Against, the substrate, the cell will feel approximately the wall shear resulting from plane 
Poiseuille flow, which is 

ηηητ 2
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where τ is the shear stress, Uc is the centerline flow velocity, A is the cross-sectional area and η 
is the viscosity of the water. 

Parameter Target 
Fill time 120 s 

Maximum shear stress 0.1 Pa 
Maximum transmembrane potential 70 mV 

Electrical switchability One electrode 
Arrayability Yes 

Table 4-2: System-level specifications of the µDAC. 
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 At the centerline of the chamber, the cell will experience shear due to the Stokes’ flow 
around it, which at its maximum is given by 

ηηητ
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 Thus I see that the centerline shear will be ~h/3R larger than the wall shear.  It is better 
therefore to keep the cell near the wall, rather than in the flow.  For our situation, where the cell 
is about 1/5 of the distance between the substrate and the centerline, the first (and smaller) 
expression for the shear is appropriate.  In this case the shear is strongly dependent on the 
chamber height (1/h2) if the flowrate (Q) is independent of chamber height (Eqn. (4-3)).  As 
described below, the final design will result in an imposed shear of 0.03 Pa, which is within the 
goals. 

4.4.3 Transmembrane potential 
As discussed in §1.5.2, the imposed electric field can directly affect cell physiology by 

perturbing the cell’s endogenous transmembrane potential.  To minimize such effects one must 
limit imposed transmembrane potential, in this case to <70 mV (Table 4-2).  This feeds back into 
the design because I can calculate the imposed transmembrane load for a nominal electric field at 
a given frequency.  Since that load will scale linearly with the electric field (Eqn. (1-10)), this 
will directly limit the maximum electric field that the cell can be exposed to, which is a 
parameter that can be extracted from the models. In Figure 4-10A I have plotted the computed 
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Figure 4-10: (A) Transmembrane potential of HL-60 cells.  Plotted is the transmembrane potential imposed on HL-
60 cells for an incident field of 1 V/m as the field frequency is varied.  The transmembrane potential decreases 
logarithmically above a critical frequency and saturates at a yet higher frequency. (B) The dipole term of the CM 
factor for the same cells.  The CM factor is saturated at –0.5 for low frequencies and experiences two dispersions as 
the frequency increases. 
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transmembrane load imposed on HL-60 cells using Eqn. (1-10) but including the high-frequency 
dielectric saturation effect.  I have used parameters for HL-60 cells described by the Gascoyne 
group [81] with radius R=6.25 µm, membrane capacitance and conductance Cm=1.6 µF/cm2 & 
Gm=0.22 S/cm2, membrane thickness ∆=1 nm, and cytoplasmic permittivity and conductivity of 
εcyto=75 F/m & σcyto=0.75 S/m.  The solution conductivity (of HBSS) was measured as 1.0 S/m.  
The figure shows that frequencies above 1 MHz are necessary and that operation at 20 MHz (at 
the limit of our signal generator) is preferable.  At this latter frequency, the transmembrane 
voltage is 0.4 µV for a 1 V/m field, and thus a 70 mV maximum transmembrane potential leads 
to a maximum electric field in the vicinity of the cell of ~1.8x105 V/m. 

In Figure 4-10B I show the dipole term of the CM factor for the same cell, which, in 
analogy to Eqn. (1-2), is given by 

mp

mpCM
εε

εε
2'

'

+

−
=  (4-6)

where εp
’ refers to effective complex permittivity of the cell (Eqn. (1-3)) and εm is the complex 

permittivity of the medium.  The transmembrane voltage and CM factor experience dispersions 
at the same frequency, which isn’t surprising since they both represent time-constants of 
charging on either side of the membrane.  The CM factor does not go to zero after the dispersion, 
however.  This is because while the transmembrane voltage is across the membrane RC pair, the 
CM factor is due to the voltage across the network compared to the voltage across the medium in 
the absence of the cell; in effect, the CM factor represents the disturbance in the field due to the 
cell [119].  This disturbance exists whether the voltage is dropped across the membrane or the 
cytoplasm.   

To get an estimate of how the electric field (and thus transmembrane potential) scales 
with the chamber height, I can use the fact (see Figure 4-7) that the release flowrate 
characteristic for the extruded traps has approximately the form 

2VQrf α=  (4-7)
where Qrf is the release flowrate and α is some fitting parameter.  In essence, the release flowrate 
is dependent on the square of the voltage.  This makes sense if one considers that the dipole term 
of the DEP force also goes as V2.  I can introduce chamber height as a parameter, using the 
linearity of flow with chamber height, by 

0

2

h
hVQrf α=  (4-8)

where h0 is some nominal chamber height.  Thus, if a given Qrf is needed to meet the system 
parameters then the voltage needed will scale as 

h
hQ

V rf

α
0=  (4-9)

which goes as 1/√h.  Thus, increasing the chamber height should decrease the voltage needed, 
and thus the electric field experienced by the cells. 

From the calculated holding characteristics for HL-60 cells, I can determine the chamber 
height and width that meet the system parameters along with an operating voltage and flowrate.  
The design is iterative, in that I simulate the characteristics for some chamber geometry and then 
use those results to optimize the chamber geometry.  The program can easily record the electric 
field experienced by the cell at the point of release.  Then, using the chamber height as a 
parameter, I can calculate the flowrate needed from Eqn. (4-2), the voltage that is therefore 
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required (from the holding characteristic), and thus the transmembrane potential experience by 
the cell.  The result of this analysis is shown in Figure 4-11.  The figure confirms the behaviors 
predicted above; the flowrate needed (Figure 4-11A) is fairly insensitive to the chamber height 
(and thus volume), while the operating voltage, induced transmembrane potential, and shear on 
the cells decrease with increasing chamber height.  In all cases the transmembrane potential is 
<70mV and the shear on the cells is less than 0.1 Pa.  Thus, there is an operating point that will 
meet the system specifications of Table 4-2.  I chose a chamber height of 150 µm to satisfy these 
requirements, giving an operating voltage of ~3V and a release flowrate of ~12 µl/min. 

4.5 Final design 
The final designed trap geometry is shown in Figure 4-3D and a schematic of a 1x8 array 

is shown in Figure 4-12.  The trap, with the chamber geometry described above, exhibits the 
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Figure 4-11: System-level design of chamber height.  (A) Plotted is the minimum flowrate needed to fill the 
chamber in 120s (from Eqn. (4-2)) as the chamber height, and thus chamber volume, varies.  (B) The voltage,
obtained from the holding characteristic (Figure 4-13), needed to sustain the flowrate in (A).  (C) The 
transmembrane potential encountered by the cell at the voltage in (B).  (D)  The shear on the cells at the operating
flowrate in (A), from Eqn. (4-4).  All values are for HL-60 cells in a chamber width (w) of 2 mm and an applied 
frequency of 20 MHz. 
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holding characteristic shown in Figure 4-13 for 10.0-µm beads and HL-60 cells. The 
characteristic is indeed monotonic and approximately quadratic with voltage (again confirming 
the validity of Eqn. (4-7)).  The actual release flowrates are much smaller than those shown 
during the relative design employed in the previous part of the chapter, even for the beads.  The 
primary reason for this is that those simulations used 20-µm beads, while these use 10-µm beads, 
which gives an ~8x difference between the two (due to the R3 factor).    

The differences in holding between the beads and cells shown in Figure 4-13 is almost 
entirely directly due to the differences in the CM factors (~-0.1 for the cells, ~-0.5 for the beads) 
while the rest is due to differences in the particle sizes. 

 
Figure 4-12: Schematic of a 1x8 array of traps, showing the interconnects and posts. 
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Figure 4-13: Holding characteristic for final trap (Figure 4-3D) in the finalized trap geometry, for 10.0-µm beads 
() and HL-60 (---) cells at 20MHz.  The holding characteristics are monotonic and are roughly proportional to V2. 
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The extracted system-level parameters for the final design are shown in Table 4-3.  As 
shown, the trap and chamber geometry meets all the system parameters for the µDAC. 

I can compare the behavior of the final trap design with that of the planar quadrupole 
described in 0.  For this comparison I have “placed” both traps in the same flow chamber (width, 
height), so that a fair comparison can be obtained.  In Figure 4-14 I show the results of this 
comparison.  Both the predicted release flowrates and holding forces of the extruded traps are 
much larger than for the planar quadrupole.  In addition, the monotonic behavior of the extruded 
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Figure 4-14: Comparison of the holding characteristics of the finalized trap design with the planar quadrupole of 0
for 10.0-µm beads, both simulated with the finalized chamber geometry. (A) Plotted is the release flowrate versus
voltage for the extruded () and planar quadrupoles (---).  (B) Plotted is the extracted holding force versus voltage 
for the extruded () and planar quadrupoles (---).  The extruded trap is at least an order of magnitude stronger than
the planar trap. 

Parameter Target Value Final Value 
Time to load chamber 120 s 120 s 

Shear on cells <0.1 Pa 0.03 Pa 
Transmembrane load <70 mV ~30 mV 

Electrical switchability Y Y 
Arrayability Y Y 

Operating voltage (V) 3 V 
Operating frequency (f) 20 MHz 

Release flowrate 12 µl/min 
Chamber height (h) 150 µm 
Chamber width (w) 2 mm 

Trap dimensions 

l2=40 mµ

d=40 mµ
r=10 mµ

l1=60 mµ  
electrode height = 50 µm 

Table 4-3: Final system-level design parameters.  Shown are the target and final values for the five system 
parameters in the design.  Below that are displayed the trap dimensions and operating characteristics necessary to 
obtain those values. 
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trap allows the user to “turn up the voltage” if more holding is desired. 

4.6 Conclusion 
In this chapter I have undertaken the design of an improved DEP-based single-particle 

trap with characteristics that can meet the system requirements of the µDAC.  Through extensive 
use of the modeling tools developed in Chapter 2, I have designed a trap that is an extruded 
quadrupole with an asymmetric trapezoidal geometry.  It can be easily arrayed and is electrically 
switchable.  The trap also incorporates substrate shunts to improve holding when only one layer 
of metal is used with no dielectric.  Through the evaluation of the design in terms of the system 
parameters for µDAC operation, I have determined operating characteristics and chamber 
geometries that will result in successful operation. 
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Chapter 5: Array fabrication, packaging & test setup 
 
 
In this chapter I will describe the fabrication process for making the extruded trap arrays 

as well as the packaging and setup needed to test them.  Various type of arrays were fabricated—
1x4, 2x4 & 1x8—examples of which are shown throughout the chapter.  The fabrication process 
is mostly concerned with obtaining a set of extruded posts by electroplating gold into an SU-8 
mold.  Other process steps form substrate interconnects and a fluidic chamber around the 
electrode arrays.  The latter part of the chapter describes the packaging scheme needed to obtain 
electrical, optical, and fluidic connection to the chips, and finally the test setup used in the final 
two chapters of this thesis. 

5.1 Fabrication 
The fabrication process for making the extruded traps essentially involves fabricating 

extruded posts via electroplating into a mold and then encapsulating the array within a 
photoresist channel.  The fabrication process flow for the making the extruded arrays is shown in 
Figure 5-1. 

5.1.1 Substrate interconnect 
The first step in the process flow is to pattern the interconnect layer that resides on the 

substrate.  I have chosen to use gold for the interconnect layer due to its biocompatibility [162] 
and because of the availability of differential etchants between it, titanium, and glass, the need 
for which is explained below. 

The process starts with 100-mm-diameter 1-mm thick pyrex wafers.  The thickness was 
chosen simply because of material availability.  I cleaned the wafers with a 10-min Piranha clean 
and then used an e-beam evaporator to deposit 1700 Å of titanium and 5000 Å of gold (Figure 
5-1A).   

I chose to use titanium under the gold for several reasons.  First, it serves as an adhesion 
layer between the glass and the gold.  Second, the titanium can be etched with dilute HF, which 
has high selectively to gold and glass.  Finally, and most importantly, the SU-8 molding material 
that I will use later adheres fairly well to the titanium.  I determined this last property by 
performing a series of experiments testing the adhesion of SU-8 to various metals (Cr, Ti, Ni, Pt) 

 
Figure 5-1: Fabrication process flow for the extruded traps. 



 82

and found that titanium performs best. 
Following deposition, I performed standard contact lithography and pattern etching of the 

gold to define the substrate interconnect (Figure 5-1B).  I used a potassium iodide-based etchant 
(Gold Etchant Type-TFA, Transene, Danvers, MA), which displays high selectivity to titanium 
and glass, to etch the gold.  The availability of this selective etchant enables the use of this 
gold/titanium/glass tri-layer system, as described above.  The etchant severely undercuts 
photoresist (although much less than aqua regia), so the as-drawn mask features were biased to 
account for this.  The nominal undercut for perfect isotropy would be 5000 Å, but the actual 
undercuts were closer to 2 µm.  Thus I used 8-µm linewidths on the mask to achieve 4-µm 
features.  In practice, however, the undercut was a bit more, and final features varied from 
entirely undercut (Figure 5-2A) to ~3-4-µm linewidths (Figure 5-2B).  Different etchant 
formulations (manufactured by Transene) could be used in the future to reduce this undercut. 

The best way to obtain well-defined metal lines is by lift-off, so the question arises as to 
why I chose not to use that process.  The reason is that it is impossible with lift-off to obtain a Ti-
Au metal bilayer and have patterns on only one of the layers.  The unpatterned Ti layer is needed 
for the electroplating process (described below).  Thus, pattern etching of the gold is the best 
alternative. 

5.1.2 SU-8 mold deposition 
The extruded electrodes are fashioned from posts electroplated into SU-8 (Figure 5-1C & 

Figure 5-1D).  SU-8 is a epoxy-based negative photoresist developed by IBM in the 1980’s [163, 
164].  It is useful because it can be patterned with conventional contact lithography into high-
aspect-ratio microstructures.  The photoresist can be spun with single coats into layers ranging 
from a few microns to 100’s of microns thick (depending on the formulation), and is extremely 
conformal.  In addition, the developed photoresist is quite robust and can be fashioned into 
structural layers.  Essentially, the photoresist enables one to do LIGA with conventional 
equipment.  

SU-8 has been used as a mold for electroplating by several researchers [163-165].  The 
challenges lie in (1) getting it to adhere to the substrate, (2) patterning sufficiently high-aspect-
ratio structures, and (3) removing the SU-8 following electrodeposition. 

Figure 5-2: Top-down view of the substrate interconnect following Au etching.  Shown is an example of excessive 
undercut (A) and an acceptable specimen (B). 
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The first challenge was overcome by both using Ti as the contact layer and formulating a 
strict fabrication protocol to clean and prepare the surface for the SU-8.  The protocol, described 
in Appendix B, essentially consists of first cleaning the wafer in Nanostrip (because the titanium 
layer cannot withstand Piranha), followed by a long dehydration bake on a hotplate and then a 
short UV ozone exposure.  This is used in lieu of an adhesion promoter, since HMDS 
(hexamethyldisilazane) is incompatible with SU-8 and the commercial adhesion promoter 
(SMAD, Sotec Microsystems, Renens, Switzerland) was unavailable.  This substrate preparation 
leaves the wafer sufficiently clean and hydrophobic for proper SU-8 adhesion. 

Following the preparation, I spun SU-8 50 (Microchem Corp., Newton, MA) onto the 
wafer with a three-step coating cycle.  The SU-8 was first deposited onto a stationary wafer, 
followed by a slow spread, a faster spin, and then a final short high-speed spin, resulting in a 
nominally 60-µm thick layer.  The reason for the final spin step was not to adjust the layer 
thickness but rather to control the edge bead.  SU-8 50 is highly viscous and under these 
conditions forms a thick (15 µm) and wide (7 µm) edge bead around the wafer (Figure 5-3A).  
This edge bead prevents proper mask contact with the wafer.  Without proper mask contact, I end 
up essentially doing a proximity exposure, which is terrible when trying to pattern high-aspect 
ratio structures.  The final spin does not change the thickness of the edge bead but concentrates it 
around the periphery of the wafer, making it easier to subsequently remove (Figure 5-3B). 

Following coating, I perform a relaxation step by letting the wafer rest on a leveled room-
temperature hot plate for 30 min.  This step is thought to reduce stresses in the as-spun SU-8 
[166], which is important for getting good adhesion to the substrate.  Leveling the hotplate is key 
to this and the prebake step to limit any thickness non-uniformities due to gravity-induced flow 
of the SU-8.  After relaxation, the wafer is prebaked using a ramped temperature profile (to 
minimize thermal stress), where the final temperature and time are minimized.  This 
minimization aids subsequent removal of the SU-8.  I allow the wafer to cool to below 40° C 
before removing it from the hotplate in order to minimize any thermal shocks. 

The next step is to remove the edge bead.  I managed this by lightly rubbing the perimeter 
of the wafer with a PGMEA-coated cleanroom swab (PGMEA is the SU-8 developer).  Careful 
rubbing could reduce the thickness of the edge bead without merely pushing the edge bead closer 
to the wafer center and creating a large ridge (Figure 5-4).  This method is certainly sub-optimal 
but resulted in edge beads that averaged <10 µm thick rather than the originally deposited 15 

Figure 5-3: Dektak measurements of the edge bead from SU-8 coating without (A) and with (B) a final high-speed 
spin. The edge bead width reduces from ~7 µm to ~3 µm following the high-speed spin.  

(A) (B)
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µm.  One cannot simply perform a wafer-perimeter photo exposure step to remove the edge bead 
because the SU-8 is not a positive resist.  Perhaps a more optimal technique would be to prebake 
the SU-8 with a cylindrical Teflon weight on the wafer that had a hole in it to permit SU-8 
solvent fumes to escape.  Such a jig would not adhere to the SU-8 and might significantly reduce 
the edge bead.  Of course, the best method would probably be to use a coater with an integrated 
edge-bead removal system. 

Following prebake, I performed contact lithography to define the holes in the SU-8 for 
the electrodes. The key to performing this lithography step is to obtain good contact between the 
mask and the SU-8 by minimizing any airgap.  To do this, it’s important to both remove the edge 
bead and use the vacuum contact mode on the aligner.  Despite the thickness of the SU-8 one can 
see thru it well enough to achieve a few microns of alignment tolerance, which is sufficient for 
this application.  

I chose the minimum exposure that would harden the photoresist without overexposing 
into the electrode holes—usually 40 seconds.  When high-aspect-ratio features are desired, 
optimizing (and usually minimizing) the exposure is crucial.  After exposure comes a ramped 
postbake on a hotplate, again minimizing the bake time to aid in future SU-8 removal. 

The final step is to develop the SU-8 in PGMEA.  This developer will remove the 
unexposed regions of the photoresist.  Five minutes was sufficient to open up the electrode holes, 
followed by cycles of coating the wafer with PGMEA and spin-drying it to try to remove residue 
from the bottoms of the holes.  Removal could be seen by a clearing of the bottoms of the holes a 
viewed under a microscope, although the thickness and small diameter of the holes made it 
difficult to see into them easily.   

I eventually learned that simply rinsing the SU-8 in PGMEA is insufficient for removing 
all organic debris at the bottom of the holes and thus allowing electroplating initiation to occur.  
The solution to this was to introduce an oxygen ashing step after the development step and 
immediately before the electroplating.  Ashing was performed in a barrel asher for 20-40 
minutes, where the endpoint was that the bottoms of the holes across the wafer would appear 
clear under the microscope.  This step drastically improved the yield of post initiation.  
Overashing will reduce the adhesion of the SU-8 to the substrate and cause underplating, so 
minimizing the ashing time is important.   

 
Figure 5-4: Dektak measurements of the SU-8 edge bead following PGMEA treatment of the edge.  The edge bead 
has decreased to ~6 µm in this example.  A spike appears where the edge of the swab has created an SU-8 ridge. 
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After this step, the wafer looked as in Figure 5-6.  The cracks in the SU-8 are due to 
shrinkage in the developer and are confined to the surface, thus not affecting the SU-8’s 
suitability as a mold.  These cracks result from stress can affect adhesion to the substrate and 
cause subsequent underplating, depending on the pattern and total stress involved.  This was not 
a problem for the circular patterns, but has been a problem for rectangular regions, especially 
near corners. 

5.1.3 Electroplating the electrodes 
The next step is to electroplate the posts into the SU-8 mold (Figure 5-1D).  As for the 

interconnects, I wanted to use gold for the electrode posts because of its biocompatibility.  I 
performed the electroplating in a cyanide-based gold plating solution (Orotemp 24, Technic Inc., 
Anaheim, CA).  Literature reports, however, suggest that non-cyanide gold plating solutions may 
actually function better in the presence of photoresists [167]. 

The electroplating setup is shown in Figure 5-5.  It consists of a closed-loop hotplate-
stirrer to heat and stir the plating solution, a power supply to apply current, and a jig to hold the 
wafer and anode in the solution.  I used an insulated dip-style thermocouple to measure the 
solution temperature without affecting the electrochemistry.  The power supply was a pulse-
plating supply (Dynatronix, Amery, WI) capable of forward and reverse pulse plating.  I used a 

 
Figure 5-5: Schematic of the electroplating setup. 

Figure 5-6: Image of a 1x8 array after SU-8 development and ashing. 

100 µm
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1-mil-thick 100x100 mm gold sheet as the anode and held the wafer (cathode) in the solution 
with a single-wafer carrier clipped at one end to complete the electrical circuit. 

Electroplating works by forcing a constant current through the circuit composed of the 
power supply, anode, cathode, and plating bath.  The faradaic current at the electrode/electrolyte 
interfaces oxidizes and reduces the species at the anode and cathode surfaces, resulting in 
solubilization of the gold foil (anode) and deposition of metal at the cathode [168].  Because of 
the availability of the pulse-plating supply, I used 1 ms forward-going pulses with a 10% duty 
cycle.  The pulsing helps to refresh the concentration of electroactive species at the interface and 
thus increase the efficiency of the plating and reduce the time.  With this setup, the manufacturer 
quoted plating rates of 0.1-0.3 µm/min with 1-3 mA/cm2 of current and this is what I obtained in 
practice.  The current density needed to obtain these rates was difficult to measure because the 
small plated area introduced large errors, and so these parameters were determined via trial and 
error. 

The need for the continuous titanium layer becomes apparent now.  I used it to form a 
continuous electrode connecting all plated posts to the clip.  I could not simply use the patterned 
gold layer for this connection as the patterns are not all connected together.  In addition, the 
continuous nature of the titanium layer gives a low resistance to the layer, which minimizes 
voltage drops and enhances plating uniformity.   

As noted above, I found it necessary to ash the wafers before electroplating.  I originally 
tried electroplating without ashing, and found that the plating was difficult to initiate and that the 
yield was low.  After trying several things (addition of surfactant, overnight developing of the 
SU-8) I realized that there was an organic layer at the bottom of the electrode holes that was 
extremely difficult to remove by developing alone.  Upon introduction of the ash step, 
electroplating initiated readily. 

One other potential problem with electroplating into a photoresist mold is underplating of 
the photoresist pattern due to delamination of the photoresist from the substrate.  This can be 
induced by thermal expansion mismatch between the photoresist and substrate, inherent stresses 
in the photoresist, and chemical attack of the photoresist by the plating solution.  This was not a 
problem for these circular structures, although other geometries may be more susceptible. 

In practice I electroplated for a few hours and then measured the thickness with a 
microscope-coupled z-axis interferometry system to determine the deposition rate.  Then I would 
obtain an approximate endpoint time and check the thickness every few minutes as the time 
approached to obtain the desired electrode height of 50-µm.  In addition, I would rotate the wafer 
every few hours to even out deposition-rate differences due to temperature and current-density 
gradients.  With these techniques I was able to obtain post heights that varied ~10% across the 
wafer.  Figure 5-7A shows an array structure after electroplating. 

5.1.4 SU-8 mold removal 
After forming the extruded electrodes, I need to remove the SU-8 mold (Figure 5-1E).  

The resistance of SU-8 to chemical attack becomes a problem now because there is as of yet no 
standard procedure to remove the films.  Various approaches have been tried, from high-
temperature ashing [169] to NMP-based resist strippers [170].  Piranha solutions will remove the 
SU-8 but will also remove most metals, including the Ti adhesion layer that I used here.  I have 
developed a three-step technique involving a wet stripper, an oxygen ash, and a wet chemical 
clean that seems to work fairly well. 
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For all stripping procedures, judicious handling of the SU-8 will ease the removal 
process.  Minimizing prebake/postbake times and temperatures helps, as does limiting the total 
time that the SU-8 stays on the wafer [170].  For this process, I usually had the SU-8 on the 
wafer for 2-3 days before stripping, which worked well. 

The first step in the removal process is the use of a DMSO-based (dimethylsulfoxide) 
stripper (ACT-691, Ashland Chemical Co., Pueblo, CO).  I used the stripper in a glass beaker on 
an explosion-proof hotplate with an explosion-proof stirrer at 90 °C.  At this temperature, the 
stripper swells the SU-8 and causes it to delaminate from the wafer and shred itself.  The SU-8 is 
not actually dissolved in the stripper but exists as a suspension in the solution.  Following this 
step I rinsed the wafer in cold stripper and then water.  45-90 minutes was sufficient to remove 
the vast majority of the SU-8, especially from the open areas of the wafer.  SU-8 debris was still 
left around the posts, as shown in Figure 5-7B. 

To remove this final debris, I put the wafer in a barrel asher until this debris was ashed 
away.  While ashing is not practical for removing the complete 60-µm SU-8 layer, I could 
effectively remove the SU-8 debris in 1-2 hrs (Figure 5-7C).  Following ashing, there would 

Figure 5-7: Electroplating & SU-8 stripping process.  (A) A 2x4 electrode array after electroplating.  The black 
circles are the electroplated posts, while the SU-8 cracks can also be seen. (B)  A 1x4 array after stripping in the wet 
stripper, showing the SU-8 debris still attached to the posts.  (C)  A 1x8 array after ashing, showing that the majority 
of the debris is gone except for wispy post-ash debris.  (D) A 1x8 array after Nanostrip, showing that all the debris 
has been removed. 

(C) (D)

(A) (B)

post-ash debris 

SU-8 debris 
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often be wispy debris in and around the posts (but off the substrate).  A quick 5-min Nanostrip 
treatment removed these, most likely by simply dragging them away during rinsing.  The final 
electrode structure is shown in Figure 5-7D. 

5.1.5 Titanium adhesion-layer removal 
The next step is to remove the Ti layer that had served to provide electrical contact for 

the electroplating (Figure 5-1F).  If left in place, it would electrically short the posts together, 
preventing operation of the traps.  Removal was straightforward with a dilute HF:H2O etch, 
which did not attack the gold and at these timescales and concentrations did negligible damage to 
the glass wafer.  I endpointed the etch by looking to see when the wafer became transparent, 
indicating the loss of the titanium layer.  Careful endpointing was necessary to prevent 
undercutting and lift-off of the gold lines.  After Ti layer removal, the electrode structure looked 
as in Figure 5-8A.  An underside view (Figure 5-8C) shows how the gold layer is undercut.  This 
reinforces the need to start with gold lines that are as wide as possible and to endpoint the etch 
accurately.  Failure to do this can result in lift-off of the gold lines if the titanium layer is entirely 
etched away.  This two-step undercut (first gold, then titanium) was a major source of yield loss. 

I found that a very thin film of unknown origin would be left over following the stripping 
process (Figure 5-8).  The film could be distinguished under optical microscopy because of its 

Figure 5-8: Electrodes after titanium removal.  (A) Top-down optical micrograph of a 1x4 array  (B) SEM closeup 
of a gold line, showing the attached residue film.  This film can also be seen in (A) and (C).  (C)  Underside view of 
the posts, showing the titanium undercut during etching. 

(A) (B)
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thin-film interference effects.  Fluoroscope examination revealed that the film was not 
fluorescent, and thus probably not an organic residue such as photoresist.  Dektak and SEM 
measurements showed it to be much thinner than 1 µm.  Careful SEM analysis indicated that the 
film was actually attached to the underside of the gold, but not to the substrate (Figure 5-8B), 
suggesting that the film was present on top of the titanium, and only became apparent following 
Ti removal.  This further suggests that the film is the result of some reaction between the Ti and 
the SU-8, induced by either light, temperature, or the SU-8 stripper.  As the film was non-
conductive (tested with a probe station), I did not investigate its properties further, although it is 
probably a Ti/organic compound. 

5.1.6 Forming the SU-8 channel 
I decided to form the channel out of SU-8 (Figure 5-9A).  I did not use PDMS 

(polydimethylsolixane), which has the advantage of being removable & reusable because the 
validation experiments require accurate knowledge of the channel height, which may be difficult 
to control given the compliance of the PDMS under pressure.  In addition, for fluorescence 
microscopy I reasoned that using a standard coverslip as the look-thru medium may result in less 
distortion than looking through PDMS. 

The SU-8 channel formation is a straightforward SU-8 lithography step.  I varied the spin 
cycle to obtain a thicker film and varied the exposure, bake, and develop times, but otherwise the 
process was the same as described above.  There were no apparent problems with the SU-8 
causing the posts to deform during application and the film thickness near the electrodes was not 
affected by their presence. 

In Figure 5-10 I show SEMs of a completed 1x8 array device.  One sees that the yield is 
excellent within the array, and was approximately 30% across the wafer (with yield defined as 
percentage of devices with all traps intact).  The major yield-loss mechanisms were loss of posts 
during the wet etching of the substrate interconnects or during handling after SU-8 mold 

 
Figure 5-9: Final fabrication steps. (A) Forming the SU-8 channel. (B) Dicing and drilling the fluidic access holes. 
(C) Capping the channel with a coverslip. 
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removal.  The final electrodes have a tapered geometry and slightly domed tops (Figure 5-10C). 

5.1.7 Final fabrication 
The final steps, after channel formation, were to dice the wafers (Figure 5-9B), drill 

fluidic access holes (Figure 5-9B), and cap the channel (Figure 5-9C).  I’ll describe the first two 
steps in this section; capping the channel is done during packaging.  The dicing was performed 
with a conventional diesaw.  I protected the posts during dicing by backfilling the channels with 
AZ4620 photoresist.  After dicing, I soaked the chips in acetone to remove the photoresist.   

Access holes were drilled into the glass with a 0.75-mm diamond-tipped drill bit (C. R. 
Laurence, Los Angeles, CA) registered to gold marks formed on the slide during the first 
lithography step.  The drilling of the holes usually resulted in a slightly tapered hole that was 
wider at the bottom of the chip, which actually eased in aligning the chip during packaging.  

5.2 Packaging 
The packaging requirements for the small array are three-fold.  Electrically, I need to 

bring 20-MHz signals of a few volts to the electrode tips.  Optically, I need to be able to perform 
fluorescence microcopy of cells held in the traps.  From a fluidics standpoint, I need to introduce 
cell-containing liquids onto the chip at around 1 psi. 

The packaging solution that meets these needs is shown in Figure 5-11.  The electrical 
connections start from the electrodes, go under the SU-8 channel out to the chip periphery, and 
are finally wire-bonded to a ceramic package that fits on a ZIF-socket and is connected to a 
printed-circuit board.  The optical solution is to use a coverslip to attain a high-fidelity optical 
transfer system that would be compatible with coverslip-corrected objectives.  The package is 
low-profile, in that there are no protrusions above the plane of the coverslip, which makes it easy 
to mount the package under a conventional microscope.  In addition, since the cells are at most 
~300 µm away for the objective, low-working-distance objectives with high numerical apertures 
can be used.  The fluidic connections are made with an aluminum block that has a protrusion 
which rises up through the middle of the ZIF socket and carries fluidic channel to the chip.  
Locking the ceramic carrier into the ZIF socket with o-rings in-between ensures a leak-proof 
seal. 

 
Figure 5-10: Final  SEMs of the completed chips.  (A) a 1x8 array in an SU-8 channel.  (B) a close-up of the array. 
(C) A closeup of a single trap. 
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Figure 5-11: Packaging of the extruded array.  (A) Schematic and (B) photograph of the packaging assembly. An 
aluminum block serves as the substrate.  It has cutouts to carry the flow within tubing .  The flow path continues 
through o-rings and mates with the bottom of the ceramic carrier, thru double-sided tape, and into the channel on the 
chip.  

5.2.1 Assembling the package 
The packaging assembly starts with the diced chips (Figure 5-12A).  The first step is to 

drill the fluidic access holes, as described above.  Concurrently, I take a 64-pin ceramic carrier 
package with a 0.4”x0.4” die area (Spectrum Semiconductor Materials, Inc., San Jose, CA) and 
drill holes in it (with the diamond drill bit) that will line up with the holes in the chip and the 
holes in the aluminum package (Figure 5-12B).  To mount the chip onto the ceramic carrier and 
make fluid-tight seals, I use double-sided tape with openings cut in it for each of the holes. 

At this point I gold wirebond the connections from the chip to the ceramic carrier.  
Wirebonding will ensure that I can reliable transfer the signals necessary for operation to the 
electrodes. 

Following wirebonding, I attach the coverslip top to the channel.  The top is a coverslip 

Figure 5-12: Assembling the packaging.  (A) Naked chip and ceramic carrier, (B) with holes, (C) mounted together 
with double-sided tape & the coverslip. 

fluidic access 
holes 

ceramic carrier 
chip 
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that has been scribed and cleaved to the approximate size of the outer channel dimensions.  I 
mechanically clamp the coverslip on top of the channel and then apply five-minute epoxy to the 
assembly to create a fluidic seal (Figure 5-9C).  One drawback to this assembly method is that 
the distance between the coverslip and the channel will vary depending on how much epoxy 
flows into the gap, which means that a secondary measurement of the channel height is 
necessary.  More importantly, it means that the coverslip and substrate may not be perfectly 
parallel, which will introduce optical aberrations. 

At this point the ceramic carrier is ready to mate with the rest of the package.  This 
consists of an aluminum block that has been shaped to have a protrusion (Figure 5-11 & Figure 
5-13).  The bottom of the block has cutouts that carry 0.020” (I.D.) PEEK tubing (Upchurch 
Scientific, Oak Harbor, WA).  The tubing has been permanently bent with a heat gun and glued 
onto the aluminum block with Ducco cement.  The tubing serves as a low-void-volume fluidic 
carrier from the edge of the block almost to the chip itself.  The fluidic path briefly goes through 
the aluminum and then emerges on the top of the protrusion at a groove for a size #001 o-ring 
(Parker Hannifin Co., Lexington, KY). 

A printed circuit board, which contains a simple circuit to drive the electrodes and a ZIF 
socket (3M, St. Paul, MN) for the ceramic carrier to sit in, is mated to the aluminum block so 
that the protrusion goes through an opening machined out of the ZIF socket.  Clamping the chip 
into the ZIF-socket automatically aligns and seals the fluidic connections and makes the 
electrical connections to the circuit board, completing the package.  This makes it relatively easy 
to interchange ceramic carriers, and hence chips, during testing. 

The driving circuit is shown in Figure 5-14.  The signal from the signal generator goes to 
a quad buffer (MAX496, Maxim Integrated Products, Sunnyvale, CA).  Two of the electrodes on 
each trap are wired to ground, while one is permanently wired to the output of the buffer.  The 
other is wired to the output of the buffer but through a SPDT switch, which allows switching of 
the electrode to ground, thereby controlling the trap.  The four outputs of the quad buffer are 
equally shared between the permanently wired and controlled electrodes.  While this circuit is 
not electrically ideal, in that the SPDT switches are not designed to switch these types of signals, 
it works adequately for my purposes, and can send 20-MHz 5 Vpp signals with good fidelity to 
the electrodes.  Occasional ringing of the circuit occurs, but this is accompanied by an increase in 
the supply current to the buffer and can be easily detected with the current monitor integrated 
into the power supply.  Switching the SPDT switches back and forth removes the ringing. 
 

 
Figure 5-13: The aluminum fluidic carrier and printed circuit board. 
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Figure 5-14: Electrical driving circuit. 

5.3 Test setup 
The test setup is identical to the one used in Chapter 3 except that it resides on a Zeiss 

Universal upright fluorescence microscope (Figure 5-15).  The microscope is equipped with a 
fluorescent slider permitting four filter combinations.  The microscope has been modified to 
allow the use of both reflected brightfield and epi-fluorescence by re-directing the brightfield 
lightpath from the transmitted to the reflected mode.  This requires the use of a half-silvered 
mirror in one slot of the filter slider.  The microscope uses a halogen lamp for its brightfield 
source and a 150W Xenon lamp for its fluorescent source.  It is equipped with both a 
monochrome video CCD camera (TM-7CN, Pulnix America, Inc., Sunnyvale, CA) and a cooled 
color-CCD imager (SPOT-RT Color, Diagnostic Instruments, Sterling Heights, MI).  
Unfortunately, I was unable to install an automatic shutter system because of the physical 

 
Figure 5-15: Photographs of the test setup.   
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constraints of the microscope, and so performed all shuttering manually. 

5.4 Conclusion 
In this chapter I have described the fabrication process flow, packaging, and test setup 

needed to fabricate, package, and test the extruded trap arrays.  The process flow uses 
electroplating into an SU-8 mold to define the posts that are necessary for the new trap design.  
This process had to overcome the challenges of using and removing SU-8, which can be both 
difficult to apply and to remove.  In addition, the process used wet etching of the gold substrate 
interconnects and the use of an SU-8 chamber to ease the process complexity.  The packaging 
design allows for easy assembly and interchangeability of individual chips, while meeting the 
stringent requirements for electrical input, optical access, and fluidic connection. 
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Chapter 6: Trap validation 
 
 

The first objective upon completion of the array was to validate that the improved DEP traps do 
indeed exhibit stronger holding.  To do this, I followed a similar testing protocol as for the planar 
quadrupole traps—measuring the release flowrate of beads under different conditions—and 
compared the results to the model predictions, now using the as-fabricated rather than ideal 
geometries.  As described below, the results do validate the predictions of superior trap strength. 

6.1 Materials and Methods 

6.1.1 Materials 
All beads and solutions were prepared as in Chapter 2.  I used the same three bead sizes as 
before—7.58 µm, 10.00 µm, and 13.20 µm—although with fresh 0.01 S/m HBSS solutions 
containing 0.5% (v/v) Triton X-100.  

6.1.2 Test methodology 
The methodology was similar to what I used for the planar quadrupole traps: trap a bead at a 
given voltage and measure the minimum flowrate needed to dislodge the bead from the trap.   I 
slightly modified the testing procedure for use with the extruded traps.  First, I considered a one-
minute hold time as constituting holding to speed up the data-taking procedure.  Initial tests 
showed that the vast majority of beads held for one minute were indefinitely held.  Second, 
instead of varying the applied flow to find the “true” release flowrate for a given voltage, I 
increased or decreased the flow monotonically and measured all release flowrates that I found.  I 
believe that this more closely approximates the true errors in the measurements and made the 
error analysis much easier.  Third, I obtained data from any of the three working traps in the 1x4 
array that I used, dictated by which trap(s) happened to be holding beads then.  This gives a 
better estimate of the variations within an array.  Finally, I performed three runs on different days 
(over 2 weeks) to get a sense of the drift. 

6.1.3 Modeling 
Simulations were performed using the modeling environment described in Chapter 2.  
Simulations encompassed both as-designed (no taper, and with as-drawn geometries) and as-
fabricated geometries (described below).  Bead simulations used the experimental parameters for 
the holding experiments - ρp=1.062 g/cm3, σm=0.01 S/m, σp=2x10-4 S/m, εp=2.5, f=1 MHz or 20 
MHz, w=2 mm.  The chamber height (h), as described below, was 159.5 µm.  Dipole and 
quadrupole force orders were simulated.  Cell simulations used the same parameters, except that 
σm=1 S/m.  The nominal values for HL-60 cells were from [81], with Cm=1.6 µF/cm2, Gm=0.22 
S/cm2, ∆=1 nm, εcyto=75 F/m & σcyto=0.75 S/m. 

6.2 As-fabricated geometries 
In order to be able to compare experiments to predictions, I must know what the device 

dimensions as fabricated really are.  I performed measurements on the device and package to 
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extract parameters that would affect the modeling, so that I could perform simulations with the 
as-fabricated devices to accurately predict the trap strength. 

6.2.1 Trap geometry 
Figure 6-1 shows SEMs of fabricated traps.  While these traps are not the specific traps 

used in the experiments, they are from the same wafer and so constitute a representative sample.  
In Figure 6-1A I show comparisons to the as-drawn geometries.  The interconnect lines are 
significantly narrower (3.7 µm wide instead of 8 µm) than drawn, due to the gold-etch undercut, 
and slightly narrower than the anticipated width of 4 µm.  The values that I used for the wiring 
geometry in the revised simulations are shown in the figure and Table 6-1. 

The negative tone of the SU-8 confers a conical shape to the posts, and modeling this 
taper is necessary to accurately predict trap strength.  This is because the taper breaks the axial 
symmetry of the trap, creating a divergence in the field in the z-direction and thus a positive z-
directed DEP force.  As can be seen in Figure 6-1B, the taper is actually a compound taper, with 

 
Figure 6-1: (A) SEM of a completed trap overlaid with the mask drawing. The post tops appear larger than the 
drawn geometries because this particular array was electroplated too long and mushroomed at the top of the posts.  
The numbers refer to lengths (in microns) of the various segments of the interconnect geometry that were 
subsequently used in the electric-field modeling.  (B) SEM of a fallen post, showing the taper angle along the length 
of the post.  The taper varies between 2.0° and 3.1°. 

Dimension As-designed As-fabricated Modeled 
Electrode height 50 µm 47-50 µm 50 µm 

Electrode diameter 20 µm 18-20 µm at top with a 
2º - 3º taper 

18-20 µm at top with a 
3.5 & 4.0 µm taper 

Substrate interconnect width 8 µm drawn, 4 µm designed 3.7 µm 3.7 µm 
Chamber width (w) 2 mm 1.983 ± 0.003 mm 2 mm 
Chamber height (h) 150 µm 157-162 µm 159.5 µm 

Table 6-1: Comparison between as-designed and as-fabricated geometries for the traps used in this chapter. 
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an upper-section taper of 3.1°, a lower-section taper of 2.0°, and an overall averaged taper of 2.4° 
using values from this SEM figure.  For a 50-µm high post, the overall taper of 2.4° leads to a 
4.2-µm difference in the diameter of the post between the top and bottom.  Using a microscope-
mounted x-y micrometer stage I measured the taper of this post to be 4µm with approximately 1 
µm of error, which is consistent with the SEM angle measurement. 

Another measurement that I performed was to use SEMs of top-down views of the posts 
to get proportions of the diameters at the post top and bottom.  From Figure 6-2, the tops of the 
posts are 81% (Figure 6-2, left) and 84% (Figure 6-2, right) of the diameters of the bottoms.  The 
error in this measurement is due to the difficulty in assigning a diameter to the non-circular 
profiles of the posts.  However, using 18 µm as the diameter at the top of a 50-µm-high post 
gives an overall taper of between 3.4 (84%) and 4.2 (81%) µm, which is consistent with the 
measurements from Figure 6-1B. 

As I shall show below, the taper dramatically affects the predicted results.  Assembling 
the above measurements, I can state that the taper angle varies between 2° and 3° and is probably 
multi-valued along the length of the post. 

I measured the height and diameter of the posts from the traps used in the validation 
experiments.  Heights ranged from 47-50 µm (<x>=48.1 ± 2.2 µm, n=12), measured with a 
microscope-mounted z-axis micrometer, although the domed tops of the posts (Figure 5-10C) 
make it difficult to precisely define the height.  I measured the diameters at the top of the posts 
with a microscope-mounted x-y micrometer stage.  The values ranged from 18-20 µm (<x>=18.8 
± 0.8 µm, n=5), with the primarily errors coming from the resolution of the micrometer stage (1 
µm), the deviations from perfect circularity of the posts, and the domed character of the post 
tops.  I believe the absolute error to be about 1-2 µm. 

Assembling all this data, I modeled the traps to have the interconnect geometries as 
described in Figure 6-1A, posts with 50 µm height, a taper of 3.5 µm (2.0°) or 4.0 µm (2.3°), and 

2.35x2.31

2.80x2.91
2.86x2.90

2.32x2.46

 
Figure 6-2: Top-down SEMs of two posts (different sample than Figure 6-1), with the top and bottom diameters 
circled.  The major and minor axes of the ellipses, in arbitrary units, are given by the two numbers for each ellipse.   
Approximate circle diameters can be obtained by averaging the values.  The figure shows that the top dimensions 
are smaller than the bottom dimensions.  Averaging the dimensions to get an average diameter for each circle, the 
left subfigure has an 81% ratio of top-to-bottom diameter while the right subfigure has an 84% ratio.  
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post diameters (at the top) of between 18 µm and 20 µm (Table 6-1). 

6.2.2 Chamber geometry 
The chamber width of the tested device was measured with a microscope-mounted x-y 

micrometer stage to be 1.98 mm (<x>=1.983 ± 0.003 mm, n=3), and modeled as 2 mm.  The 
chamber height of the tested device was measured with a microscope-mounted z-axis micrometer 
to be 157-162 µm (<x>=159.6 ± 2.4 µm, n=9), and modeled as 159.5 µm.  The chamber height 
appeared to change over the course of the experiments as evidenced by the change in the 
appearance of the glue between the coverslip and the SU-8 chamber; by the end of the 
experiments, water was seeping much farther into the space where the glue was than at the 
beginning (but not leaking out of the chamber).  This drift will affect the holding in an inversely 
linear manner. 

6.3 Results 

6.3.1 Trap switching 
I performed experiments to validate the single-electrode switching described in §4.3.3 

and Figure 4-6.  In Figure 6-3 I show three images of beads held in traps showing that I can turn 
one trap off independently of the other.  Under flow, the released bead flows away when only 
one electrode is toggled between +V and ground.   

6.3.2 Holding characteristics with beads 
I performed experiments as described above to obtain the holding characteristics of these 

traps.  The results are shown in Figure 6-4.  The error bars represent experimental errors of one 
standard deviation.  All release flowrate measurements were taken 3-8 times and on average 4.3 
times.   The data demonstrates that the holding in these traps is size selective with larger beads 
exhibiting stronger holding, as one would predict given the R3 dependence of the DEP force 
(dipole term).  The stated error includes systematic deviations between individual traps—one 
trap was consistently weaker than the other two.  

In Figure 6-5 I show comparisons between the experimental results and the modeling 

 
Figure 6-3: Movie frames showing electrical control of the traps.  (A) Flow (3 µl/min) is applied from left to right, 
with two 10.0-µm beads held in each of two traps.  (B & C) The bottom trap is turned off by switching its bottom-
right electrode, causing the bead to flow away while the bead in the top trap is held. Traps were energized at 1.5 V 
and 1 MHz. 
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using a 3.5-µm taper.  The smaller model prediction in each subplot corresponds to a post 
diameter of 18-21.5 µm, while the larger model prediction corresponds to a post diameter of 19-
22.5 µm.  As stated before, this is within the limit of my measurements of the post diameter.  The 
model predictions for the 18-21.5-µm post diameter for the 7.6-µm beads (Figure 6-5A) has 
some numerical noise in it, similar to the effects seen in the planar quadrupole holding 
characteristics in Chapter 3.  There is no physical significance to this noise. 

The first feature to notice is that for all bead sizes the experimental data is bounded by 
the predictions.  Furthermore these are absolute predictions, as for the planar quadrupole.  Thus, 
the model is further validated.  Second, the traps are working as predicted, which is a validation 
of the design methodology. 

It is possible to obtain a best fit, within the experimentally measured post diameters, by 
finding the linearly interpolated post diameter that would minimize the error between the 
experiments and models.  While there is not any absolute knowledge gained by this maneuver, it 
does allow for easier visual representation and manipulation of the data.  Ideally the fit would be 
independent of which set of data was used to generate it.  In other words, fitting to the 7.6-µm 
bead characteristic should give the same fitted post diameter as a fit to the 13.2-µm bead 
characteristic.  Unfortunately, the modeling is not perfect and this is not the case. 

Lacking this, one might fit the data using the 7.6-µm beads and extrapolate the results for 
the larger beads.  The rational here is that the smallest bead is least likely to be disturbed by 2nd-
order effects, such as fluid flow, that are not accounted for in our model and therefore those 
results are likely to be most accurate.  Unfortunately, Figure 6-5A shows that the simulations for 
the two post diameters are not well spread out and so the resultant fit will likely not be precise.  
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Figure 6-4: Superimposed data for holding characteristics.   Shown are the results of release flowrate measurements 
with 7.6-µm (o), 10.0-µm (x), and 13.2-µm (∇) beads in the extruded trap.  Measurements were performed at 1 
MHz. 
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Using the 10-µm bead characteristics for the fit is a good compromise between minimizing the 
2nd-order effects while maximizing the fitting resolution.  

Figure 6-5D shows the results of linearly interpolating the results for the 10.0-µm beads 
and then extrapolating the extracted post diameter to the other two bead sizes.  The post diameter 
corresponding to this fit is 18.7 µm, which is very close to the measured average post diameter as 
described above (see §6.2.1).  This results in a maximum error between the fit and the data 
averages of 1.1 µl/min (4% of full scale (FS)) for the 7.6-µm beads, 1.2 µl/min (3% of FS) for 
the 10.0-µm beads, and 2.2 µl/min (5% of FS) for the 13.2-µm beads.  Incorporating the 
measurement errors, only 7 of 28 simulated values fall outside the 1σ measurement errors, with a 
maximum miss of 0.7 µl/min.  Using a 2σ measurement error (corresponding to a 87% 
confidence level), all predictions fall within the experiments.  Two data points whose measured 
experimental precision was 0 µl/min will never match predictions without incorporating 
systematic experimental errors, which I have not done. 

With confidence in the model I can extract the holding forces from the simulations, as 
shown in Figure 6-6.  The results show the greatly increased strength of the new trap, as 
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Figure 6-5: Model predictions of the holding characteristics.  The data is shown as discrete points while the 
simulation results are shown for 18-21.5-µm () and 19-22.5-µm (---) posts.  The data and predictions are shown 
for (A) 7.6-µm (o), (B) 10.0-µm (x), and (C) 13.2-µm (∇) bead diameters.  (D) Plotted is a best-fit interpolation 
(18.7-22.2-µm diameter posts) of the predictions to the data in (B) and then the use of that fit parameter to predict 
the holding characteristics for the other bead sizes. 
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compared to the planar trap (see also Figure 4-14).  For instance, a 10.0−µm bead is held with 65 
pN of force at 2V, as opposed to the 0.5-1 pN of the planar quadrupole.  The trap is indeed 10-
100x stronger, as predicted in §4.5. 

6.3.3 Holding characteristics with cells 
To see if the traps are meeting the system requirements for the µDAC, I ran simulations 

with HL-60 cells using the validated as-fabricated geometries.  I used parameters for HL-60 cells 
given in §4.4.3 with an applied frequency was 20 MHz.   

In Figure 6-7 I show the holding characteristics and holding forces for the HL-60 cells in 
this system.  These differ from the ideal characteristics given in Figure 4-13 because of the 
difference between designed and as-fabricated geometries.  As can be seen, however, the 
difference is slight and thus the operating conditions determined in §4.5 are still valid. 

6.4 Discussion 

6.4.1 Model and trap validation 
The results described above demonstrate the utility of the modeling environment for 

designing DEP-based traps for bioscience applications.  I have been able to a priori design a trap 
geometry that could meet the system applications of the µDAC without performing any trial-and-
error experiments.  In addition, the geometry used for the extruded traps is much more 
complicated than the planar quadrupole, involving an asymmetric electrode placement, exposed 
wiring within the trap, and the tapered three-dimensional profile of the posts.  Despite all of these 
challenges, the model has been successful in predicting the performance of these traps. 
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Figure 6-6: Extracted holding forces of the extruded quadrupole traps, using the same fit as for the holding 
characteristics (Figure 6-5D).  Plotted are holding forces for 13.2-µm (), 10.0-µm (---), and 7.6-µm (⋅⋅⋅⋅) beads 
using (A) linear and (B) logarithmic scales.  Also shown (▬) for comparison are the results from Figure 4-14 for 
10.0-µm beads in the planar quadrupole.  In (A) the results for the planar quadrupole (▬) are so small that they lie 
on the x-axis. 



 102

The results also demonstrate an internal consistency to the design process—the modeling 
and the trap are both validated by these measurements.  This validation, coupled with the results 
from the planar quadrupole, strongly suggest that such modeling could be useful in the future. 

Looking at the dipole form of the DEP force (Eqn. (1-1)), one would expect the trapping 
to follow an R3 law.  Figure 6-4 shows that the ratio is actually less than that.  In fact, the holding 
goes approximately as Rx with x=1.4-1.5.  A possible explanation for this can be seen in Figure 
6-8, where I have plotted that predicted locations of the particles at release.  Although the 
predicted characteristics contain significant numerical noise at V=1V and 3V (due to the 
discretization of the problem space), they do suggest that the particle positions differ for the 
different bead sizes.  If this is true then since all three particles settle into the different release 
points, the drags and DEP forces experienced will differ, and can account for the observed non-
cubed-law behavior.  In fact, the discrepancy reinforces the utility of the model in accounting for 
the complex behaviors in these traps.   

6.4.2 Deviation between model and experiment 
Although the model certainly has succeeded in predicting the holding characteristics for 

beads in the extruded quadrupole traps, I can speculate as the origins of the remaining deviations 
between experiment and model.  This is useful in trying to ascertain the appropriate space within 
which the model has predictive power, which is necessary for future designs.  One must reiterate 
however that the agreement, as depicted in Figure 6-5, is within the experimental error and thus 
the model predicts the experimental results extremely well.  This is much better than could be 
expected in a real-world situation involving cells, whose variable size and electrical properties 
could swamp any 2nd-order effects neglected in the model.  For the purposes of real-world 
operation one must pick an operating regime (flow, voltage, frequency) such that there is a 
comfortable margin in the holding characteristics for all encountered particle variations.  Such a 
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Figure 6-7: Simulated holding characteristics for HL-60 cells in the finalized traps, interpolated using the same fit 
as for the beads and compared to the designed holding characteristics of Figure 4-13. (A) Release flowrate versus 
voltage for the as-designed (---) and as-fabricated () traps.  (B) Extracted holding forces versus voltage for the 
designed (---) and as-fabricated () traps. 
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design falls outside the scope of this thesis, but the path towards its implementation is clear and 
the necessary design tools are now in place. 

Several effects have been neglected in the model.  Besides those described in Chapter 3 
(EHD, HD lift forces), several are specific to the extruded geometries.  First and foremost, the 
modeled flow field (Poiseuille) is clearly different from the actual flow pattern, which will be 
fully three-dimensional in the vicinity of the electrodes.  The deviation is insignificant for 
predictions using the extruded quadrupole, but other geometries that might disturb the flow 
further would benefit from full CFD modeling.  Such modeling could also be used to design the 
electrode structure to physically control the flow in addition to controlling the electric fields.  
This would add another “knob” in the design and could lead to higher performance. 

Second, care must be taken to ensure that the simulated geometries match what is 
actually being fabricated.  In my case, the deviations in the as-fabricated geometry from the 
designs significantly affect the predictions.  First, the compound taper has not been modeled, nor 
is the actual taper exactly as modeled.  In Figure 6-9 I show the comparisons of simulations 
using 3.5-µm and 4.0-µm tapers.  The different taper angle influences the characteristics for the 
larger bead sizes dramatically, even though the posts are only 1 µm closer together at the 
substrate.  The 4.0-µm taper reduces the separation between the holding characteristics for the 
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Figure 6-8: Predicted particle locations at release using the interpolated results.  Plotted are the simulated x-
locations (A), y-locations (B), and z-locations (C) of the 13.2-µm (), 10.0-µm (---), and 7.6-µm (-⋅-⋅) beads right 
below the release flowrate.  The coordinates are as defined in Figure 4-3A. 



 104

10.0-µm and 13.2-µm beads.  The 3.5-µm taper, used in the fits in Figure 6-5, gives a better 
representation of the data.  This is consistent with the fact that the beads are to be found near the 
lower half of the posts (Figure 6-8) where the taper is closer to 2.0° (corresponding to 3.5-µm), 
as shown in Figure 6-2.  Generating trap designs that are robust to such variations is an 
interesting future use of the modeling, and a readily conceivable one. 

The previous discussion emphasizes that the sensitivity of the predictions with respect to 
the post geometry could easily result in the deviations.  Another geometrical deviation is that 
some of the posts may not be exactly perpendicular to the substrate.  This could be caused during 
fabrication—a common mechanism for yield loss was non-perpendicular posts.  Although the 
tested devices did not display overt non-perpendicularity, it is still possible to be off a few 
degrees and remain visually undetectable.  A final geometrical discrepancy is that the posts are 
not perfectly spherical, as demonstrated in Figure 6-2. 

6.4.3 Comparison to existing traps 
Although I have established that this trap holds better than the planar quadrupole 

described in Chapter 3, it is necessary to compare it to other DEP and non-DEP traps to fairly 
evaluate it.  As described in Chapter 1, the DEP community can be split into researchers who use 
DEP for separations and those who use it for trapping.  As early as 1993, the group at Humboldt 
University in Berlin described how a three-dimensional electrode configuration in the form an 
octopole (Figure 1-4) was necessary to “close” the trap and obtain a cage and, presumably, high 
holding [93].  This group has since exclusively explored this configuration and has recently 
started performing quantitative trapping experiments.  My search through the literature has 
revealed no other researchers interested in using DEP traps to hold particles against flows. 
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Figure 6-9: Comparison between the simulated holding characteristics of beads in traps with 3.5-µm () and 4.0-
µm (---) electrode tapers.  All posts have an 18-µm top diameter and are 50-µm tall.  Results from the 3.5-µm 
tapered traps exhibit a higher slope at large voltages and bead diameters than the 4.0-µm tapered traps.  The 3.5-µm 
tapered traps better represent the data (see Figure 6-5). 
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Among the five reports from the Fuhr group that mention some quantitative measure of 
trap strength [85, 98, 143, 148, 149], I have chosen to compare the extruded trap to their most 
recent report [98].  The reason for this is that it contains the most complete description of the 
experimental parameters, enabling a fair comparison.  This report describes the strength of the 
octopole for holding particles against flow under various electrical excitation schemes.  The 
comparison is summarized in Table 6-2.   

The first issue in making a comparison resides in whether to compare the trap 
performance at equivalent voltages or equivalent electric-field strengths.  The former can be 
viewed as an extrinsic comparison and the latter as an intrinsic one, because the forces 
fundamentally depend on electric fields, not voltages.  Unfortunately, it is difficult to compare 
electric fields because the non-uniform (i.e. non-spatially constant) nature of the fields in DEP 
makes it impossible to obtain a single value for their strength.  I have thus chosen to compare the 
trap strengths at equivalent voltages.  Because the characteristic electrode separation is similar 
for both traps, however, the electric fields will be similar and thus the comparison can be viewed 
as both extrinsinc and intrinsic.   

In addition, since both traps will increase in strength monotonically with voltage, there 
are no system-level constraints on the maximum voltage applied; the upper limit will be the 
determined by the generation of EHD flows due to heating effects.  Thus, both traps can be 
compared at equivalent voltages. 

From the dipole approximation to the DEP force (Eqn. (1-1)), one sees that an accurate 
comparison requires normalization for different particle radii, CM factors, media permittivities 
and electric field strengths.  The last factor is accounted for by comparing at the same voltage, 
and the media permittivities are the same because both traps are used in water.  Table 6-2 shows 
that the real parts of the calculated CM factors are nearly identical.  This is because at these 
frequencies the CM factor is dominated by the media conductivity, which is much higher than 
the particle conductivity.  Use in physiological saline would not change the CM factors, and thus 
the comparison would still hold.   

The particle radii are different, so I have normalized their results by the cube of the ratio, 
using the R3 dependence of the DEP force.  I can perform this normalization for the octopole trap 
because the particle location will not be dependent on its size—it will always be held at the 
midstream.  For the extruded quadrupole the particle locations change with radius, and thus the 
strict R3dependence does not hold. 

The results show that the extruded trap is significantly stronger than the opposed 
octopole—the holding forces are ~5x larger for similar fields.  Although their trap is much easier 
to fabricate, it is much more difficult to package (because one needs to align the opposed 
quadrupoles and then make electrical connections to an upside-down substrate).  In addition, the 
height of their chamber is locked to the characteristic dimension of their trap—the separation 

Electrode 
configuration

Electrode 
spacing 
(µm)

Particle 
diameter 

(µm) CM factor

Linear 
flowrate 
(mm/s)

Volume 
flowrate 
(µl/min)

Holding force 
(pN)

Normalized 
holding

octopole 40 14.9 -0.47 0.2 0.13 28 20
extruded 

quadrupole 40 13.2 -0.48 1.3 15 95 95  
Table 6-2: Comparison of holding against flow between the opposed octopole and the extruded quadrupole trap for 
beads.  The normalized holding for the octopole was obtained from scaling by the cube of the particle radii.  The 
volume flowrate for the octopole results was obtained from the given linear flowrate and the chamber dimensions.  
The extruded quadrupole exhibits higher holding against volume & linear flowrates and higher holding forces. 
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between the opposed quadrupoles.  The extruded quadrupole relaxes this constraint, adding 
another variable into the design process.  Thus, the work involved in the complex design of the 
extruded quadrupole is rewarded. 

The other comparison to make is to optical tweezers, which may have significant usage 
overlap.  Optical tweezers are advantageous when one needs long-range three-axis control of 
single particles or when electric access is difficult to achieve.  However, if one only needs to 
localize a particle, wants to trap many particles, or does not have easy optical access, then DEP 
becomes the trapping method of choice.  In terms of strength, optical tweezers usually have 
holding strengths of a 1-100 piconewtons [151, 152], which are similar to those attainable with 
the extruded trap. 

6.4.4 Holding forces 
The extracted holding forces (Figure 6-6) are more than those experienced in 

conventional traps, and ~5x larger than in the opposed octopole.  Although these results were 
predicted, they still may appear startling.  A few simple calculations to show self-consistency 
demonstrate that these results are indeed reasonable. 

First, since the drag force in the trap is less than the drag force at the centerline of the 
chamber, the holding force of a particle in the trap must be less than the drag force on the same 
particle along the centerline.  This is because the parabolic flow profile necessitates that the 
particle in the trap is exposed to a flow velocity that is smaller than the centerline velocity 
(Figure 6-10).  In Figure 6-11 I plot, along with the calculated holding forces of 13.2-µm beads 
in the extruded traps (as in Figure 6-6), the Stokes’ drag on 13.2-µm beads in the centerline of 
the chamber at the release flowrate.  The relevant expression is 
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The plot shows that the centerline drag force is indeed always larger than the holding force.  A 
further refinement can be taken by simply correcting the centerline drag to the fluid velocity at 
the height of the particle 

velocity profile
drag force

chamber centerline

electrode
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Figure 6-10: Depiction of drag force on particles in the chamber.  Shown is the parabolic flow velocity profile (in 
gray) and the drag force profile (in thick black).  The drag force follows the velocity profile except near the edges, 
where particle-wall interactions alter the profile (indicated by dotted black line).  The drag on a particle in the trap is 
smaller than at the centerline because it is near the edge of the parabolic flow profile. 
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where z refers to the height of the particle above the substrate.  The expression in the brackets is 
the parabolic velocity profile found in the parallel-plate chamber.  The results of this are also 
shown in Figure 6-11, demonstrating that this simple expression approximates the observed 
holding forces very well.  Thus, the holding forces are in-line with what would be expected at 
those flows, increasing our confidence in the strength of these traps. 
 Such good agreement with such a simple model might inspire the question as to why I 
use a complicated model (described in Chapter 2) for the drag forces.  The reason for the good 
agreement with this simple model is that for the extruded traps the particles are held relatively far 
away from the wall, and so the 2nd-order flow disturbances due to particle-wall interactions are 
minimized.  Since it is not possible to know where the particle will be when designing a new 
trap, the more complete flow model is necessary.  This is seen in the design for the planar 
quadrupole, where the particle is found on the substrate for low voltages. 

6.4.5 Outlook for future trap design 
Given the knowledge obtained about trap design, I can give qualitative speculations as to 

how to make future traps even stronger.  I want to stress, however, that strength isn’t everything.  
Other system parameters, given that the strength is adequate, may become “bottlenecks.”  
Nevertheless, several things are apparent. 

First, one reason for the high trap strength is that the low height of the particle above the 
substrate shields it from the drag force.  An easy way to increase the strength even further is to 
lower that height.  Figure 6-8 shows that the particles average about ~16 µm above the surface 
and thus could be lowered.  Several ways exist to accomplish this.  First, the upward DEP force 
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Figure 6-11: Holding forces in extruded traps.  Plotted is the computed holding force on 13.2-µm beads in the 
extruded traps as the voltage is varied (), along with the drag force at the centerline of the flow (---) and at the 
particle height found using eqn (6-2) (-⋅-⋅).  The computed holding force is always smaller than the centerline drag, 
as expected, and remarkably close to the results obtained using the flowrate-corrected Stokes’ drag (Eqn. (6-2)). 
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is due to the slope of the posts and the wiring in the center of the trap.  Removing the effect of 
the wiring by passivating it and tailoring the slope of the posts (perhaps even making them 
reentrant) could tailor the height of the particle, even pushing it against the substrate, thereby 
maximally shielding it from the flow. 

From a fabrication/packaging standpoint, making robust traps is crucial.  The current trap 
geometry is very stable during operation—not a single post has been damaged after packaging.  
However, gold is soft, and the posts can easily get bent during fabrication steps, especially wet 
steps.  This can be alleviated by either 1) using a different geometry without posts, 2) increasing 
the diameter of the posts, 3) encapsulating the posts in SU-8 till after diesaw, or 4) using a harder 
metal. 

Finally, the strong sensitivity of the predicted trap performance on the taper angle 
suggests that this specific trap geometry is not robust towards processing variations.  Designing a 
trap where taper angle does not affect the position of the particle or the electric field strength, 
such as a trap that forces the particle to the substrate, should be much more stable in this regard. 

6.5 Conclusion 
In this chapter I have described initial tests with the extruded traps demonstrating that 

they indeed operate as designed.  Similar to the experiments performed in Chapter 3, I have used 
beads as surrogate cells to quantitatively determine the holding forces in these traps.  The 
predicted holding characteristics, once adjusted for the actual geometries of the fabricated 
device, are very close to the observations.  This demonstrates that the modeling environment can 
be used for predictive design of traps much different that those it was validated with, and that it 
thus is a truly useful tool.  In addition, these results introduce the extruded quadrupole trap into 
the literature, which, although more difficult to fabricate over planar traps, has numerous 
advantages.
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Chapter 7: Cell-based operation 
 
 
Up to this point, I have designed and fabricated an array of extruded quadrupole traps that 

have been shown to hold beads stronger than the planar quadrupole traps.  In this chapter, I will 
demonstrate the use of these traps with cells, showing the proof-of-concept operation of the 
µDAC.  The capabilities that constitute proof-of-concept operation are: holding with cells, 
single-cell discrimination, independent trap control, and dynamic fluorescent assays. 

7.1 Materials and Methods 

7.1.1 Cell culture 
HL-60 cells were obtained from ATCC (Manassas, VA).  They were cultured in T25 or T75 
flasks in RPMI-1640 (BioWhittaker, Walkersville, MD) with 5% (v/v) fetal bovine serum (JRH 
Biosciences, Lenexa, KS), 2 mM L-glutamine (Sigma, St. Louis, MO), 100 IU/ml penicillin, and 
100 µg/ml streptomycin (Sigma Cell Culture, St. Louis, MO) in a 95% O2/5% CO2 atmosphere 
at 37 °C.  Cultures were maintained between 105 and 106 cells/ml.  They were subcultured 
approximately every 7 days by gently pippetting the media up and down to break up clumps and 
adding cell suspension to fresh media to obtain a cell density of 105 cells/ml (determined by 
Trypan Blue dye exclusion with a hemacytometer). 

7.1.2 Assay buffer 
The assay buffer was made by adding 10 mg/ml of bovine serum albumin (BSA, 

Boehringer Manheim, Indianapolis, IN) to Hank’s Buffered Salt Solution (HBSS, GibcoBRL, 
Grand Island, NY).  The detergent solution was made by adding 100 µg/ml of sodium dodecyl 
sulfate (SDS, GibcoBRL, Grand Island, NY) to the assay buffer. 

7.1.3 Cell assay preparation 
Aliquots of cells were obtained from the flasks.  They were centrifuged for 5-8 min at 

125 x g and the supernatant discarded.  Fresh assay buffer was added and this procedure was 
repeated 2x, with the final volume adjusted to obtain a cell concentration of ~4x105 cells/ml. 

7.1.4 Calcein labeling 
For calcein labeling or leakage experiments, calcein-AM (Molecular Probes, Eugene, 

OR) was added to the assay buffer to obtain a concentration of 10 µM.  Equal volumes of this 
calcein solution were added to the cells suspended in the assay buffer, to obtain a final calcein 
concentration of 5 µM, and incubated at room temperature for 30-45 minutes.  Following 
incubation, the cells were washed in the assay buffer 2x to remove extracellular calcein from the 
solution. 

Aliquots of the calcein-labeled cell suspensions were added to the chamber via the 
injection valve (Figure 3-1C).  To perform calcein leakage experiments, the detergent solution 
was subsequently introduced into the chamber via the four-way valve (Figure 3-1C) after the 
cells had been trapped. 
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Calcein-loading experiments were performed by injecting unlabeled cells into the 
chamber, capturing them in the traps, and then using the four-way valve to inject 1 µΜ or 10 µM 
calcein in the assay buffer. 

7.1.5 Electrode Traps 
The extruded quadrupoles were prepared as described in 0.  For the holding experiments, I used 
the same trap array that was used in 0, while other devices were used for the rest of the 
experiments presented in this chapter.  The packaging and test setup are also as described in 0. 

7.1.6 Chamber purging and cleaning 
Before commencing any cell injections, the chamber was flushed with the assay buffer for ~20 
min, usually at 50 µl/min.  After experiments were complete, the chamber was cleaned with ~1 
ml of HBSS/BSA solution, then ~1 ml of HBSS/Triton X-100 solution, then ~1 ml of DI H2O, 
and finally dried with N2. 

7.1.7 Optics 
The devices were observed under a Zeiss Universal upright microscope, modified for use with 
both epi-fluorescence and reflected brightfield illumination. A filter set for calcein, comprised of 
a 485-nm bandpass excitation filter, a 505-nm dichroic filter, and a 530-nm longpass emission 
filter was obtained from Omega Optical (Brattleboro, VT) and thinned to 3-mm thickness to fit 
into the microscope’s filter slots.  Images were recorded with a video camera (TM-7CN, Pulnix 
America, Inc., Sunnyvale, CA) or a cooled-color CCD (Spot-RT Color, Diagnostic Instruments, 
Sterling Heights, MI) and stored on a Pentium-class computer.  Time-lapse images were 
manually shuttered because of the difficulty of attaching an automatic shutter to the microscope.  
Movies were captured with a Pinnacle Systems DC10plus analog capture board (Mountain View, 
CA) connected to the video camera. 

7.1.8 Image analysis 
Various still-image analysis operations were performed using either Scion Image (Scion 
Corporation, Frederick, MI), Adobe Photoshop (Adobe Corporation, San Jose, CA), or the 
Matlab Image Processing Toolbox (The Mathworks, Natick, MA).  Movies were edited using 
either the DC10plus software or Adobe Premiere (Adobe Corporation, San Jose, CA).  Cell 
diameters for the holding experiments were obtained by converting measured pixel distances to 
actual lengths via calibrations obtained at different magnifications with a ruled microscope slide. 
 Fluorescence intensities for the dynamic assays were determined via Matlab.  Algorithms 
found the pixel area comprising each cell in a series of time-lapse images by thresholding the 
images.  From the pixel values, the mean and maximum intensity values could be recorded.  
Other values, such as cell area (in pixels), could easily be determined from the thresholded 
image.  A swath of nominally dark pixels was used to determine the background intensity level, 
which was subtracted from the measurements.  Changes in the exposure time or gain of the 
camera were compensated for by linearly scaling the measured pixel values.   
 Multicolor images were created by adding the grayscale fluorescence images to the green 
channel of color brightfield images in either Photoshop or Matlab. 
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7.1.9 Release flowrate measurements 
The release flowrate measurements were performed identically to those in Chapter 3.  Briefly, 
after trapping a cell, an image was taken so that its diameter could be subsequently determined.  
Flow was initiated, and if the cell stayed in the trap for 60 sec, the cell was considered captured.  
The flowrate was increased in 1 µl/min steps until the cell was ejected, and this flowrate was 
termed the release flowrate. 

7.1.10 Modeling 
All modeling to compare to the measured holding characteristics used the as-fabricated 
geometries, as described in Chapter 6.  Although the cell membrane capacitance varied in the 
simulations (described below), the nominal values for HL-60 cells were from [81], with Cm=1.6 
µF/cm2, Gm=0.22 S/cm2, ∆=1 nm, εcyto=75 F/m & σcyto=0.75 S/m. 

7.2 Results 

7.2.1 Qualitative operation 
Array loading 

Array operation with cells was fairly straightforward.  After warming up the electronic 
equipment and purging the chamber with ~1 ml of the assay buffer run at 50 µl/min, I would 
inject a ~50-55 µl plug of cells.  After the cell-containing aliquot had started to enter the 
chamber, I would turn off the flow for ~1-2 min to allow the cells to settle to the chamber 
bottom.  At this point I would restart the flow, but at a flowrate that was less than the release 
flowrate for a given voltage & frequency.  Cells near the surface of chip would flow by the array 
and be trapped, while cells far above the substrate would simply flow over the traps.  The use of 
BSA in the assay buffer was advantageous here in that it prevented cells from adhering to the 
substrate after they had settled. 

A typical example of array loading is shown in Figure 7-1, which shows the loading of a 
1x8 array with calcein-labeled HL-60 cells.  The first image (Figure 7-1A) was taken 5 sec after 
the application of flow, but before any cells were loaded into the array.  One cell (solid arrow) is 
nearing trap #6, while two other cells (dotted arrows) approach trap #3.  In Figure 7-1B, the first 
cell has been trapped, and by Figure 7-1D, 9.5 sec after the start of the flow, the two cells 
denoted by the dotted arrows have been loaded into trap #3.  Figure 7-1F and Figure 7-1G show 
a similar situation with two cells being loaded into trap #5.  Figure 7-1D and Figure 7-1E show a 
cell (solid arrow) that is being repelled from the post and is driven crosswise against the flow 
into trap #4.  23 seconds after the start of flow, six of the eight traps have been loaded with cells.  
Since one trap (#2) does not work, this means that six of seven functional traps have been loaded 
in 23 seconds. 

This loading sequence, which is typical, demonstrates a few common themes in operating 
these traps.  First, in the loading phase, when the applied flow is much less than the release 
flowrate for the given operating conditions, it is likely that more than one cell will be loaded into 
a given trap.  Second, the actual loading time will vary with cell concentration and flowrate—
introducing a high concentration of cells will load the trap very quickly, but will also make it 
much more probable that >1 cell will be trapped in a given site.  Obtaining one cell-per-trap, 
after loading, is the topic of the next section.  Third, the trapezoidal structure of the posts aids the 
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loading process—both physically by the obstruction of the posts and also electrically due to the 
lower loading barrier (Figure 4-4). 
Single-cell discrimination 

One of the requirements of the µDAC is that the traps must be able to be set to hold only 
one cell per site.  In Figure 7-1, I show that after loading it is possible that some traps will hold 
more than one cell.  Single-cell discrimination can be performed after loading by applying a 
flowrate that is close to but less than the release flowrate for a given set of conditions.  Starting 
with a loaded trap, I can effect single-cell discrimination by now applying a higher flowrate than 
during loading.  As shown in Figure 7-2, this causes the cells to revolve around each other.  The 
maximum separation between the cells increases as the flowrate increases, until one of the cells 
is released.  This is seen happening in Figure 7-2D at a flowrate of 12 µl/min, 30 seconds after 
the 2nd cell was caught. 

While the operating conditions needed to obtain discrimination are obtained empirically, 
they still follow the pattern shown in Figure 3-3.  One additional complication of using cells is 
that the operating window for obtaining single-cell discrimination is smaller than with beads, for 

 
Figure 7-1: Loading a 1x8 array of traps with calcein-labeled HL-60 cells.  Shown are fluorescence images 
extracted from video with the post locations superimposed and denoted by gray circles.  The cell intensities were 
scaled and gamma-shifted to make them easier to visualize.  The flowrate was 10 µl/min from left to right while the 
electrodes were energized at 3V and 20 MHz.  The time stamp of the frames (after the initiation of flow) is given in 
the bottom left of each frame. 
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several reasons.  First, the cells are not as monodisperse as the bead solutions, and thus flowrates 
that work well for single-cell discrimination for a given pair of cells could be too small or too 
large for another pair.  In addition, cells have larger distributions of electrical properties, 
narrowing the window even further.  However, the ability to perform single-cell discrimination 
on a given trap with a given pair of cells is fairly robust, being repeated many times with many 
different sets of cells over the course of using these devices.  
Independent trap control 

Another designed property of these trap arrays is the ability to independently toggle traps 
on and off by varying the potential on only one electrode.  In Figure 7-3 I show an 
implementation of this with a 1x8 array of electrodes that has been loaded with seven calcein-
labeled HL-60 cells at 3V and 20 MHz under a flow of 10 µ/min.  One-by-one, I have turned off 
each trap, and the cells in those traps have been released and have flowed away.  While this is 
not significantly different that the experiment depicted in Figure 6-3, the demonstration with 
cells is a necessary step toward validation of the µDAC. 

 
Figure 7-2: Single-cell discrimination.  Shown is a time sequence of fluorescence images extracted from video with 
the superimposed post locations denoted by gray circles.  The arrows follow a particular cell over time, illustrating 
the back-and-forth motion of the cells around each other.  The cell intensities were scaled and gamma-shifted to 
make them easier to visualize.  The flowrate was 12 µl/min from left to right while the electrodes were energized at 
3V and 20 MHz.  The total time from 2nd-cell capture to release was 30 sec.   
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Figure 7-3: Independent trap control.  Shown are a series of composite brightfield and fluorescence images 
illustrating selective and independent trap control.  Seven calcein-labeled HL-60 cells, trapped in a 1x8 array, are 
individually released in a defined yet arbitrary manner in Panels 1 to 8.  The arrows indicate the cell locations, while 
the black box indicates the trap that was just turned off.  Electrodes were energized with 3V at 20 MHz and flow 
was from left-to-right at 10 µl/min.    
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7.2.2 Quantitative operation 
Holding with cells 

Following qualitative validation of the operation of the small array with cells, the first 
quantitative experiments sought to determine if Figure 6-7 gives a correct representation of the 
holding characteristics of cells.  Given the validation experiments performed with beads in 
Chapter 6, the idea here was not to validate the modeling but rather to determine if the electrical 
model of the cell that I used was reasonable.  The reason for this is that the difference between 
beads and cells will only manifest itself in the CM factor (and, if they are different sizes, in the 
R3 factor).  Thus, if the bead experiments compare well with the model predictions, which they 
do, then any deviations with cells can be isolated to an incorrect model for the CM factor. 

I performed holding experiments with ten different unlabeled cells in one of the traps of 
the same device used in Chapter 6.  I varied the frequency between 1 MHz, 10 MHZ, and 20 
MHz, and chose three voltage points 1V, 2V, and 3V.  Each cell was used for between one and 
four data points, depending on whether I could retrieve it after it was released, for a total of 14 
data points.  I obtained the diameters of each of the cells from images taken with the CCD 
camera.  The average cell diameter was 11.4 µm, with a range of between 9.3 and 14.4.  This is 
fairly close to the cell diameter of 12.5 µm that I used in the model predictions. 

In Figure 7-4 I show the results of the holding experiments at various frequencies 
superimposed on top of the holding predictions at one frequency—20 MHz (from Figure 6-7).  
Even though the predictions were made using a single cell size and a single frequency, they can 
be useful in orienting the comparison.  Two features are apparent in the comparison.  First, the 
predicted results at 20 MHz are fairly close to the actual data at all frequencies, indicating that 
the model for the CM factor is not too far off.  Second, there is no significant frequency trend 
amongst the data taken in Figure 7-4.  However, the CM factor that I used for these cells, and 
shown in Figure 7-5, has a large difference between the lowest frequency of 1 MHz (CM=-0.32) 
and the two higher frequencies—10 MHz (CM=-0.10) and 20 MHz (CM=-0.09).  This difference 
would cause the predicted holding characteristics at 1 MHz to be much larger than all the data 
shown in Figure 7-4.  The fact that the data match the f=20 MHz predictions well suggests that 
the predicted CM factor at that frequency is accurate, and that the dispersion at ~1 MHz (Figure 
7-5) needs to be shifted to lower frequency to increase the size of the plateau between 10 and 50 
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Figure 7-4: Results of cell-holding experiments at various frequencies superimposed on the predicted holding 
characteristics for 12.5-µm diameter HL-60 cells at 20 MHz (from Figure 6-7, using Cm=1.6 µF/cm2). Plotted is data 
for cells taken at 1 MHz (○), 10 MHz (□), and 20 MHz (◊).  
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MHz. 
To determine which parameters in the model for the CM factor influence this plateau, one 

can take the appropriate limits of the CM factor expression of Eqn. (1-3).  One simplifying 
assumption is that in most cases (including here) the membrane conductance (Gm) can be 
neglected.  With this assumption, the approximations for the frequency dependencies of the CM 
factor for cells in highly conductive media are shown in Figure 7-6.  A quick check of the 
approximate dependencies shows them to be plausible.  For instance, at low frequencies, the 
situation is conductivity dominated (Eqn. (1-4)), with the cell conductivity being represented by 
its surface conductance and cell radius.  At high frequencies, the situation is permittivity 
dominated (Eqn. (1-5)), with the permittivity of the cytoplasm representing the cell.  The CM 
factor at MHz frequencies, in the region of interest, is also conductivity dominated but this time 
with the cell represented by its cytoplasmic conductivity. 

Examining the 1 MHz dispersion, one sees that its frequency is controlled by the 
membrane capacitance (Cm), since the medium conductivity (σm) is fixed and the cell radius (R) 
is known.  Thus, to decrease the dispersion frequency, one must increase the membrane 
capacitance.  Increasing this value from 1.6 µF/cm2, used in the predictions of Figure 6-7, to 4.0 
µF/cm2, does indeed move the dispersion to lower frequency without disturbing the plateau 
levels (Figure 7-5).  In addition, modeling the CM factor for the smallest measured cell size 
gives a worst-case scenario, since the dispersion frequency will be highest for the smallest cells 
(Figure 7-6).  With this membrane capacitance, there is still a difference in the CM factors at 1 
MHz and 20 MHz, but it is much smaller—CM=-0.16 at 1 MHz and CM=-0.09 at 10 MHz and 
20 MHz.  Increasing the membrane capacitance further would reduce this difference even more.  
However, increasing the value too much would lead to overoptimization past the limits of the 
measurements and possibly to a non-physical membrane capacitance. 

Is Cm=4.0 µF/cm2 itself a reasonable result?  Huang et al.’s measurements found a 
membrane capacitance for HL-60 cells of 1.6 ± 0.95 µF/cm2 [81], and which is lower than the 
that being considered here.  The chosen value of Cm is still plausible, however, because 1) it is in 
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Figure 7-5: CM factor for 9.3-µm HL-60 cells when the membrane capacitance is 1.6 µF/cm2 (—) and 4.0 µF/cm2 
(▬).  The calculated CM factor for Cm=1.6 µF/cm2 is similar to that of Figure 4-10B.  Also indicated on the plot are 
vertical lines representing the three frequencies where experimental holding data were taken.  
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the µF/cm2 range typical of cells, 2) different cell populations cultured under different conditions 
can be expected to yield diversity in their electrical properties, and 3) Huang et al.’s values were 
determined for cells in low-conductivity media, and the membrane electrical properties may be 
dependent on the suspension medium.  Thus, the value of 4.0 µF/cm2 is plausible.  More 
extensive experiments could refine these values, leading possibly to an alternate hypothesis, but 
is beyond the scope of this thesis. 

In Figure 7-7 I plot the effects of this change in the membrane capacitance on the 
predicted holding characteristics.  Here I have only simulated the characteristics at V=1V, 2V, 

 
Figure 7-6: CM factor HL-60 cells with the approximations for the various frequency dependencies indicated.  The 
solid arrows indicate approximations to the CM factor in various frequency regimes, while the dotted arrows 
indicate the approximate dispersion frequencies separating those regimes. 
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Figure 7-7: Effects of changes in the membrane capacitance on the predicted holding characteristics of 9.3-µm HL-
60 cells when their membrane capacitance (Cm) is (A) 1.6 µF/cm2 or (B) 4.0 µF/cm2.  Plotted are the predicted  
holding characteristics at 1 MHz (—○), 10 MHz (--□--), and 20 MHz (-·◊-·), for cells in traps with 19-22.5-µm 
diameter posts.  The results at 10 MHz and 20 MHz are indistinguishable and thus overlap.  Increasing the 
membrane capacitance lessens the difference between the holding characteristics at different frequencies.  
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3V, and so the results are not as smooth as for finer simulations performed elsewhere in this 
thesis.  The results clearly indicate that increasing the membrane capacitance decreases the 
differences between the holding characteristics at higher frequencies (10 MHz and 20 MHz) 
versus those at 1 MHz, which is what was predicted.  Specifically, the maximum difference in 
holding characteristics versus frequency goes from 13 µl/min for Cm=1.6 µF/cm2 to 4 µl/min for 
Cm=4.0 µF/cm2.  The results for Cm=4.0 µF/cm2 still have some frequency dependence, but the 
magnitude is small enough to be within the experimental uncertainties. 

Figure 7-8 shows the final results of superimposing the experimental cell holding data on 
top of the extents of simulations encompassing the parameter space.  For there results I 
performed simulations across the measured cell diameters (9.3 µm to 14.4 µm), the 
experimentally applied frequencies (1 MHz to 20 MHz), as well as the two post profiles that I 
determined in Chapter 6 spanned the as-fabricated geometries.  The minimum and maximum 
limits of all these simulations were extracted and comprised the predicted space. 

All the cell-holding results fall within the predicted space, lending credence to the chosen 
form of the CM factor.  Further optimization could be employed to reduce the size of the design 
space, but would not be appropriate here given that there is not much data and thus not much 
statistical significance.  The goal of these experiments was to verify that the cell holding 
characteristics were not radically different than predicted, and this has been accomplished. 
Calcein loading 

One of the most interesting properties of the µDAC is the ability to monitor the 
fluorescent dynamics of multiple individual cells.  To demonstrate this, I used a simple calcein-
loading assay, whereby the non-fluorescent precursor calcein-AM is passively loaded into cells 
through the cell membrane.  Once inside a viable cell, the calcein-AM will be cleaved by 
cytoplasmic esterases to form a non-cell-membrane permeant fluorophore, thus turning live cells 
green. 

I performed this assay by introducing unlabeled HL-60 cells into the chamber and 
trapping them in the array.  After they were trapped, I introduced calcein-AM in the assay buffer 
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Figure 7-8: Cell holding data overlaid with a patch (light gray) denoting the extents of the predicted parameters.  
The predictions spanned the measured cell sizes of 9.3-14.4 µm, frequencies of 1 MHz—20 MHz, and post top 
diameters of 18.5-19 µm. All the data lies within the predicted space.  
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into the chamber, at a concentration of 10 µM and a flowrate of 10 µl/min, and monitored the 
cells’ fluorescence over time.   

Figure 7-9 shows four time-sequence images of the loading of five traps from one run. 
Image analysis at the end of the experiment, upon releasing the cells, indicated that traps #2 and 
#3 contained two cells at the end of the experiment.  Other image analysis, using a high-
magnification objective, suggested that trap #5 contained two cells at the beginning but not at the 
end of the experiment (it is unclear when the 2nd cell was released from that trap).  It appears that 
traps #1 and #4 contained only one cell for the entire experiment.  The images clearly indicate 
that the cells are getting brighter over time.  The last panel, Figure 7-9D, shows that cells in two 
of the traps (#2 & #3) have disappeared because I toggled their traps to release them.  Thus, this 
figure shows the observation of fluorescence information over time on a minimum of two 
individual cells—and possibly up to five, depending on when the 2nd cells entered/exited the 
traps—followed by sorting. 

One can also extract quantitative fluorescence information from these images.  The 
choice of which fluorescent parameter to follow–mean fluorescence, maximum fluorescence, or 
some other parameter—would presumably be dictated by the particular assay being performed; 
for these assays I simply monitored the mean and maximum intensities of the cells. 

 

 
Figure 7-9: 10 µM calcein loading of HL-60 cells.  Shown is a time sequence of fluorescence images with the 
superimposed post locations denoted by gray circles.  The timepoints of the images are shown in the lower left 
corners.  The experimental parameters were V=3V, f=20 MHz, flowrate=10 µl/min.  The image pixel values were 
linearly adjusted to maximize the intensity of (C), with the same transform subsequently applied to panels A,B, & D. 
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Figure 7-10 shows the results of extracting this information from the sequence of images.  
In these plots I show the mean (Figure 7-10A) and maximum (Figure 7-10B) intensities in each 
of the traps over time, as well as the normalized mean intensity (Figure 7-10C) and the cell area 
(Figure 7-10D).  The mean intensities of each of the curves have been shifted relative to each 
other to ease comparison.  The normalized mean intensities (Figure 7-10C) were determined for 
each site by normalizing the mean intensities to the minimum and maximum encountered 
intensities during the experimental time course.   

One can see that the mean fluorescence intensities of the cells in the five traps increases 
over time, following similar kinetics, with a 50% rise time of ~20 minutes (Figure 7-10C).  The 
mean intensities of the cells increase approximately 800 units over the background.  Although it 
appears as though the cells’ fluorescence saturates near the end of the experiment, this could also 
be due to the saturation of the camera at that exposure setting—the maximum intensities of some 
of the cells flatten out at that time period.  Since I did not run the experiments longer it is 
impossible to determine if the cellular fluorescence saturated or not.  In practice, I found that 
cells loaded with calcein in tubes for up to ~50 minutes displayed only marginally higher 
fluorescence intensities, suggesting that the cellular fluorescence is indeed saturating. 

Also apparent in the figure are discontinuities in the fluorescence intensities, e.g., Figure 
7-10C at 23 minutes.  This is due to the fact that several times during the experiment (at t=13, 17, 
& 23 minutes) I had to reduce the camera sensitivity to avoid saturation.  Although the pixel 
values can be linearly scaled to account for this, the information extracted from the images does 
not follow these simple rules.  The reason for this is depicted in Figure 7-11.  The difficulty is 
that the background noise level does not change 2x when the gain is changed 2x, and since the 
cell will have some intensity distribution due to the different optical path lengths across its 
diameter, the cutoff of this distribution will not scale perfectly, leading to the discontinuities in 
the extracted data, most notably in the extracted cell areas (Figure 7-10D). 

The extracted cell area for trap #5 shows a very large spike at 13 minutes.  The reason for 
this is that the setup was not properly shielded from the light at this timepoint, leading to a much 
larger background level and thus a significantly deviation in the cell intensity. Since the cell(s) 
was fairly dim at this timepoint, however, it did not affect the extracted intensities.  In addition, 
there is a general dip in the intensity values for all the cells at t=37 minutes.  The cause of this is 
unclear, although the fact that it occurred in all the cells suggests that it was an experimental 
artifact, perhaps due to a short-term decrease in lamp intensity. 

These last few issues are experimental artifacts that could easily be corrected.  The result 
of the experiment, however, remains undiminished.  There has been a marked increase in 
fluorescence due to the introduction of a “stimulus”, in this case calcein, followed by sorting 
after the experiment was complete. 
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Figure 7-10: Calcein loading at 10 µM. Plotted is the time course of fluorescence of cells in the five traps shown in 
Figure 7-9 due to injection of 10 µM calcein solution.  Shown are the (A) mean intensity over the cell area, (B) 
maximum intensity, (C) normalized mean intensity, and (D) cell area.  The mean intensities in (A) are each offset 
400 intensity units for clearer display.  The error bars denote the standard deviations of the mean intensities across 
the cell area.  The normalized mean intensity (C) was determined by normalizing the mean intensity values (A) to 
the minimum and maximum values over the time course.  A threshold value of 35 was used to extract these results.  
Flow was initiated at t=0 minutes.  The values are all adjusted for a camera exposure time of 3 sec and a gain of 4. 



 122

actual cell size

background

distance

flu
or

es
ce

nc
e

apparent cell size,G=1

apparent cell size,G=2

G=1
G=2

 
Figure 7-11: Effect of changing the camera sensitivity on the extracted parameters.  Depicted are the recorded 
fluorescence pixel values over the cell area when the camera gain is changed from G=1 to G=2.  Since the intensities 
increase but the background level does not, the apparent cell size changes. 

Although the fluorescence intensities of the cells in Figure 7-10 increase over the 
threshold 11 minutes after the start of flow, examination of the actual images shows that their 
fluorescence is visible 8 minutes after the initiation of flow.  Their intensity at this timepoint is 
lower than the threshold used in the data extractions, which is why that point is not included in 
Figure 7-10.  The lag time between start of the flow and the initiation of fluorescence is 
appropriate given that the measured volume between the 4-way valve and the chamber is ~94 µl, 
and the flow rate was 10 µl/min.  This gives a mean time of entry of the calcein of approximately 
9.5 minutes.  Due to the parabolic flow profile, however, the calcein will disperse as it is being 
convected, and should arrive somewhat earlier than 9.5 minutes, which is consistent with these 
observations. 

Decreasing the void volume would decrease this lag.  Actually, the µDAC design 
specified a 20 µl void volume to meet the system requirements.  The reason for the much larger 
void volume in the actual device is simply a constraint of the current experimental setup.  
Optimization of this setup could easily reduce the void volume to the appropriate value. 

In Figure 7-12 I show the results of a similar experiment, except that this time the calcein 
concentration was 1 µM.  In this experiment I have trapped cells in four traps—2 cells in each of 
traps #1 and #4 and 1 cell/trap in trap #2 and #3—under the same conditions as before.  Two 
features distinguish these results.  First, the mean intensity values are much lower than with the 
10 µΜ-calcein injection (200 units, versus 800 units for the 10 µM injection), which is consistent 
with a lower intracellular concentration due to the higher extracellular concentration.  Second, 
the loading kinetics are slower, since the time to achieve 50% of the maximum fluorescence is 
~35 min for the 1-µM injection (Figure 7-12C) and ~20 min for the 10-µM injection (Figure 
7-10C). 

Again there is a discontinuity in the measurements at t=37 minutes due a reduction in the 
camera gain. 
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Figure 7-12: Calcein loading at 1 µM. Plotted is the time course of fluorescence of four cells due to injection of 1 
µM calcein solution.  Shown are the (A) mean intensity over the cell area, (B) maximum intensity, (C) normalized 
mean intensity, and (D) cell area.  The mean intensities in (A) are each offset 100 intensity units for clearer display.  
The error bars denote the standard deviations of the mean intensities across the cell area.  The normalized mean 
intensity (C) was determined by normalizing the mean intensity values (A) to the minimum and maximum values 
over the time course.  A threshold value of 20 was used to extract these results.  Flow was initiated at t=0 minutes.  
The values are all adjusted for a camera exposure time of 3 sec and a gain of 4. 
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Fluorescence intensity calibrations 
In order to compare the fluorescence intensities between the two experiments (and even 

over the course of one experiment), I need to demonstrate that the optical setup does not drift 
over the course of an experiment and over different days.  The factors that could change are the 
camera gain and exposure-time settings and the Xenon lamp intensity.  The fluorescence 
intensity should be linear with camera gain and exposure time, and so changes between these two 
factors can be correlated by simply ratioing the pixel values.  This is what was done over the 
course of the two experiments, and worked well apart from difficulties with the background 
levels. 

The Xenon lamp intensity is more likely to be a source of error.  If the lamp intensity 
varies then the measured calcein intensities need to be corrected for this in order to make 
comparisons between runs and even during runs.  Since I do not have the ability monitor the 
Xenon lamp intensity with the current setup, I performed a surrogate experiment to examine the 
short- and long-term variations in the lamp intensity.  Using a set of fluorescein-labeled 
microspheres, I took identical images of the same field of data over several days under identical 
exposures. Performing data analysis (similar to that done on the dynamic assays) on several 
beads in the fields, the variations in the mean intensity values over a period of seconds were 1-
2%, while over 2 hours it was ~18% and between two different days was ~35%. 

Thus, since both reported experiments were performed over the course of a few hours, 
variations in the optical setup are unlikely to account for the differences in the measured 
intensities.  This correlates with my visual inspections, which indicated that the 10-µM injection 
became much brighter and had faster kinetics than the 1-µM injection.  Therefore, I conclude 
that the experimental results represent real differences in calcein loading due to the changes in 
the calcein concentration. 
Calcein leakage 

The inverse experiment to calcein loading is calcein leakage.  In this experiment, I take 
HL-60 cells that have been preloaded with calcein and permeabilize their membranes with a 
detergent solution.  Increasing the permeability of the membrane allows the calcein to leak out, 
decreasing the cellular fluorescence intensity. 

Figure 7-13 shows the results of an experiment demonstrating calcein leakage.  The 
holding parameters—V=3V, f=20 MHz, and a flow of 10 µl/min—are the same as for the calcein 
loading experiments.  The three cells’ areas and mean fluorescence intensities are fairly constant 
over the course of the experiment until the cells disappear, which occurs between 19 and 25 
minutes after the start of flow.  Specifically, the cells’ mean fluorescence declines 50% for cell 
#1, 5% for cell #2, and 14% for cell #3 from the initial intensity values.  None of the values 
reach the background intensity value before the cell is lost. 

One reason for this is that as the permeability of the membrane increases due to SDS 
incorporation, it becomes more difficult for the cell to keep its cytoplasmic electrical 
conductivity different than that of the extracellular medium.  As these two compartments 
equilibrate, the CM factor will decrease (Figure 7-6) and the cell will be released.  A second 
reason for the rather shallow decline is that I observed that individual cells experienced a sharp 
fluorescence loss over a period of seconds directly before release.  Images were taken every two 
minutes, however, which is too slow to capture these dynamics. 
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Figure 7-13: Calcein leakage at 100 µg/ml. Plotted is the time course of fluorescence of three cells due to injection 
of SDS solution.  Shown are the (A) mean intensity over the cell area, (B) maximum intensity, (C) normalized mean 
intensity, and (D) cell area.  The mean intensities in (A) are each offset 100 intensity units for clearer display.  The 
error bars denote the standard deviations of the mean intensities across the cell area.  The normalized mean intensity 
(C) was determined by normalizing the mean intensity values (A) to the minimum and maximum values over the 
time course.  A threshold value of 15 was used to determine the cell areas.  Flow was started at t=0 minutes.  The 
images were obtained at a camera exposure time of 1 sec and a gain of 1. 



 126

As with the calcein loading, the leakage experiments contain a few experimental artifacts.    
The area and normalized fluorescence of cell #1 have peaks at 6 and 9 minutes.  Direct 
observation of the images suggests that this is due to 2nd cells being transiently trapped during 
those timepoints.   Cell #2 only became trapped after the first image was taken, which is why it 
does not appear for the t=0 timepoint.  Cell #3 appears to be lost after 19 minutes, but then 
reappears at 23 minutes.  This is no doubt due to a second cell that was trapped in this site after 
the first was lost. 

Instead of calcein leakage, the decline in cell intensity could be due to field-induced cell 
death, random cell death, or just stochastic loss of a cell from a trap.  This is unlikely, however, 
for several reasons.  First, a control experiment under the same conditions but without SDS did 
not result in a significant decrease in calcein intensity nor loss of cells from traps over a period of 
34 minutes (data not shown).  Second, I have held both labeled and unlabeled cells in traps for 
>90 minutes without cell loss.  Third, repeating this experiment resulted in a similar behavior on 
another set of cells, with loss of fluorescence occurring stochastically ~15-21 minutes after the 
onset of flow (data not shown).  

These results represent a second validation of the ability to monitor dynamic fluorescence 
information on multiple single cells.  They demonstrate that it is possible to perform a variety of 
assays with these trap arrays, with both increasing and decreasing fluorescent responses.  They 
also expose the challenges in having a robust optical setup. 

7.3 Discussion 

7.3.1 Single-cell manipulation 
The results presented in this chapter demonstrate that these traps are well suited for 

manipulating multiple single cells.  The main results are three-fold.  First, it is straightforward to 
load the array with cells—it does not take special, tedious procedures to accomplish this.  This is 
primarily a result of the strong as-designed holding strength and the trapezoidal orientation of the 
traps, which “focus” cells into the traps.  Second, the ability to turn traps on-and-off by toggling 
one electrode has again been validated, a feature that would probably have not been anticipated 
without the results of the modeling.  Third, the measured holding characteristics for these traps 
are close to what was predicted, with the predicted window encompassing the measurements.  
Thus, the a priori design has been extended to the desired endpoint; I needed a trap that operated 
with cells in a certain fashion, and with the modeling tools was able to design a trap that met 
those requirements. 

The trap operation at 10 µl/min with 3V applied at 20 MHz for the majority of the results 
shown in this chapter was not random—it lies directly within the calculated operating window of 
Figure 7-8.  It is also the operating condition that was determined in Chapter 4 at the conclusion 
of the trap design to be the one that would meet the system requirements of the µDAC.  Thus, 
again the modeling environment has shown that it can absolutely predict trap performance in a 
variety of experimental situations. 

Single-cell discrimination is not a designed feature of these traps—nowhere in the 
modeling can I determine the operating conditions necessary for this.  However, this step is 
crucial to successful operation of the trap array, and optimizing this variable will be necessary in 
the next generation of traps.  It is plausible to imagine that many trap geometries will operate in 
such a fashion that conditions will exist where only cell could be held.  However, determining 
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how to manipulate the geometries such that this operating window is large and resistant to 
changes in cell size and electrical properties will be crucial for robust operation of large arrays. 

An alternative approach would be to keep the single-cell operating window fixed and use 
the loading step of the array to select for large cells and favorable electrical properties.  For 
example, by setting the flowrate during loading to be relatively high, say 13 µl/min with a 3V 
and 20 MHz excitation, I would only allow the largest of cells to be trapped in the array, and thus 
achieve a relatively monodisperse trapped population.  This would be useful if one were to 
perform subsequent electroporation of trapped cells, since the optimal electroporation conditions 
change with cell size.  However, for other biological assays, performing this selection at the 
beginning of the assay might select out cells that display interesting phenotypes. 

The task of ensuring that only one cell was in a given well was difficult to perform for the 
dynamic assays reported in this chapter.  For the calcein loading assays, releasing the cells at the 
end of the experiment allowed me to determine how many cells were in a given site, and by 
observing cells revolving around each other under flow I was sometimes able to determine the 
number of cells/site before or during an experiment.  Unfortunately, this is not a practical 
procedure as the number of sites is scaled up.  The extracted fluorescence data also does not give 
a clear indication of which traps contain >1 cell.  The maximum intensities and cell areas of the 
1-µM calcein loading experiment (Figure 7-12) show that traps #1 and #4, which contained two 
cells, were clearly higher than the other two traps.  However, the 10-µM calcein loading 
experiment (Figure 7-10) contains no such clear correlation between the extracted information 
and traps that contained two cells (#2, #3, and #5).  Correct loading and monitoring of the single-
cell traps will be a necessary step for the next generation of traps. 

Understanding the behavior of the cells revolving around each other, observed in Figure 
7-2, will be crucial to designing single-particle traps.  Although I am not able to provide a 
definitive explanation for the phenomenon at this point, I can speculate as to its origin.  When 
two similar polarizable particles are placed close to each other in an electric field, their induced 
dipoles will attract each other.  Thus, the revolving could be due to attraction between these 
induced dipoles or due to movement of the dipoles within the potential energy well of the trap.  
The latter seems more probable, as the attraction between the induced dipoles decreases with 
separation, and thus would probably not cause such revolving to occur.  As the particles pass by 
each other, however, the dipolar attractive forces would affect the dynamics of the process.  A 
proposed mechanism for the revolving is that the variation in drag force with height introduces a 
non-zero curl into the system—the higher particle being pushed more strongly.  This will send it 
to the back of the trap, where it feels a stronger restoring pushing it back to the center. 

7.3.2 Lag time to stimulus entry 
A major challenge with using pressure-driven flow is that the parabolic flow profile 

causes the solute to disperse faster than due to diffusion alone.  The phenomenon is known as 
Taylor dispersion [171], and the end result for the movement of solute in a circular tube—like 
the HPLC tubing used here, is that the diffusion coefficient for calcein can be replaced by a 
dispersion coefficient, still obeying the diffusion equation, but given by 

( )192
Pe1

2
+= DK  (7-1)

where K is the dispersion coefficient, D is the diffusivity of the solute, and Pe is the Peclet 
number, which is a non-dimensional quantity that represents the interplay between convection 
and diffusion, and for a circular tube is given by 
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D
UR2Pe =  (7-2)

where U is the mean flow velocity and R is the tube radius.  Thus, as the Peclet number 
increases, convective effects dominate diffusive effects. 
 Calcein’s diffusivity in water is 3.3x10-6 cm2/s [172].  A volume flow rate (Q) of 10 
µl/min through the 0.015”-diameter HPLC tubing gives U=1.5 mm/s, which leads to Pe≈1700—
a convection-dominated regime.  In this regime, the dispersion coefficient can be approximated 
by  

D
RUK

48

22

≈  (7-3)

 For the experiments performed in this chapter, where I am flowing through a defined 
length of tubing (L), I can determine how the dispersion length (the length over which the 
concentration will be smeared out) will be affected by the chosen flowrate.  The dispersion 
length (ld), as for diffusion, is approximately Ktld = , where t is the elapsed time.  The time 
can be determined from the measured void volume (94 µl) and the volume flowrate Q.  Inserting 
K into this expression and using the relationship between the volume flowrate and the average 
flow velocity U, one obtains that 

D
QLld π48

=  (7-4)

and thus the dispersion length increases with the square root of the tube length and the flowrate.  
Inserting the appropriate values leads to a dispersion length of 5.3 cm.  In other words, the 
beginning of the plug will the ~5.3 cm downstream than would be expected from the average 
flowrate alone.  This means that the calcein will arrive in the chamber ~35 seconds before 
expected, or after 8.8 minutes, rather than the 9.4 minutes that is expected.   

This arrival time is approximate, since it represents the characteristic dispersion length 
but lower calcein concentrations will be present in the chamber at earlier times.  Thus, the onset 
of dynamic events should be ~<8 minutes, which is indeed what is observed in the experiments. 

7.3.3 Dynamic assays 
The calcein loading and leakage assays are perhaps the culmination of this thesis.  

Starting from the desire to do these assays, I first determined why planar quadrupole traps could 
not be used and then designed traps that could be used for such assays.  In this chapter I have 
finally used these traps for such assays, closing the loop. 

The significance of these results is large.  I have made a small array of traps that can 1) 
observe fluorescence information on 2) multiple individual cells 3) over time, and 4) sort based 
upon that information.  This is the idea behind the µDAC, and its feasibility has now been 
demonstrated. 

The dynamic assays demonstrate that introducing various “stimuli” into the system cause 
measurably different changes in the both the values as well as the dynamics of the responses, and 
thus that sorting based upon dynamic response is a viable option; the extension to biologically 
relevant assays does not involve any new fundamental developments. 

These dynamic assays also illustrate some of the challenges involved in designing the 
next set of traps and the assays to use with them.  First, it can be difficult to determine absolutely 
whether a cell in a given image is the same as the one in an image taken at a later timepoint. This 
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is exacerbated by the challenge of obtaining and maintaining only one cell/site. Because of 
photobleaching effects, it is not practical to monitor the cells continuously over the course of an 
experiment.  Other ways must be found to secure this information.  Two are apparent—electrical 
monitoring of the electrode impedance, which may be able to detect the presence of a cell, and 
development of an electrical “fence” to prevent cells from approaching the array once it is 
loaded.  The impedance technique would have the added advantage of being able to detect when 
two cells are in a trap, which is difficult to do now purely from fluorescence images.  A third 
option would be the development of a trap whose electrical characteristics could be tuned such 
that one set of conditions would make it easy to load (much like the current trapezoidal trap), 
while another set of conditions would make it very difficult to load.  The modeling environment 
can aid in the design of these improvements. 

Another issue is that the cells rotate under the imposition of flow.  This means that 
subcellular localization of the fluorescence would be extremely difficult.  While it is conceivable 
that one could differentiate between membrane-bound and nuclear fluorescence, investigating 
trafficking within the cell is very difficult at this stage.  In addition, even observing fluorescence 
from the total cell is affected by the rotation.  Since most cells are not perfectly spherical, the 
rotation induces a time-varying change in the fluorescence intensities and measured cell 
diameter, which could lead to misleading data. 

Another interesting challenge in using these traps is in performing the data analysis.  
Much like DNA microarrays, collecting the data is only half the battle.  Making sense of a large 
number of spots, especially to extract meaningful dynamic information, is nontrivial.  The 
challenge is to determine whether deviations result from “real” population inhomogeneities or 
whether they are experimental artifacts or uninteresting biological noise.  Thus, posing the 
correct question and including the proper controls will be crucial for the proper use of such 
arrays.  In-depth investigation of each cell at each time point, while manageable at the proof-of-
concept stage, will not scale well.  Again, however, working at the microscale helps delivers 
solutions to these problems.  For instance, one could use parallel-flowing low-Reynolds number 
flows to perform multiple simultaneous experiments on a side-by-side cell population, thus 
including the proper controls.  

7.4 Conclusions 
In this chapter I have demonstrated the use of the small trap arrays with cells.  I have 

demonstrated general operation of the arrays—loading, single-cell discrimination, independent 
trap toggling, cell holding —and dynamic fluorescent assays using calcein loading and leakage 
as two model systems.  The results demonstrate proof-of-concept operation of the µDAC and 
that the modeling tools developed earlier can indeed be used for real-world trap design based 
upon a set of system parameters. 





 131

Chapter 8: Conclusions 
 
 

In this chapter I will conclude with a discussion of the major contributions of this thesis.  I will 
then give my outlook on the future, the challenges that need to be addressed, and in turn possible 
avenues of future work to address those challenges. 

8.1 Thesis contributions 
The contributions of this thesis span several disciplines.  The “big picture” 

accomplishment is the development and implementation of the µDAC concept—a planar array 
of single-cell traps coupled with sorting based upon dynamic assays.  The results in Chapter 7, 
demonstrating dynamic calcein assays on a 1x8 array of DEP-based traps, are the synthesis of 
this contribution.  Its proof-of-concept operation opens the door to a whole set of previously 
unavailable assays—namely, those based upon dynamic information content. 

In the field of dielectrophoresis, this thesis greatly extends the state of sophistication of 
DEP-based traps.  I have developed modeling tools that for the first time allow for a priori 
design of DEP-based particle traps based upon a set of system parameters—in this case, 
operation under a certain flowrate while minimizing the shear stress and electric fields to which 
the cells are exposed.   

The modeling tools also introduce a number of contributions.  The first is that the 
modeling gives general insight into the interplay between the gravitational, DEP, and HD drag 
forces operating on particles in these traps at the microscale.  Second is the incorporation of an 
algorithm that allows for the computation of arbitrary DEP force orders, removing limitations of 
the trap geometries that can be simulated.  Third is the open nature of the modeling environment, 
in that it can use as inputs HD forces and electric fields computed using specialized tools.  
Finally, the use of a force formulation (rather than potential functions) makes it straightforward 
to add in any other forces, such as EHD flows.  

The experiments with the planar quadrupole introduced a new quantitative measurement 
for examining DEP-based single-particle traps—namely, the release flowrate.  Not only is this a 
robust measurable parameter, but it will also often be the parameter of interest in microfluidic 
systems.  In addition, the experiments, when coupled with the model, illustrate the deficiencies in 
the planar quadrupole for strong holding against flow. 

The end result of the use of the modeling tools has been the development of the extruded 
trap and the demonstration of its stronger holding.  The extruded trap has many novel 
characteristics—it is a batch-fabricatable, extruded-electrode trap design incorporating a 
trapezoidal structure and substrate shunts to improve holding.  In addition, the trap is electrically 
switchable and easily arrayable.  It represents a vast increase in the sophistication of DEP-based 
single-particle traps. 

Although the fabrication process did not require any groundbreaking advances, the 
experience gained in learning to use SU-8 as a removable mold for electroplating will be useful 
for other researchers.  In addition, the packaging scheme employed for the extruded traps solves 
many problems encountered in these systems—that of interfacing electrical, optical, and fluidic 
inputs to a microfabricated device with a package that is easy-to-use and robust. 
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Demonstrating that the trap is as strong as predicted, within the limits of the 
measurements, presents a second validation of the modeling tools and the proof that the 
modeling can be used to actually design real traps that meet system parameters on the first try. 

Finally, showing proof-of-concept operation with cells validates that DEP-based particle 
traps such as these can be useful to bioscience, and that really the end of this thesis presents the 
beginning of a rich vein of research that can be both intellectually and practically rewarding. 

8.2 Outlook, challenges and future work 
The culmination of this thesis represents the genesis of a new field of inquiry—electric 

field-mediated cellular assay systems.  The system application described throughout this thesis—
the µDAC—has been realized in proof-of-concept form.  In addition, the idea of cell sorting 
based upon dynamic response, even if implemented in a form widely divergent of the µDAC, is 
extremely powerful. 

Nonetheless, several significant challenges exist in bringing the µDAC from the 1x8 
array depicted in Chapter 7 to a truly useful device.  These can be divided into issues related to 
manufacturing a useable device, operating it, and finally how to verify it to obtain biologically 
relevant information.  I conclude with thoughts on likely applications of the µDAC. 

µDAC manufacturing 
Improvements need to be made in manufacturability.  The design was not optimized with 

respect to expected variations in the manufacturing process.  The holding characteristics have 
been shown to be fairly sensitive to trap diameters and electrode taper angles, and since it is 
difficult to control these parameters, the design is thus not tolerant to manufacturing variations.  
In addition, the released posts were fairly fragile during processing and packaging (although not 
during operation).  These issues could be overcome by either using a different trap geometry or 
changing the post dimensions to make them more stable.   

In addition, for large-scale trapping (e.g., >20), it may be necessary to use a simpler 
fabrication process and thus a radically different trap geometry.  Robust operation with 
biological materials is extremely challenging even on blank substrates, and thus a simple design 
will be crucial.  The results in Chapter 3 conclusively show that the planar quadrupole is 
inadequate, but perhaps a simpler trap than the extruded quadrupole exists.  For instance, one 
could position the planar quadrupole over a well in the substrate such that field was pushing the 
particle into the well but that turning off the field would eject the particle. 

µDAC operation 
One must also solve challenges related to operating a large-scale array.  First, one must 

improve the system to obtain robust single-cell holding.  As described in Chapter 7, while it is 
possible to get single-cell discrimination in any given trap, obtaining such discrimination across 
an array of traps, given biological variability, is extremely difficult.  Fortunately, there are 
several possible ways to overcome this.  The most direct route is by implementing close-loop 
control of the trap loading and operating conditions.  One could imagine time-multiplexing the 
applied voltage with an impedance-sensing circuit that would be able to determine when a 
particle had entered the trap.  After sensing the cell’s entry, the electrical excitation could be 
changed to prevent other cells from entering the trap.  Such a trap could be designed using the 
modeling tools so that one excitation would facilitate loading while another would prevent it.  
Optical techniques, using either a generic fluorescence marker (e.g., viability) or even brightfield 
detection, could serve the same purpose and possibly add specificity to the trapping.  Likely 
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issues are to make sure that only one cell is captured—not a doublet—and that debris in the 
solution isn’t mistakenly captured. 

Another way towards robust single-particle loading is to design a trap and operating 
conditions such that single-particle trapping is highly favored over multi-particle trapping.  Such 
a step would require the implementation of modeling to determine the single-particle operating 
regime for a given trap, etc.  This modeling may be complicated because of the need to simulate 
dynamic events—whether an incoming particle can be captured, rather than whether a captured 
particle can be held—with deformable particles.  With this model extension in place, however, 
one could then optimize for single-particle operation.  Using steric effects and fluid-structure 
guiding, it might be possible to design a trap where the capture of one particle served to “close” 
the trap to others.  Since this technique would have simpler electronics (no control system), it is 
advantageous to close-loop control. 

After the ability to load traps with only one particle has been demonstrated, the next 
challenge is to load an array of traps, keep all the cells there over time without exchanging cells 
with the incoming flow, and then release cells so that they can be collected.  The challenge in 
loading a two-dimensional array of traps is in loading the downstream rows, because they would 
be shielded from incoming cells by the upstream rows.  Close-loop control would allow one to 
load the back row first and then move forward.  Alternately, one could have the traps arranged 
two-dimensionally but have the flow meander through the traps and then load them serially.  
This would also need close-loop control.  Other approaches, significantly different than 
presented here, may also solve this problem.  The ultimate goal would be a trap geometry that 
would “pull” a cell out of the flow when unloaded but then be transparent to other cells when 
loaded.   

Ensuring that the cells at one timepoint are the same as at the next timepoint is fairly 
straightforward.  The most significant cause of this uncertainty with the current design is that 
there is no way to “turn off” the incoming flow of cells without turning off the flow.  DEP 
provides an elegant solution here, because it can move particles without affecting flows.  Thus, 
one could have a main DEP barrier at the chamber inlet, and once the traps were loaded this 
would divert all incoming cells to waste without affecting the reagent flow. 

The final operational challenge is to collect released cell populations.  The issue here is 
how to actually transfer the cell or cells released from the array to an external container (e.g., 
384-well plate) without losing the cell(s) or exchanging it with another.  The first issue is to get 
the cells into the flow stream without affecting the cells in other traps.  This could be done by 
either having a dedicated sort channel or ejecting the cells in the z-direction so that they were 
above the traps (for the extruded quadrupole).  Then the cells must be directed to an outlet and 
captured.  Here one could use DEP barriers to direct released cells to a chamber where a DEP 
multi-particle trap would concentrate the cells and then release the cell plug into the outlet.  
Nonetheless, ensuring that single micron-sized cells in flow correctly traverse a >mm-length path 
is extremely challenging. 

Directly related to collecting released cells is obtaining individual trap addressing with 
passive electronics.  Two layers of metal will almost certainly be needed due to the wiring 
complexity, but to minimize external connections one would still like row-column trap 
addressing.  The direct way to implement this requires active electronics at each trap site, which 
would prohibitively increase the fabrication complexity.  Alternatively, one may either use a 
limited number (~100) of directly addressed traps or implement a passive row-column 
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addressing scheme.  It’s unclear how the latter would work, but I am not convinced that it is 
impossible. 

Other challenges exist.  Imaging the arrays will become nontrivial as the number of traps 
increases.  The optimal solution will capitalize on the fact that one knows the cell locations in the 
µDAC to simplify the optics and thus permit high-throughput optical monitoring.  One can 
imagine perhaps an array of microlenses to direct light from each trap to its own individual CCD 
pixel.  Such research has much synergy with that involved in imaging microarrays, and thus 
would have wide-ranging significance.  While I have not examined these issues in depth, 
conversations with optical engineers have indicated that the problems are tractable. 

µDAC verification 
Several issues need to be addressed to be able to extract biologically useful information 

from assays performed with the µDAC.  First, investigating the heating in these microsystems 
will be crucial because the biological community will require proof that the temperature 
excursions are small.  Even though I can assume that the small scale limits induced temperature 
gradients, the results in Chapter 3 strongly suggest that heating can be a major factor in these 
systems and presents one upper limit to the voltages that one can apply at the microscale.  
Fortunately, it should not be too difficult to take the electric field data and flow information and 
port that to modeling to calculate temperature distributions.  Such investigations would also 
include an experimental component to measure the actual temperature distributions. 

In addition, more research needs to be undertaken to determine the effects of the traps on 
cells, either directly thru the electric fields or indirectly due to heating effects.  Given the 
availability of microarray technology, one should be able to determine which pathways are being 
affected in cells exposed to given situations.  With careful experimental design to obtain 
generalizable data, it would then be possible to set operating windows for different assays to 
protect against field-induced artifacts.  This could also feed back into the trap design and array 
implementation itself, creating a µDAC scheme that is tolerant to such effects. 

Using the µDAC for biological assays would also benefit from allowing use with 
adherent cells and or extending it to allow intracellular imaging.  The two challenges are similar, 
in that performing intracellular imaging requires that one stabilize the cell against flow-induced 
rotation, as would be achieved by using adhered cells.  The challenge then is to remove the cell.  
This might done by first trapping the nonadhered cells in the traps, lowering them to the 
substrate so they can attach, performing the assay, and then introducing trypsin into the chamber 
to cause them to detach and be trapped in suspension again.  While attached, the cells are 
amenable to intracellular imaging, although such imaging would slow the throughput of the 
optics.  One might also be able to use polymers whose hydrophobicity is electrically 
programmable, allowing the attachment/detachment process to occur without enzymes.  The 
question of how to intracellularly image nonadhered cells is more challenging, and would require 
somehow pinning the cell down to prevent rotation.  It’s unclear how to do this easily. 

µDAC applications 
Finally, investigations into biologically relevant dynamic assays to be performed with the 

µDAC are warranted.  One simple yet nontrivial experiment that provides new biological 
information—differentiating between two alternate mechanisms in a pathway, for example—
would provide an ideal vehicle with which to get biologists’ attention. 

Examining the proposed assays discussed in §1.2.2 in light of the course of the thesis, I 
can speculate as to where the µDAC might actually be useful for answering real biological 
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problems.  I believe that one of the most powerful applications will be in using luminescent 
assays to tease out the quantitative operation of the cell, resulting in information suitable for 
incorporation into predictive cellular models.  Biological modeling—to understand how 
decisions are made in the cell and then to affect those decisions to attain useful behaviors—is in 
need of assay technologies that can be used to probe model predictions.  Results are needed on 
populations of single cells to get both the mean and the distribution.  Predictions can come in the 
form of time-responses of behavior due to a stimulus, and thus dynamic information is important.  
Where the µDAC has its most power, however, is by allowing the researcher to sort those cells 
that are not responding as desired and investigate their genome to determine how DNA variation 
affects phenotype. 

Another field of inquiry that I find particularly exciting is how dynamic signals convey 
information in the cell.  The idea that the time-course of a signal, rather than its steady-state 
values, is the signal is extremely interesting.  This research is more difficult, however, than 
analyzing cellular models because the questions here are not well defined.  This is because 
although there are examples of signaling thru dynamic information content (e.g., EGF), assay 
technologies to investigate such behavior are not readily available, and thus this field is 
immature.  It is likely, however, that other such pathways exist.  The µDAC, because it can sort 
based upon dynamics, is well suited for probing these problems. 

Other useful modes of inquiry might take advantage of different features of the µDAC or 
may be used in conjunction with the previously described assays.  For instance, one can perform 
concurrent differential experiments by introducing different liquid streams.  This would allow 
parallel assays if the streams contained different reagents.  Or it is possible to use the µDAC as a 
vehicle for applying pN forces to an array of suspended objects.  One could also use the 
electrical nature of the forces to probe for electrical changes in the cell due to changes in 
physiology.  While not discounting these ideas, they are not as inherently interesting to me. 

DEP technology 
DEP technology has other uses for biology.  Given the demonstration that I can design 

high-strength traps, it may be possible to design DEP structures to impose strong forces on cells 
and thus move them around quickly.  Such a system could be used as a cell sorter and possibly 
approach the high sorting rates that other microfabricated devices have been unable to achieve.  
Alternatively, single DEP traps, not encumbered by the requirements of scalability, switchability, 
etc., could be designed to be extremely strong, allowing the probing of forces in the 100’s of pN 
range that are currently unattainable by optical tweezers. 
 
Although many challenges exist, none are fundamentally insurmountable, and thus DEP 
technology and the µDAC in particular have great potential to impact bioscience.
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Appendix A: Derivation of the DEP force on a 
homogenous sphere 

 
 
In this appendix I will derive Eqn. (1-1) & (1-2) using the classical electroquasistatic 

arguments found in [58, 173].  The situation is as depicted in Figure A-1.  The problem involves 
placing a non-conducting sphere with permittivity εp into a non-conducting medium with 
permittivity εm and applying a slightly non-uniform field.  If the field is only slightly non-
uniform, I can assume that the induced dipole is that which would be found in a uniform field 
and that the DEP force is the force on that induced dipole.  Extension to lossy particles/media 
and sinusoidally time-varying fields simply involves introducing phasor notation and replacing 
the static permittivities with their complex (frequency dependent) counterparts. 

The first step is to find the magnitude of the dipole induced in a sphere in a uniform field 
(Figure A-1B).  The potential due to a uniform field zoE iE ˆ=  in spherical coordinates is given 
by 

φcos0rE−=Φ  (A-1)
where r and φ are defined in Figure A-1B.  The problem now involves solving Laplace’s 
equation 02 =Φ∇ for the potential everywhere due to the sphere.  There are two regions, and I 
can try the following solution forms 
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Where A and B are constants to be determined.  Inside the sphere, the field is uniform, but 
outside the sphere the field is a superposition of the original uniform field and a dipole field.  
This formulation already meets the boundary condition at large r, which is that the field should 
reduce to the imposed uniform field.  The boundary conditions at the surface of the sphere are 
that the potential and the normal component of the D field should be continuous.  

 
Figure A-1: (A) A uniform sphere with permittivity εp is placed in a slightly nonuniform field in a medium with εm.  
The problem is decomposed into finding the dipole moment of a sphere in a uniform field (B) and then finding the 
force on a dipole in a non-uniform field (C). 
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Mathematically, this means that 
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 From (A-3) & (A-4) I can solve for A and B and thus the potential everywhere.  The 
second term in the potential for r>R (Eqn. (A-1)) has the form of the potential due to a dipole, 
with B relating to its strength.  Since this is what I am interested in, I need only solve for B and 
put it in a form from which I can extract its dipole moment.  Solving for B I get 
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One sees the origin of the Clausius-Mossotti factor coming about by solving the boundary 
conditions.   

The potential due to a dipole in a medium with permittivity εm is 
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Equating this with the potential due to the induced dipole gives the strength of the induced dipole 
as 
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 Now the problem reduces to finding the force on a dipole p in a non-uniform field (Figure 
A-1C).  This is easiest illustrated in one-dimension, as shown in Figure A-2, and then 
generalized to three.  Two point charges placed along the x-axis a distance d apart are subjected 
to an electric field xxE iE ˆ)(= .  The Coulomb force on the dipole is 

)()( 00 xqEdxqEFx −+=  (A-8)
If the field is only slightly non-uniform, I can represent the field at x0+d by a two-term Taylor 
expansion 
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Plugging this into Eqn. (A-8), one gets that the force on the dipole is 
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where I have substituted in the dipole moment for a dipole oriented along the x-axis is px=qd.  
Thus Eqn. (A-10) shows that a point dipole will only have a force in a non-uniform field, and 
that this force is proportional to the field gradient and the magnitude of the dipole.   

Eqn. (A-10) is for a one-dimensional dipole & field.  To generalize to three dimensions, 
the dipole and the field become vectors and a vector Taylor series is needed for the derivation.  
The result is 

EpFdep ∇⋅=  (A-11)
where one can perform the gradient operation on E first, generating a tensor, or dot p into ∇, 
generating a scalar that acts on E. 

Now that I have the form of the force on a dipole in a non-uniform field (Eqn. (A-11)) 
and the induced dipole in a uniform field (Eqn. (A-7)), I can combine the results to find the DEP 
force.  The force is 

EEF

EpF

dep

dep

∇⋅
+
−

=

∇⋅=

mp

mp
mR

εε
εε

πε
2

4 3  (A-12)

In an electroquasistatic field, the factor EE ∇⋅ can be simplified to 2

2
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Generalizing to sinusoidally varying fields and lossy particles & media, one gets the form of 
)]()(Re[2 23 rEFdep ∇⋅= ωπε CMRm  (A-14)

where now the CM factor has an explicit frequency dependence and the real parts of the field & 
CM factor must be taken to get the force.  This equation is identical to Eqn. (1-1). 

 
Figure A-2: Force on an x-oriented dipole in an x-directed non-uniform electric field. 
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Appendix B: Fabrication Process flow 
 
 

starting material: 1-mm thick 100-mm Pyrex wafers 
all processing in TRL or diesaw room 
   

Step Description Machine Parameters 
 Deposit Ti/Au layer  
1 clean wafer acid-hood Piranha: 3:1 H2SO4:H2O2, time = 10 min 
2 deposit Ti/Au ebeam pump down to 1e-6 torr 
   deposit 1700 A Ti: ramp 1-4 A/s for first 1200 A, 5 A/s for 

next 500 A 
   deposit 5000 A Au: ramp 1-5 A/s for first 1000 A, 5 A/s 

for next 4000 A 
 Define Au interconnect layer  
3 HMDS HMDS 
4 coat wafer coater standard photoresist, standard recipe 
5 prebake prebakeoven 90 deg. C, time=30 min 
6 expose photoresist KS2 time=40 sec 
7 develop photoresist photo-wet-r OCG934 3:2, ~4 min 
8 postbake postbakeoven 120 deg. C, time=30 min 
 Etch Au  
9 etch Au acid-hood 1L of KI-based etchant (rate=28 A/s), time=~210 sec 
10 strip photoresist acid-hood Nanostrip, time=10 min 
 Define electrode holes in SU-8  

11 clean wafer acid-hood Nanostrip, time=12 min 
12 dehydrate hotplate 200 C, time=60 min 
13 uv ozone uv ozone time=25 min 
 clean & level hotplate & clean spacer wafer 

14 coat wafer pispinner pour SU-8 50 onto stationary wafer until there is ~2" 
circle 

   500rpm 15s, 1.1krpm 10s, 6krpm 5s 
15 relax hotplate 1 hr at room temp, turn wafer 90 deg. every 15 minutes 

16 prebake hotplate ramp from room temp to 105 deg. C, total time=25 min, 
let cool to <40 deg. C 

17 edgebead removal pispinner rub edge of wafer w/ q-tip dipped in PGMEA 
18 edgebead removal 

bake 
hotplate ramp from room temp to 50 deg. C, total time=20 min, let 

cool to <40 deg. C 
 repeat edgebead removal as necessary 

19 expose SU-8 EV1 multiple exposure: 5sec on/5sec wait, repeat 5x 
   vacuum + hard contact 

20 post-exposure bake hotplate clean back of wafer and spacer wafer w/ PGMEA to 
ensure good thermal contact 

   ramp from room temp to 105 deg. C, total time=13 min, 
let cool to <40 deg. C 

21 develop SU-8 pispinner PGMEA, 5min w/ occasional agitation, dry, repeat 
   spray w/ SU-8 & spin dry on spinner 3x 
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22 ash descum asher time=20 min + 4 min right before electroplating 
 Electroplate posts  

23 electroplate KOHhood ~1.4L of Orotemp 24 plating bath, 65 deg. C w/ stirring 

   forward-pulse mode = 0.1 ms on, 0.9 ms off 
   current = 30 mA (~3 mA/cm2), voltage ~0.44V 
   total time ~3 hrs w/ occasional dep rate checks 
 Strip SU-8  

24 strip SU-8 photo-wet-r ACT691, 90 deg. C, stirred & heated w/ explosion-proof 
equipment 

   time=90 min, although only 60 min was needed 
   rinse with DI & N2 bubbler, blowdry 

25 ash SU-8 asher time=120 min, although only 60 min was needed 
26 clean wafer acid-hood Nanostrip, time=5min 
 Etch Ti layer  

27 etch Ti layer acid-hood 100:1 H2O:HF 
   endpoint w/ wafer clearing, time=~110 sec 
 Form SU-8 channel  

28 nanostrip acid-hood time=10 min 
29 dehydrate hotplate 200 C, time=90 min (only 60 min needed) 
30 uv ozone uv ozone time = 45 min (only 25 min needed) 
31 coat wafer pispinner pour su-8 50 onto stationary wafer until there is ~2" circle

   500 rpm 15sec, 0.95 krpm 30sec 
32 relax hotplate time=30 min at room temperature 
33 prebake hotplate ramp from room temp to 105 deg. C, total time=98 min, 

let cool to <40 deg. C 
34 expose SU-8 EV1 multiple exposure: 5sec on/5sec wait, repeat 12x 
   soft contact 

35 post-exposure bake hotplate clean back of wafer and spacer wafer w/ PGMEA to 
ensure good thermal contact 

   ramp from room temp to 105 deg. C, total time=23 min, 
let cool to <40 deg. C 

36 develop SU-8 pispinner PGMEA, 5min w/ occasional agitation, dry, repeat 
   spray w/ SU-8 & spin dry on spinner 3x 
 Dice wafer  

37 protect wafer coater dab AZ4620 into chambers to protect posts 
  hotplate 90 deg. C, time ~45 min 

38 dice wafer diesaw use 6-pass setting 
39 release devices group lab acetone 
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