
8

Dielectrophoretic Traps for
Cell Manipulation

Joel Voldman
Department of Electrical Engineering, Room 36-824, Massachusetts Institute of
Technology Cambridge, MA 02139

8.1. INTRODUCTION

One of the goals of biology for the next fifty years is to understand how cells work. This
fundamentally requires a diverse set of approaches for performing measurements on cells in
order to extract information from them. Manipulating the physical location and organization
of cells or other biologically important particles is an important part in this endeavor. Apart
from the fact that cell function is tied to their three-dimensional organization, one would
like ways to grab onto and position cells. This lets us build up controlled multicellular
aggregates, investigate the mechanical properties of cells, the binding properties of their
surface proteins, and additionally provides a way to move cells around. In short, it provides
physical access to cells that our fingers cannot grasp.

Many techniques exist to physically manipulate cells, including optical tweezers [78],
acoustic forces [94], surface modification [52], etc. Electrical forces, and in particular dielec-
trophoresis (DEP), are an increasingly common modality for enacting these manipulations.
Although DEP has been used successfully for many years to separate different cell types
(see reviews in [20, 38]), in this chapter I focus on the use of DEP as “electrical tweezers”
for manipulating individual cells. In this implementation DEP forces are used to trap or
spatially confine cells, and thus the chapter will focus on creating such traps using these
forces. While it is quite easy to generate forces on cells with DEP, it is another thing al-
together to obtain predetermined quantitative performance. The goal for this chapter is to
help others develop an approach to designing these types of systems. The focus will be on
trapping cells—which at times are generalized to “particles”—and specifically mammalian



160 JOEL VOLDMAN

cells, since these are more fragile than yeast or bacteria and thus are in some ways more
challenging to work with.

I will start with a short discussion on what trapping entails and then focus on the forces
relevant in these systems. Then I will discuss the constraints when working with cells, such
as temperature rise and electric field exposure. The last two sections will describe existing
trapping structures as well as different approaches taken to measure the performance of
those structures. The hope is that this overview will give an appreciation for the forces
in these systems, what are the relevant design issues, what existing structures exist, and
how one might go about validating a design. I will not discuss the myriad other uses of
dielectrophoresis; these are adequately covered in other texts [39, 45, 60] and reviews.

8.2. TRAPPING PHYSICS

8.2.1. Fundamentals of Trap Design

The process of positioning and physically manipulating particles—cells in this case—
is a trapping process. A trap uses a set of confining forces to hold a particle against a
set of destabilizing forces. In this review, the predominant confining force will be dielec-
trophoresis, while the predominant destabilizing forces will be fluid drag and gravity. The
fundamental requirement for any deterministic trap is that it creates a region where the net
force on the particle is zero. Additionally, the particle must be at a stable zero, in that the
particle must do work on the force field in order to move from that zero [3]. This is all
codified in the requirement that Fnet = 0, Fnet · dr < 0 at the trapping point, where Fnet is
the net force and dr is an increment in any direction.

The design goal is in general to create a particle trap that meets specific requirements.
These requirements might take the form of a desired trap strength or maximum flowrate
that trapped particles can withstand, perhaps to meet an overall system throughput spec-
ification. For instance, one may require a minimum flowrate to replenish the nutrients
around trapped cells, and thus a minimum flowrate against which the cells must be trapped.
When dealing with biological cells, temperature and electric-field constraints are neces-
sary to prevent adverse effects on cells. Other constraints might be on minimum chamber
height or width—to prevent particle clogging—or maximum chamber dimensions—to al-
low for proximate optical access. In short, predictive quantitative trap design. Under the
desired operating conditions, the trap must create a stable zero, and the design thus reduces
to ensuring that stable zeros exist under the operating conditions, and additionally de-
termining under what conditions those stable zeros disappear (i.e., the trap releases the
particle).

Occasionally, it is possible to analytically determine the conditions for stable trapping.
When the electric fields are analytically tractable and there is enough symmetry in the
problem to make it one-dimensional, this can be the best approach. For example, one can
derive an analytical expression balancing gravity against an exponentially decaying electric
field, as is done for field-flow fractionation [37]. In general, however, the fields and forces
are too complicated spatially for this approach to work. In these cases, one can numerically
calculate the fields and forces everywhere in space and find the net force (Fnet) at each
point, then find the zeros.
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A slightly simpler approach exists when the relevant forces are conservative. In this
case one can define scalar potential energy functions U whose gradient gives each force
(i.e., F = −∇U ). The process of determining whether a trap is successfully confining the
particle then reduces to determining whether any spatial minima exist within the trap. This
approach is nice because energy is a scalar function and thus easy to manipulate by hand
and on the computer.

In general, a potential energy approach will have limited applicability because dissi-
pation is usually present. In this case, the energy in the system depends on the specifics of
the particle motion—one cannot find a U that will uniquely define F. In systems with liquid
flow, for example, an energy-based design strategy cannot be used because viscous fluid
flow is dissipative. In this case, one must use the vector force-fields and find stable zeroes.

In our lab, most modeling incorporates a range of approaches spanning analytical,
numerical, and finite-element modeling. In general, we find it most expedient to perform
finite-element modeling only when absolutely necessary, and spend most of the design
combining those results with analytical results in a mixed-numerical framework run on
a program such as Matlab c© (Mathworks, Natick, MA). Luckily, one can run one or two
finite-element simulations and then use simple scaling laws to scale the resulting data
appropriately. For instance, the linearity of Laplace’s equation means that after solving for
the electric fields at one voltage, the results can be linearly scaled to other voltages. Thus,
FEA only has to be repeated when the geometry scales, if at all.

To find the trapping point (and whether it exists), we use MATLAB to compute the
three isosurfaces where each component of the net force (Fx , Fy, Fz) is zero. This process
is shown in Figure 8.1 for a planar quadrupole electrode structure. Each isosurface—the
three-dimensional analog of a contour line—shows where in space a single component of the
force is zero. The intersection of all three isosurfaces thus represents points where all three
force components, and thus the net force, is zero. In the example shown in Figure 8.1,B–
D, increasing the flowrate changes the intersection point of the isosurfaces, until at some
threshold flowrate (Figure 8.1D), the three isosurfaces cease to intersect, and the particle is no
longer held; the strength of the trap has been exceeded [83]. In this fashion we can determine
the operating characteristics (e.g., what voltage is needed to hold a particular cell against
a particular flow) and then whether those characteristics meet the system requirements
(exposure of cells to electric fields, for instance).

A few caveats must be stated regarding this modeling approach. First, the problem as
formulated is one of determining under what conditions an already trapped particle will
remain trapped; I have said nothing about how to get particles in traps. Luckily this is not
a tremendous extension. Particle inertia is usually insignificant in microfluidic systems,
meaning that particles will follow the streamlines of the force field. Thus, with numerical
representations of the net force, one can determine, given a starting point, where that particle
will end up. Matlab in fact has several commands to do this (e.g., streamline). By placing
test particles in different initial spots, it is possible to determine the region from within
which particles will be drawn to the trap.

Another implicit assumption is that only one particle will be in any trap, and thus that
particle-particle interactions do not have to be dealt with. In actuality, designing a trap that
will only hold one particle is quite challenging. To properly model this, one must account
for the force perturbations created when the first particle is trapped; the second particle sees
a force field modified by the first particle. While multiple-particle modeling is still largely
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FIGURE 8.1. Surfaces of zero force describe a trap. (A) Shown are the locations of planar quadrupole electrodes

along with the three isosurfaces where one component of the force on a particle is zero. The net force on the

particle is zero where the three surfaces intersect. (B–D) As flow increases from left to right, the intersection point

moves. The third isosurface is not shown, though it is a vertical sheet perpendicular to the Fx = 0 isosurface.

(D) At some critical flow rate, the three isosurfaces no longer intersect and the particle is no longer trapped.

unresolved, the single-particle approach presented here is quite useful because one can,
by manipulating experimental conditions, create conditions favorable for single-particle
trapping, where the current analysis holds.

Finally, we have constrained ourselves to deterministic particle trapping. While appro-
priate for biological cells, this assumption starts to break down as the particle size decreases
past ∼1μm because Brownian motion makes trapping a probabilistic event. Luckily, as
nanoparticle manipulation has become more prevalent, theory and modeling approaches
have been determined. The interested reader is referred to the monographs by Morgan and
Green [60] and Hughes [39].

8.2.2. Dielectrophoresis

The confining force that creates the traps is dielectrophoresis. Dielectrophoresis (DEP)
refers to the action of a body in a non-uniform electric field when the body and the sur-
rounding medium have different polarizabilities. DEP is easiest illustrated with reference to
Figure 8.2. On the left side of Figure 8.2, a charged body and a neutral body (with different
permittivity than the medium) are placed in a uniform electric field. The charged body feels
a force, but the neutral body, while experiencing an induced dipole, does not feel a net
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FIGURE 8.2. Dielectrophoresis. The left panel (A) shows the behavior of particles in uniform electric fields,

while the right panel shows the net force experienced in a non-uniform electric field (B).

force. This is because each half of the induced dipole feels opposite and equal forces, which
cancel. On the right side of Figure 8.2, this same body is placed in a non-uniform electric
field. Now the two halves of the induced dipole experience a different force magnitude and
thus a net force is produced. This is the dielectrophoretic force.

The force in Figure 8.2, where an induced dipole is acted on by a non-uniform electric
field, is given by [45]

Fdep = 2πεm R3Re[C M(ω)] · ∇|E(r)|2 (8.1)

where εm is the permittivity of the medium surrounding the particle, R is the radius of the
particle, ω is the radian frequency of the applied field, r refers to the vector spatial coordinate,
and E is the applied vector electric field. The Clausius-Mossotti factor (CM)—CM factor—
gives the frequency (ω) dependence of the force, and its sign determines whether the particle
experiences positive or negative DEP. Importantly, the above relation is limited to instances
where the field is spatially invariant, in contrast to traveling-wave DEP or electrorotation
(see [39, 45]).

Depending on the relative polarizabilities of the particle and the medium, the body will
feel a force that propels it toward field maxima (termed positive DEP or p-DEP) or field
minima (negative DEP or n-DEP). In addition, the direction of the force is independent of
the polarity of the applied voltage; switching the polarity of the voltage does not change the
direction of the force—it is still toward the field maximum in Figure 8.2. Thus DEP works
equally well with both DC and AC fields.

DEP should be contrasted with electrophoresis, where one manipulates charged par-
ticles with electric fields [30], as there are several important differences. First, DEP does
not require the particle to be charged in order to manipulate it; the particle must only differ
electrically from the medium that it is in. Second, DEP works with AC fields, whereas no net
electrophoretic movement occurs in such a field. Thus, with DEP one can use AC excitation
to avoid problems such as electrode polarization effects [74] and electrolysis at electrodes.
Even more importantly, the use of AC fields reduces membrane charging of biological
cells, as explained below. Third, electrophoretic systems cannot create stable non-contact
traps, as opposed to DEP—one needs electromagnetic fields to trap charges (electrophoresis
can, though, be used to trap charges at electrodes [63]). Finally, DEP forces increase with
the square of the electric field (described below), whereas electrophoretic forces increase
linearly with the electric field.
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This is not to say that electrophoresis is without applicability. It is excellent for transport-
ing charged particles across large distances, which is difficult with DEP (though traveling-
wave versions exist [17]). Second, many molecules are charged and are thus movable with
this technique. Third, when coupled with electroosmosis, electrophoresis makes a powerful
separation system, and has been used to great effect [30].

8.2.2.1. The Clausius-Mossotti Factor The properties of the particle and medium
within which it resides are captured in the form of the Clausius-Mossotti factor (CM)—CM
factor. The Clausius-Mossotti factor arises naturally during the course of solving Laplace’s
equation and matching the boundary conditions for the electric field at the surface of the
particle (for example, see [45]). For a homogeneous spherical particle, the CM factor is
given by

C M = ε p − εm

ε p + 2εm

(8.2)

where εm and ε p are the complex permittivities of the medium and the particle, respectively,
and are each given by ε = ε + σ/( jω), where ε is the permittivity of the medium or particle,
σ is the conductivity of the medium or particle, and j is

√−1.
Many properties lie within this simple relation. First, one sees that competition between

the medium (εm) and particle (ε p) polarizabilities will determine the sign of CM factor,
which will in turn determine the sign—and thus direction—of the DEP force. For instance,
for purely dielectric particles in a non-conducting liquid (σp = σm = 0), the CM factor is
purely real and will be positive if the particle has a higher permittivity than the medium,
and negative otherwise.

Second, the real part of the CM factor can only vary between +1 (ε p � εm, e.g., the
particle is much more polarizable than the medium) and −0.5 (ε p � εm, e.g., the particle
is much less polarizable than the medium). Thus n-DEP can only be half as strong as
p-DEP. Third, by taking the appropriate limits, one finds that at low frequency the CM
factor (Eqn. (8.2)) reduces to

C M
ω→0

= σp − σm

σp + 2σm
(8.3)

while at high frequency it is

C M
ω→∞

= εp − εm

εp + 2εm
(8.4)

Thus, similar to many electroquasistatic systems, the CM factor will be dominated by
relative permittivities at high frequency and conductivities at low frequencies; the induced
dipole varies between a free charge dipole and a polarization dipole. The relaxation time
separating the two regimes is

τMW = εp + 2εm

σp + 2σm
(8.5)
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FIGURE 8.3. CM factor for three situations. (A) A non-conducting uniform sphere with εp = 2.4 in non-

conducting water (εm = 80). The water is much more polarizable than the sphere, and thus the CM factor is

∼−0.5. (B) The same sphere, but with a conductivity σp = 0.01 S/m in non-conducting water. Now there is

one dispersion—at low frequencies the bead is much more conducting than the water & hence there is p-DEP,

while at high frequencies the situation is as in (A). (C) A spherical shell (approximating a mammalian cell),

with (εcyto = 75, cm = 1 μF/cm2, σcyto = 0.5 S/m, gm = 5 mS/cm2) in a 0.1 S/m salt solution, calculated using

results from [45]. Now there are two interfaces and thus two dispersions. Depending on the frequency, the shell

can experience n-DEP or p-DEP.

and is denoted τMW to indicate that the physical origin is Maxwell-Wagner interfacial
polarization [73].

This Maxwell-Wagner interfacial polarization causes the frequency variations in the
CM factor. It is due to the competition between the charging processes in the particle and
medium, resulting in charge buildup at the particle/medium interface. If the particle and
medium are both non-conducting, then there is no charge buildup and the CM factor will be
constant with no frequency dependence (Figure 8.3A). Adding conductivity to the system
results in a frequency dispersion in the CM factor due to the differing rates of interfacial
polarization at the sphere surface (Figure 8.3B).

While the uniform sphere model is a good approximation for plastic microspheres, it is
possible to extend this expression to deal with more complicated particles such as biological
cells, including non-spherical ones.

Multi-Shelled Particulate Models Because we are interested in creating traps that
use DEP to manipulate cells, we need to understand the forces on cells in these systems.
Luckily, the differences between a uniform sphere and a spherical cell can be completely
encompassed in the CM factor; the task is to create an electrical model of the cell and then
solve Laplace’s equation to derive its CM factor (a good review of electrical properties of
cells is found in Markx and Davey [57]). The process is straightforward, though tedious,
and has been covered in detail elsewhere [39, 43, 45]. Essentially, one starts by adding a
thin shell to the uniform sphere and matches boundary conditions at now two interfaces,
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deriving a CM factor very similar to Eqn (8.2) but with an effective complex permittivity
ε′

p that subsumes the effects of the complicated interior (see §5.3 of Hughes [39]). This
process can be repeated multiple times to model general multi-shelled particles.

Membrane-Covered Spheres: Mammalian Cells, Protoplasts Adding a thin shell to
a uniform sphere makes a decent electrical model for mammalian cells and protoplasts.
The thin membrane represents the insulating cell membrane while the sphere represents the
cytoplasm. The nucleus is not modeled is this approximation. For this model the effective
complex permittivity can be represented by:

ε′
p = cm R · εcyto

cm R + εcyto

(8.6)

where εcyto is the complex permittivity of the cytoplasmic compartment and cm refers to
complex membrane capacitance per unit area and is given by

cm = cm + gm/( jω) (8.7)

where cm and gm are the membrane capacitance and conductance per unit area (F/m2 and
S/m2) and can be related to the membrane permittivity and conductivity by cm = εm/t and
gm = σm/t , where t is the membrane thickness. The membrane conductance of intact cells is
often small and can be neglected. Because cell membranes are comprised of phospholipid
bilayers whose thickness and permittivity varies little across cell types, the membrane
capacitance per unit area is fairly fixed at cm ∼ 0.5 − 1μF/cm2 [64].

Plotting a typical CM factor for a mammalian cell shows that it is more complicated than
for a uniform sphere. Specifically, since it has two interfaces, there are two dispersions in
its CM factor, as shown in Figure 8.3C. In low-conductivity buffers, the cell will experience
a region of p-DEP, while in saline or cell-culture media the cells will only experience
n-DEP. This last point has profound implications for trap design. If one wishes to use
cells in physiological buffers, one is restricted to n-DEP excitation, irrespective of applied
frequency. Only by moving low-conductivity solutions can one create p-DEP forces in cells.
While, as we discuss below, p-DEP traps are often easier to implement, one must then deal
with possible artifacts due to the artificial media.

One challenge for the designer in applying different models for the CM factor is
getting accurate values for the different layers. In Table 8.1 we list properties culled from
the literature for several types of particles, along with the appropriate literature references.
Care must be taken in applying these, as some of the properties may be dependent on the
cell type, cell physiology, and suspending medium, as well as limited by the method in
which they were measured. Besides the values listed below, there are also values on Jurkat
cells [67] and other white blood cells [21].

Sphere with Two Shells: Bacteria and Yeast Bacteria and yeast have a cell wall in
addition to a cell membrane. Iterating on the multi-shell model can be used to derive a
CM factor these types of particles [35, 76, 95]. Griffith et al. also used a double-shell
model, this time to include the nucleus of a mammalian cells, in this case the human
neutrophil [29].
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TABLE 8.1. Parameters for the electrical models of different cells and for saline.

Inner

compartment Membrane Wall

Radius thickness thickess

Particle type (μ m) ε σ (S/m) ε σ (S/m) (nm) ε σ (S/m) (nm)

Latex microspheres nm–μ m 2.5 2e-4 — — — — — —

Yeast [96, 97] 4.8 60 0.2 6 250e-9 8 60 0.014 ∼200

E. coli [76] 1 60 0.1 10 50e-9 5 60 0.5 20

HSV-1 virus [40] 0.25 70 8e-3 10 σp = 3.5 nS — — —

HL-60 [37] 6.25 75 0.75 1.6 μ F/cm2 0.22 S/cm2 1 — — —

PBS — 78–80 1.5 — — — — — —

Surface Conduction: Virus and Other Nanoparticles Models for smaller particles
must also accommodate surface currents around the perimeter of the particle. As particles
get smaller, this current path becomes more important and affects the CM factor (by affect
the boundary conditions when solving Laplace’s equation). In this case, the conductivity of
the particle can be approximated by [39]

σp + 2Ks

R
(8.8)

where Ks represents the surface conductivity (in Siemens). One sees that this augments the
bulk conductivity of the particle (σp) with a surface-conductance term inversely proportional
to the particle radius.

Non-Spherical Cells Many cells are not spherical, such as some bacteria (e.g., E. coli)
and red blood cells. The CM factor can be extended to include these effects by introducing
a depolarizing factor, described in detail in Jones’ text [45].

8.2.2.2. Multipolar Effects The force expression given in Eqn (8.1) is the most
commonly used expression for the DEP force applied to biological particles, and indeed
accurately captures most relevant physics. However, it is not strictly complete, in that the
force calculated using that expression assumes that only a dipole is induced in the particle.
In fact, arbitrary multipoles can be induced in the particle, depending on the spatial varia-
tion of the field that it is immersed in. Specifically, the dipole approximation will become
invalid when the field non-uniformities become great enough to induce significant higher-
order multipoles in the particle. This can easily happen in microfabricated electrode arrays,
where the size of the particle can become equal to characteristic field dimensions. In ad-
dition, in some electrode geometries there exists field nulls. Since the induced dipole is
proportional to the electric field, the dipole approximation to the DEP force is zero there.
Thus at least the quadrupole moment must be taken into account to correctly model the
DEP forces in such configurations.

In the mid-90’s Jones and Washizu extended their very successful effective-moment
approach to calculate all the induced moments and the resultant forces on them [50, 51,
91, 92]. Gascoyne’s group, meanwhile, used an approach involving the Maxwell’s stress
tensor to arrive at the same result [87]. Thus, it is now possible to calculate the DEP forces
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in arbitrarily polarized non-uniform electric fields. A compact tensor representation of the
final result in is

F(n)
dep =

−.
.
.=
p (n)[·]n(∇)nE

n!
(8.9)

where n refers to the force order (n = 1 is the dipole, n = 2 is the quadropole, etc.),

−.
.
.=
p (n)

is the multipolar induced-moment tensor, and [·]n and (∇)n represent n dot products and
gradient operations. Thus one sees that the n-th force order is given by the interaction of
the n-th-order multipolar moment with the n-th gradient of the electric field. For n = 1 the
result reverts to the force on a dipole (Eqn (8.1)).

A more explicit version of this expression for the time-averaged force in the i-th direc-
tion (for sinusoidal excitation) is

〈
F (1)

i

〉 = 2πεm R3 Re

[
C M (1) Em

∂

∂xm
E∗

i

]

〈
F (2)

i

〉 = 2

3
πεm R5 Re

[
C M (2) ∂

∂xm
En

∂2

∂xn∂xm
E∗

i

]
(8.10)

...

for the dipole (n = 1) and quadrupole (n = 2) force orders [51]. The Einstein summation con-
vention has been applied in Eqn. (8.10). While this approach may seem much more difficult
to calculate than Eqn (8.1), compact algorithms have been developed for calculating arbitrary
multiples [83]. The multipolar CM factor for a uniform lossy dielectric sphere is given by

C M (n) = ε p − εm

nε p + (n + 1)εm

(8.11)

It has the same form as the dipolar CM factor (Eqn. (2)) but has smaller limits. The quadrupo-
lar CM factor (n = 2), for example, can only vary between +1/2 and −1/3.

8.2.2.3. Scaling Although the force on a dipole in a non-uniform field has been
recognized for decades, the advent of microfabrication has really served as the launching
point for DEP-based systems. With the force now defined, I will now investigate why
downscaling has enabled these systems.

Most importantly, reducing the characteristic size of the system reduces the applied
voltage needed to generate a given field gradient, and for a fixed voltage increases that
field gradient. A recent article on scaling in DEP-based systems [46] illustrates many of
the relevant scaling laws. Introducing the length scale L into Eqn (8.1) and appropriately
approximating derivatives, one gets that the DEP force (dipole term) scales as

Fdep ∼ R3 V 2

L3
(8.12)
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illustrating the dependency. This scaling law has two enabling implications. First, generating
the forces required to manipulate micron-sized bioparticles (∼pN) requires either large
voltages (100’s–1000’s V) for macroscopic systems (1–100 cm) or small voltages (1–
10 V) for microscopic systems (1–100 μm). Large voltages are extremely impractical to
generate at the frequencies required to avoid electrochemical effects (kHz–MHz). Slew rate
limitations in existing instrumentation make it extremely difficult to generate more than 10
Vpp at frequencies above 1 MHz. Once voltages are decreased, however, one approaches
the specifications of commercial single-chip video amplifiers, commodity products that can
be purchased for a few dollars.

The other strong argument for scaling down is temperature. Biological systems can only
withstand certain temperature excursions before their function is altered. Electric fields in
conducting liquids will dissipate power, heating the liquid. Although even pure water has
a finite conductivity (∼5 μS/m), the problem is more acute as the conductivity of the water
increases. For example, electrolytes typically used to culture cells are extremely conductive
(∼1 S/m). While the exact steady-state temperature rise is determined by the details of
electrode geometry and operating characteristics, the temperature rise, as demonstrated by
Jones [46], scales as

�T ∼ σ · V 2 · L3 (8.13)

where σ is the conductivity of the medium. It is extremely difficult to limit these rises by
using convective heat transfer (e.g., flowing the media at a high rate); in these microsystems
conduction is the dominant heat-transfer mechanism unless the flowrate is dramatically in-
creased. Thus, one sees the strong (∼L3) argument for scaling down; it can enable operation
in physiological buffers without significant concomitant temperature rises.

Temperature rise has other consequences besides directly affecting cell physiology.
The non-uniform temperature distribution creates gradients in the electrical properties of
the medium (because permittivity and conductivity are temperature-dependent). These gra-
dients in turn lead to free charge in the system, which, when acted upon by the electric
field, drag fluid and create (usually) destabilizing fluid flows. These electrothermal effects
are covered in §2.3.3.

Thus, creating large forces is limited by either the voltages that one can generate or the
temperature rises (and gradients) that one creates, and is always enhanced by decreasing
the characteristic length of the system. All of these factors point to microfabrication as an
enabling fabrication technology for DEP-based systems.

8.2.3. Other Forces

DEP interacts with other forces to produce a particle trap. The forces can either be
destabilizing (e.g., fluid drag, gravity) or stabilizing (e.g., gravity).

8.2.3.1. Gravity The magnitude of the gravitational force is given by

Fgrav = 4

3
π R3(ρp − ρm)g (8.14)
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where ρm and ρp refer to the densities of the medium and the particle, respectively, and g is
the gravitational acceleration constant. Cells and beads are denser than the aqueous media
and thus have a net downward force.

8.2.3.2. Hydrodynamic Drag Forces Fluid flow past an object creates a drag force on
that object. In most systems, this drag force is the predominant destabilizing force. The fluid
flow can be intentional, such as that created by pumping liquid past a trap, or unintentional,
such as electrothermal flows.

The universal scaling parameter in fluid flow is the Reynolds number, which gives an
indication of the relative strengths of inertial forces to viscous forces in the fluid. At the
small length scales found in microfluidics, viscosity dominates and liquid flow is laminar.
A further approximation assumes that inertia is negligible, simplifying the Navier-Stokes
equations even further into a linear form. This flow regime is called creeping flow or Stokes
flow and is the common approximation taken for liquid microfluidic flows.

In creeping flow, a sphere in a uniform flow field will experience a drag force—called
the Stokes’ drag—with magnitude

Fdrag = 6πηRν (8.15)

where η is the viscosity of the liquid and ν is the far-field relative velocity of the liquid with
respect to the sphere. As an example, a 1-μm-diameter particle in a 1-mm/s water flow will
experience ∼10 pN of drag force.

Unfortunately, it is difficult to create a uniform flow field, and thus one must broaden
the drag force expression to include typically encountered flows. The most common flow
pattern in microfluidics is the flow in a rectangular channel. When the channel is much
wider than it is high, this flow can be approximated as the one-dimensional flow between
to parallel plates, or plane Poiseuille flow. This flow profile is characterized by a parabolic
velocity distribution where the centerline velocity is 1.5× the average linear flow velocity

ν(z) = 1.5
Q

wh

(
1 −

(
z − h/2

h/2

)2
)

(8.16)

where Q is the volume flowrate, w and h are the width and height of the channel, respectively,
and z is the height above the substrate at which the velocity is evaluated. The expression in
Eqn (8.15) can then be refined by using the fluid velocity at the height of the particle center.

Close to the channel wall (z � h) the quadratic term in Eqn (8.16) can be linearly
approximated, resulting a velocity profile known as plane shear or plane Couette flow

ν(z) = 1.5
Q

wh

(
4

z

h

)
= 6

Q

wh

z

h
(8.17)

The error between the two flow profiles increases linearly with z for z � h/2; the error
when z = 0.1 · h is ∼10%.

Using Eqn (8.15) with the modified fluid velocities is a sufficient approximation for
the drag force in many applications, and is especially useful in non-analytical flow profiles
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A B

FIGURE 8.4. Drag force using different approximations for a particle that is 0.5% (A) and 5% (B) of the chamber

height. For the smaller particle (A), all approaches give the same result near the surface. For larger particles (B),

the exact formulations (—) give better results than approximate approaches (- - -).

derived by numerical modeling. In that case one can compute the Stokes’ drag at each
point by multiplying Eqn. (8.15) with the computed 3-D velocity field. To get a more exact
result, especially for particles that are near walls, one can turn to solved examples in the
fluid mechanics literature. Of special interest to trapping particles, the drag force on both a
stationary and moving sphere near a wall in both plane Poiseuille [19] and shear flow [26]
has been solved. The calculated drag forces have the same form as Eqn (8.15) but include
a non-dimensional multiplying factor that accounts for the presence of the wall.

In Figure 8.4 I compare drag forces on 1 μm and 10 μm-diameter spheres using the
different formulations. In both cases, the channel height is fixed at 100 μm. One sees two
very different behaviors. When the sphere size is small compared to the channel height
(R = 0.5% of h), all four formulations give similar results near the chamber wall (Figure
8.4A), with the anticipated divergence of the shear and Poiseuille drag profiles away from
the wall. However, as the sphere becomes larger compared to the chamber height (Figure
8.4B), the different formulations diverge. Both the shear and parabolic profiles calculated
using a single approach converge to identical values at the wall, but the two approaches
yield distinctly different results. In this regime the drag force calculated using Eqn. (8.15)
consistently underestimates the drag force, in this case by about 2 pN. This has a profound
effect near the wall, where the actual drag force is 50% higher than that estimated by the
simple approximation. Thus, for small particles (R � h) away from walls (z � R), the
simple approximation is fine to within better than 10%, while in other cases one should use
the exact formulations.

While spheres approximate most unattached mammalian cells as well as yeast and
many bacteria, other cells (e.g., E. coli, erythrocytes) are aspherical. For these particles,
drag forces have the same form as Eqn. (8.15) except that term 6πηR is replaced by different
“friction” factors, nicely catalogued by Morgan and Green [60].

8.2.3.3. Electrothermal Forces The spatially non-uniform temperature distribution
created by the power dissipated by the electric field can lead to flows induced by
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electrothermal effects. These effects are covered in great detail by Morgan and Green
[60]. Briefly, because the medium permittivity and conductivity are functions of temper-
ature, temperature gradients directly lead to gradients in ε and σ . These gradients in turn
generate free charge which can be acted upon by an electric field to move and drag fluid
along with it, creating fluid flow. This fluid flow creates a drag force on an immersed
body just as it does for conventional Stokes’ drag (Eqn. (8.15)). In general, derivations of
the electrothermal force density, the resulting liquid flow, and the drag require numerical
modeling because the details of the geometry profoundly impact the results. Castellanos
et al. have derived solutions for one simple geometry, and have used it to great effect to
derive some scaling laws [6].

8.3. DESIGN FOR USE WITH CELLS

Since dielectrophoretic cell manipulation exposes cells to strong electric fields, one
needs to know how these electric fields might affect cell physiology. Ideally, one would like
to determine the conditions under which the trapping will not affect the cells and use those
conditions to constrain the design. Of course, cells are poorly understood complex systems
and thus it is impossible to know for certain that one is not perturbing the cell. However, all
biological manipulations—cell culture, microscopy, flow cytometer, etc.—alter cell phys-
iology. What’s most important is to minimize known influences on cell behavior and then
use proper controls to account for the unknown influences. In short, good experimental
design.

The known influences of electric fields on cells can be split into the effects due to
current flow, which causes heating, and direct interactions of the fields with the cell. We’ll
consider each of these in turn.

Au: Pls. check
Headings
Number.

8.3.1.1. Current-Induced Heating Electric fields in a conductive medium will cause
power dissipation in the form of Joule heating. The induced temperature changes can have
many effects on cell physiology. As mentioned previously, microscale DEP is advantageous
in that it minimizes temperature rises due to dissipated power. However, because cells can
be very sensitive to temperature changes, it is not assured that any temperature rises will be
inconsequential.

Temperature is a potent affecter of cell physiology [4, 11, 55, 75]. Very high temper-
atures (>4 ◦C above physiological) are known to lead to rapid mammalian cell death, and
research has focused on determining how to use such knowledge to selectively kill cancer
cells [81]. Less-extreme temperature excursions also have physiological effects, possibly
due to the exponential temperature dependence of kinetic processes in the cell [93]. One
well-studied response is the induction of the heat-shock proteins [4, 5]. These proteins are
molecular chaperones, one of their roles being to prevent other proteins from denaturing
when under environmental stresses.

While it is still unclear as to the minimum temperature excursion needed to induce
responses in the cell, one must try to minimize any such excursions. A common rule of
thumb for mammalian cells is to keep variations to <1 ◦C, which is the approximate daily
variation in body temperature [93]. The best way we have found to do this is to numerically
solve for the steady-state temperature rise in the system due to the local heat sources given
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by σE2. Convection and radiation can usually be ignored, and thus the problem reduces to
solving for the conduction heat flow subject to the correct boundary conditions. Then, using
the scaling of temperature rise with electric field and fluid conductivity (Eqn. (8.13)), one
can perform a parametric design to limit temperature rises.

8.3.1.2. Direct Electric-Field Interactions Electric fields can also directly affect the
cells. The simple membrane-covered sphere model for mammalian cells can be used to
determine where the fields exist in the cell as the frequency is varied. From this one can
determine likely pathways by which the fields could impact physiology [31, 73]. Performing
the analysis indicates that the imposed fields can exist across the cell membrane or the
cytoplasm. A qualitative electrical model of the cell views the membrane as a parallel RC
circuit connected in-between RC pairs for the cytoplasm and the media. At low frequencies
(<MHz) the circuit looks like three resistors in series and because the membrane resistance is
large the voltage is primarily dropped across it. This voltage is distinct from the endogenous
transmembrane potential that exists in the cell. Rather, it represents the voltage derived from
the externally applied field. The total potential difference across the cell membrane would
be given by the sum of the imposed and endogenous potentials. At higher frequencies the
impedance of the membrane capacitor decreases sufficiently that the voltage across the
membrane starts to decrease. Finally, at very high frequencies (100’s MHz) the model looks
like three capacitors in series and the membrane voltage saturates.

Quantitatively, the imposed transmembrane voltage can be derived as [73]

|Vtm | = 1.5|E|R√
1 + (ωτ )2

(8.18)

where ω is the radian frequency of the applied field and τ is the time constant given by

τ = Rcm(ρcyto + 1/2ρmed )

1 + Rgm(ρcyto + 1/2ρmed )
(8.19)

where ρcyto and ρmed med are the cytoplasmic and medium resistivities (�-m). At low
frequencies |Vm | is constant at 1.5|E|R but decreases above the characteristic frequency
(1/τ ). This model does not take into account the high-frequency saturation of the voltage,
when the equivalent circuit is a capacitive divider.

At the frequencies used in DEP—10’s kHz to 10’s MHz—the most probably route
of interaction between the electric fields and the cell is at the membrane [79]. There are
several reasons for this. First, electric fields already exist at the cell membrane, leading to
transmembrane voltages in the 10’s of millivolts. Changes in these voltages could affect
voltage-sensitive proteins, such as voltage-gated ion channels [7]. Second, the electric field
across the membrane is greatly amplified over that in solution. From Eqn. (6.18) one gets
that at low frequencies

|Vtm | = 1.5|E|R√
1 + (ωτ )2

≈ 1.5|E|R
(8.20)

|Etm | ≈ |Vm |/t = (1.5R/t) · |E|
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and thus at the membrane the imposed field is multiplied by a factor of 1.5 R/t (∼1000),
which can lead to quite large membrane fields (Etm). This does not preclude effects due
to cytoplasmic electric fields. However, these effects have not been as intensily studied,
perhaps because 1) those fields will induce current flow and thus heating, which is not a
direct interaction, 2) the fields are not localized to an area (e.g., the membrane) that is likely
to have field-dependent proteins, and 3) unlike the membrane fields, the cytoplasmic fields
are not amplified.

Several studies have investigated possible direct links between electric fields and cells.
At low frequencies, much investigation has focused on 60-Hz electromagnetic fields and
their possible effects, although the studies thus far are inconclusive [54]. DC fields have also
been investigated, and have been shown to affect cell growth [44] as well as reorganization
of membrane components [68]. At high frequencies, research has focused on the biological
effects of microwave radiation, again inconclusively [65].

In the frequency ranges involved in DEP, there has been much less research. Tsong has
provided evidence that some membrane-bound ATPases respond to fields in the kHz–MHz
range, providing at least one avenue for interaction [79]. Electroporation and electrofu-
sion are other obvious, although more violent, electric field-membrane coupling mecha-
nisms [98].

Still other research has been concerned specifically with the effects of DEP on cells,
and has investigated several different indicators of cell physiology to try to elucidate any
effects. One of the first studies was by the Fuhr et al., who investigated viability, anchorage
time, motility, cell growth rates, and lag times after subjecting L929 and 3T3 fibroblast cells
in saline to short and long (up to 3 days) exposure to 30–60 kV/m fields at 10–40 MHz near
planar quadrupoles [16]. They estimated that the transmembrane load was <20 mV. The
fields had no discernable effect.

Another study investigated changes in cell growth rate, glucose uptake, lactate and
monoclonal antibody production in CHO & HFN 7.1 cells on top of interdigitated elec-
trodes excited at 10 MHz with ∼105 V/m in DMEM (for the HFN 7.1 cells) or serum-free
medium (for the CHO cells) [12]. Under these conditions they observed no differences in
the measured properties between the cells and control populations.

Glasser and Fuhr attempted to differentiate between heating and electric-field ef-
fects on L929 mouse fibroblast cells in RPMI to the fields from planar quadrupoles [24].
They imposed ∼40 kV/m fields of between 100 kHZ and 15 MHz for 3 days and
observed monolayers of cells near the electrodes with a video microscopy setup,
similar to their previous study [16]. They indirectly determined that fields of ∼40
kV/m caused an ∼2 ◦C temperature increase in the cells, but did not affect cell-
division rates. They found that as they increased field frequency (from 500 kHZ to 15
MHz) the maximum tolerable field strength (before cell-division rates were altered) in-
creased. This is consistent with a decrease in the transmembrane load with increasing
frequency.

Wang et al. studied DS19 murine erythroleukemia cells exposed to fields (∼105 V/m)
of 1 kHz–10 MHz in low-conductivity solutions for up to 40-min [90]. They found
no effects due to fields above 10 kHz. They determined that hydrogen peroxide
produced by reactions at the electrode interfaces for 1 kHz fields caused changes
in cell growth lag phase, and that removal of the peroxide restored normal cell
growth.
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On the p-DEP side, Archer et al. subjected fibroblast-like BHK 21 C13 cells to
p-DEP forces produced by planar electrodes arranged in a sawtooth configuration [1].
They used low-conductivity (10 mS/m) isoosmotic solutions and applied fields of ∼105

V/m at 5 MHz. They monitored cell morphology, cell doubling time, oxidative respira-
tion (mitochondrial stress assay), alterations in expression of the immediate-early protein
fos, and non-specific gene transcription directly after a 15 minute exposure and after a
30-min time delay. They observed 20–30% upregulation of fos expression and a upregulation
of a few unknown genes (determined via mRNA analysis). Measured steady-state tempera-
tures near the cells were <1 ◦C above normal, and their calculated transmembrane voltage
under their conditions was <100 μV, which should be easily tolerable. The mechanism—
thermal or electrical—of the increased gene expression was left unclear. It is possible that
artifacts from p-DEP attraction of the cells to the electrodes led to observed changes. Ei-
ther way, this study certainly demonstrates the possibility that DEP forces could affect cell
physiology.

Finally, Gray et al. exposed bovine endothelial cells in sucrose media (with serum) to
different voltages—and thus fields—for 30-min in order to trap them and allow them to
adhere to their substrates. They measured viability and growth of the trapped cells and found
that cell behavior was the same as controls for the small voltages but that large voltages
caused significant cell death [27]. This study thus demonstrates the p-DEP operation in
artificial media under the proper conditions does not grossly affect cell physiology.

In summary, studies specifically interested in the effects of kHz–MHz electroquasistatic
fields on cells thus far demonstrate that choosing conditions under which the transmem-
brane loads and cell heating are small—e.g., >MHz frequencies, and fields in ∼10’s kV/m
range—can obviate any gross effects. Subtler effects, such as upregulation of certain genetic
pathways or activation of membrane-bound components could still occur, and thus DEP, as
with any other assay technique, must be used with care.

8.4. TRAP GEOMETRIES

The electric field, which creates the DEP force, is in turn created by electrodes. In
this section I will examine some of the electrode structures used in this field and their
applicability to trapping cells and other microparticles. The reader is also encouraged to
read the relevant chapters in Hughes’ [39] and Morgan and Green’s texts [60], which contain
descriptions of some field geometries.

One can create traps using either p-DEP or n-DEP. Using n-DEP a zero-force point
is created away from electrodes at a field minimum and the particle is trapped by pushing
at it from all sides. In p-DEP the zero-force point is at a field maximum, typically at the
electrode surface or at field constrictions. Both approaches have distinct advantages and
disadvantages, as outlined in Table 8.2. For each application, the designer must balance
these to select the best approach.

8.4.1. n-DEP Trap Geometries

Although an infinite variety of electrode geometries can be created, the majority of
research has focused on those that are easily modeled or easily created.



176 JOEL VOLDMAN

TABLE 8.2. Comparison of advantages and disadvantages of p-DEP and n-DEP approaches

to trapping cells.

p-DEP n-DEP

Must use low conductivity artificial media (−) Can use saline or other high-salt buffers (+)

CM factor can go to +1 (+) CM factor can go to −0.5 (−)

Less heating (+) More heating (−)

Typically easier to trap by pulling (+) Typically harder to trap by pushing (−)

Traps usually get stronger as V increases (+) Traps often do not get stronger with increasing V (−)

Cells stick to or can be damaged by electrodes (−) Cells are physically removed from electrodes (+)

Cells go to maximum electric field (−) Cells go to minimum electric field (+)

8.4.1.1. Interdigitated Electrodes Numerous approximate and exact analytical so-
lutions exist for the interdigitated electrode geometry (Figure 8.5A), using techniques as
varied as conformal mapping [23, 82], Green’s function [10, 86], and Fourier series [33,
61]. Recently, an elegant exact closed-form solution was derived [8]. Numerical solutions
are also plentiful [28].

While the interdigitated electrode geometry has found much use in DEP separations, it
does not make a good trap for a few reasons. First, the long extent of the electrodes in one
direction creates an essentially 2-D field geometry and thus no trapping is possible along
the length of the electrodes. Further, the spatial variations in the electric field—which create
the DEP force—decrease exponentially away from the electrode surface. After about one
electrode’s worth of distance away from the susbtrate, the field is mostly uniform at a given
height, and thus DEP trapping against fluid flows or other perpendicular forces cannot occur.
Increasing the field to attempt to circumvent this only pushes the particle farther away from
the electrodes, a self-defeating strategy; like the planar quadrupole [83], this trap is actually
strongest at lower voltages, when the particle is on the substrate.

8.4.1.2. Quadrupole Electrodes Quadrupole electrodes are four electrodes with al-
ternating voltage polarities applied to every other electrode (Figure 8.5B). The field for four
point charges can be easily calculated by superposition, but relating the charge to voltage
(via the capacitance) is difficult in general and must be done numerically.

Planar quadrupoles can create rudimentary particle traps (Figure 8.5B), and can trap
single particles down to 100’s of nm [40]. Using n-DEP, they provide in-plane particle
confinement, and can provide three-dimensional confinement if the particle is denser than
the suspending medium. As with interdigitated electrodes, however, these traps suffer from
the drawback that increasing the field only pushes the particle farther out of the trap and
does not necessarily increase confinement. We showed this in 2001 with measurements of
the strength of these traps [83]. Unexpectedly, the traps are strongest at an intermediate
voltage, just before the particle is about to be levitated (Figure 8.6).

A variant of the quadrupole electrodes is the polynomial electrode geometry (Figure
8.5C), introduced by Huang and Pethig in 1991 [36]. By placing the electrode edges at the
equipotentials of the applied field, it is possible to analytically specify the field between the
electrodes. One caveat of this approach is that it solves the 2-D Laplace equation, which is
not strictly correct for the actual 3-D geometry; thus, the electric field is at best only truly
specified right at the electrode surface, and not in all of space.
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FIGURE 8.5. DEP trapping structures. (A) Interdigitated electrodes. (B) A planar quadrupole, showing a bead in

the center. (C) Quadrupolar polynomial electrodes. (D) A 3-D view of an extruded quadrupole trap, showing the

four gold post electrode electrodes and the gold wiring on the substrate. (E) A top-down image of two extruded

quadrupole traps showing living trapped HL-60 cells in liquid. (F–H) Schematic (F), stereo image (G), and top-

down view (H) of the oppose ocotpole, showing beads trapped at the center. (I) Schematic of the strip electrodes,

showing the non-uniform electric field between them that creates an n-DEP force wall to incoming particles.

(J) Schematic of the crossed-electrode p-DEP structure of Suehiro and Pethig [77]. (K) Side view schematic of

Gray et al.’s p-DEP trap, showing the bottom point electrodes and the top plate, along with a top-down image of

endothelial cells positioned at an array of traps.
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FIGURE 8.6. Behavior of planar quadrupole trap at different voltages, showing the measured (o) and simulated (—)

release flowrate, the holding force (· · ·), and the height of the particle when it is released (- - -). (A) Pre-levitation.

At very low voltages, the z-directed DEP force cannot overcome the gravitation force, and the bead is not levitated;

(B) Rapid ascent. At a certain voltage the bead will just become levitated and the holding characteristics will peak;

(C) Saturation. At high voltages, the increase in holding force is balanced by the increased particle levitation

height, resulting in a flat release flowrate profile.

One way to avoid this behavior is to extend the electrodes into the third-dimension,
creating extruded quadrupole traps (Figure 8.5D–E, [84, 85]). These traps, while much more
difficult to make, are orders of magnitude stronger than the planar quadrupole traps, and can
successfully hold single cells against significant liquid flows. These electrode geometries are
sufficiently complicated that only numerical simulation can derive the correct field solution.

8.4.1.3. Octopole Electrodes Another way to increase the strength of quadrupole
electrode traps is to put another quadrupole on the chamber ceiling to provide further particle
confinement (Figure 8.5F–H). These opposed octopole traps are significantly stronger than
planar quadrupoles, and are routinely used for single-particle trapping [69, 71]. They are
much simpler to fabricate than the extruded quadrupoles, but are more complex to align
and package.

8.4.1.4. Strip Electrodes Strip electrodes are simply two electrodes opposed from
one-another, with one on the substrate and one on the chamber ceiling (Figure 8.5I). Intro-
duced by Fiedler et al. in 1998, these have been used to create n-DEP “barriers” to herd
particles [14]. The solution to this geometry has been analytically solved using conformal
mapping [72]. As with the interdigitated electrodes, strip electrodes are of limited use for
particle trapping because they only provide one dimension of confinement.

8.4.1.5. Other Electrode Structures Several other microscale trapping structures have
been introduced. Some, like the castellated electrodes [22, 59] or round electrodes [34],
which have been successfully used for particle separation, are not well-suited for trapping
particles because of their planar format; they suffer the same drawbacks as the interdigitated
and planar quadrupoles.
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Recently, a team in Europe has been developing an active n-DEP-based trapping
array [56]. Essentially, their device consists of a two-dimensional array of square elec-
trodes and a conductive lid. The key is that incorporating CMOS logic (analog switches
and memory) allows each square electrode to be connected to in-phase or out-of-phase AC
voltage in a programmable fashion. By putting a center square at +V and the surrounding
squares at −V, they can create an in-plane trap. Further putting the chamber top at +V
closes the cage, giving 3-D confinement. The incorporation of CMOS further means that
very few leads are required to control an indefinite number of sites, creating a readily scal-
able technology. Using this trap geometry, they have successfully manipulated both beads
and cells, although moving cells from one site to another is currently quite slow (∼sec).

8.4.2. p-DEP Trap Geometries

p-DEP traps, while easier to create, have seen less use, probably because the required
low-conductivity media can perturb cell physiology (at least for mammalian cells) and be-
cause of concerns about electrode-cell interactions. As stated earlier, obtaining p-DEP with
mammalian cells requires low-conductivity buffer, and this can create biological artifacts
in the system. Nonetheless, several geometries do exist.

An early p-DEP-based trapping system was described by Suehiro and Pethig (Figure
8.5J, [77]). This used a set of parallel individually addressable electrodes on one substrate
and another set of electrodes on the bottom substrate that were rotated 90◦. By actuating
one electrode on top and bottom, they could create a localized field maximum that could
be moved around, allowing cell manipulation.

Another example is a concentric ring levitator that uses feedback-controlled p-DEP to
actually trap particles away from electrodes [66]. In an air environment, they can levitate
drops of water containing cells by pulling up against gravity with an upper electrode, feeding
back the vertical position of the droplet to maintain a constant height.

Recently Gray et al. created a geometry consisting of a uniform top plate and electrode
points on the substrate to create the field concentrations (Figure 8.5K, [27]). They were able
to pattern cells onto the stubs using p-DEP. Importantly, experiments showed that the low-
conductivity buffer did not affect the gross physiology of the cells at reasonable voltages.
Finally, Chou et al. used geometric constrictions in an insulator to create field maxima in a
conductivity-dominated system [9]. These maxima were used to trap DNA.

8.4.3. Lessons for DEP Trap Design

The preceding discussion raises some important points for DEP trap design. First, the
choice of whether to trap via p-DEP or n-DEP is a system-level partitioning problem. For
instance, if one absolutely requires use in saline, then n-DEP must be used. If, however,
minimizing temperature rises is most important, then p-DEP may be better, as the low-
conductivity media will reduce temperature rises. The decision may also be affected by
fabrication facilities, etc.

In general, p-DEP traps are easier to create than n-DEP traps, because it is easier to
hold onto a particle by attracting it than repelling it. The tradeoff is that p-DEP requires
artificial media for use with mammalian cells. Nonetheless, the key for effective p-DEP is
the creation of isolated field maxima. Because the particles are pulled into the field, p-DEP
traps always trap stronger at higher voltages.
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Creating effective n-DEP traps is more difficult, and requires some sort of three-
dimensional confinement. This is difficult (though not impossible) to do with planar elec-
trode structures, because the +z-component of the DEP force scales with voltage just as
much as the in-plane components. This fundamentally pushes the particle away from the
trap when one increases the voltage, drastically limiting trap strength. Any planar electrode
structure, including the planar quadrupoles and interdigitated electrodes described above
fail this test and therefore make a poor n-DEP trap. The two extant structures that exhibit
strong trapping create three-dimensional trapping by removing the net +z-directed DEP
force. Both the extruded quadrupole and opposed octopole structures do this by creating a
structure that cancels out z-directed DEP forces at the trap center, enabling one to increase
voltage—and thus trap strength—without pushing the particle farther away.

8.5. QUANTITATING TRAP CHARACTERISTICS

In order to assess whether a quantitative design is successful, one needs some quanti-
tative validation of the fields and forces in DEP traps. Given that the complete DEP theory
is known and that the properties of at least some particles are known, it should be possible
to quantitate trap parameters. Those that are of interest include trap strength, field strength,
and the spatial extents of the trap.

Measuring traps requires a quantitative readout. This typically takes the form of a test
particle (or particles), whose location or motion can be measured and then matched against
some prediction. Quantitative matching gives confidence in the validity of a particular
modeling technique, thus allowing predictive design of new traps.

Starting in the 1970’s, Tom Jones and colleagues explored DEP levitation in macro-
scopic electrode systems [47–49, 53]. Using both stable n-DEP traps and p-DEP traps with
feedback control, they could measure levitation heights of different particles under various
conditions. Knowledge of the gravitation force on the particle could then be used to as a
probe of the equally opposing DEP forces at equilibrium.

Levitation measurements have continued to the present day, but now applied to micro-
fabricated electrode structures, such as levitation height measurements of beads in planar
quadrupoles [15, 25, 32], or on top of interdigitated electrodes [37, 58]. In all these mea-
surements, errors arise because of the finite depth of focus of the microscope objective
and because it is difficult to consistently focus on the center of the particle. The boundary
between levitation and the particle sitting on the ground is a “sharp” event and is usually
easier to measure and correlate to predictions than absolute particle height [25].

Wonderful pioneering work in quantitating the shapes of the fields was reported by the
group in Germany in the 1992 and 1993 when they introduced their planar quadrupole [15]
and opposed octopole [69] trap geometries. In the latter paper, the authors trapped 10’s of
beads that were much smaller than the trap size. The beads packed themselves to minimize
their overall energy, in the process creating surfaces that reflected the force distribution in
the trap. By comparing the experimental and predicted surfaces, they could validate their
modeling.

An early velocity-measurement approach was described X.-B. Wang et al., who used
spiral electrodes and measured radial velocity and levitation height of breast cancer cells as
they varied frequency, particle radius, and medium conductivity [89]. They then matched
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the data to DEP theory, using fitting parameters to account for unknown material prop-
erties, and obtained good agreement. These researchers performed similar analyses using
erythroleukemia cells in interdigitated electrode geometries, again obtaining good fits of
the data to the theory [88].

Another approach that compares drag force to DEP force is described by Tsukahara
et al., where they measured the velocity as a particle moved toward or away from the
minimum in a planar quadrupole polynomial electrode [80]. If the electric field and particle
properties are known, it should be possible to relate the measured velocity to predictions,
although, as described earlier, the use of Stokes drag introduces errors when the particle is
near the wall and the forces they calculated for their polynomial electrodes are only valid at
the electrode symmetry plane. This was reflected in the use of a fitting parameter to match
predictions with experiment, although in principle absolute prediction should be possible.

The German team that initially introduced the idea of opposed electrodes on both the
bottom and top of the chamber have continued their explorations into this geometry with
great success. They have attempted to quantify the strength of their traps in two different
ways. In the first approach, they measure the maximum flowrate against which a trap can
hold a particle. Because of the symmetry of their traps, the particles are always along the
midline of the flow, and by approximating the drag force on the particle with the Stokes
drag (Eqn (8.15)) they can measure the strength of the trap in piconewtons [13, 62, 72].
Because they can calculate the electric fields and thus DEP forces, they have even been able
to absolutely correlate predictions to experiment [72]. With such measurements they have
determined that their opposed electrode devices can generate ∼20pN of force on 14.9-μm
diameter beads [62].

The other approach that these researchers have taken to measuring trap strength is
to combine DEP octopole traps with optical tweezers [2]. If the strength of one of the
trapping techniques is known then it can be used to calibrate the other. In one approach,
this was done by using optical tweezers to displace a bead from equilibrium in a DEP
trap, then measuring the voltage needed to make that bead move back to center [18]. They
used this approach to measure the strength of the optical tweezers by determining the DEP
force on the particle at that position at the escape voltage. In principle, one could use this
to calibrate the trap if the optical tweezer force constant was known.

In the other approach, at a given voltage and optical power, they measured the maximum
that the bead could be displaced from the DEP minimum before springing back [70]. This
is very similar to the prior approach, although it also allows one to generate a force-
displacement characteristic for the DEP trap, mapping out the potential energy well.

A clever and conceptually similar approach was tried by Hughes and Morgan with a
planar quadrupole [41], although in this case the unknown was the thrust exerted by E. coli
bacteria. By measuring the maximum point that the bacteria could be displaced from the
DEP trap minimum, they could back out the bacterial thrust if the DEP force characteristic
in the trap was known. They achieved good agreement between predictions and modeling,
at least at lower voltages.

For much smaller particles, where statistics are important, Chou et al. captured DNA in
electrodeless p-DEP traps. They used the spatial distribution of the bacteria to measure the
strength of the traps [9]. They measured the width of the fluorescence intensity distribution
of labeled DNA in the trap, and assuming that the fluorescence intensity was linearly related
to concentration, could extract the force of the trap by equating the “Brownian” diffusive
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force to the DEP force. The only unknown in this approach, besides the assumptions of
linearity, was the temperature, which could easily be measured.

In our lab we have been interested in novel trap geometries to enable novel trapping
functionalities. One significant aim has been to create DEP traps for single cells that are
strong enough to hold against significant liquid flows, such that cells and reagents can be
transported on and off the chips within reasonable time periods (∼min). Our approach
to measuring trap strength is similar to the one described above, where the fluid velocity
necessary to break through a barrier is correlated to a barrier force [13, 62, 72]. This approach
is also similar to those undertaken by the optical tweezer community, who calibrate their
tweezers by measuring the escape velocity of trapped particles at various laser powers.

We have chosen to generalize this approach to allow for particles that may be near
surfaces where Stokes drag is not strictly correct, where multipolar DEP forces may be
important, and where electrode geometries may be complex [83]. In our initial validation
of this approach, we were able to make absolute prediction of trap strength, as measured by
the minimum volumetric flowrate needed for the particle to escape the trap. This volumetric
flowrate can be related to a linear flowrate and then to a drag force using the analytical
solutions for the drag on a stationary particle near a wall.

Our validation explained the non-intuitive trapping behavior of planar quadrupole traps
(Figure 8.6), giving absolute agreement—to within 30%—between modeling and exper-
iment with no fitting parameters [83]. We then extended this modeling to design a new,
high-force trap created from extruded electrodes that could hold 13.2-μm beads with 95 pN
of force at 2 V, and HL-60 cells with ∼60 pN of force at the same voltage [84, 85]. Again, we
could make absolute predictions and verify them with experiments. We continue to extend
this approach to design traps for different applications.

8.6. CONCLUSIONS

In conclusion, DEP traps, when properly confined, can be used to confine cells, acting
as electrical tweezers. In this fashion cells can be positioned and manipulated in ways not
achievable using other techniques, due to the dynamic nature of electric fields and the ability
to shape the electrodes that create them.

Achieving a useful DEP system for manipulating cells requires an understanding of
the forces present in these systems and an ability to model their interactions so as to predict
the operating system conditions and whether they are compatible with cell health, etc. I have
presented one approach to achieving these goals that employs quantitative modeling of these
systems, along with examples of others who have sought to quantitate the performance of
their systems.
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