
Supplemental Information 

 

The following is a description of the procedure for modeling nanoparticle assembly, with 

emphasis on the statement of the problem, the assumptions used, and their expected 

limitations. 

 

Statement of the electrical problem: 

To determine the electric fields produced by the both the applied potential and the fixed 

surface charge, the system we must solve is given by: 
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Equation (1) represents Gauss’s Law, while (2) and (3) specify the conservation equation 

for the i
th

 species in the electrolyte.  Here, ci, Ni, Di and zi represent the concentration, 

flux, diffusivity and valence respectively, φ is the electric potential, F is the Faraday 

constant, R is the universal gas constant, T is the temperature, ε is the permittivity and v is 

the fluid velocity.  In general, this system constitutes a complicated non-linear problem.  

In order to proceed, we make several assumptions which make the problem tractable.  

The solution that we obtain will be self-consistent, but it will not be universally valid.  To 

begin, we assume that the electric potential can be written as the sum of a DC component 

and an AC (sinusoidal) component: φ = φ
DC

 + φ
AC

.  The DC component is associated 

with the fixed surface charge of the electrodes and substrate, while the AC term follows 

from the applied potential.  Additionally, we assume that each ci can be similarly 

decomposed into a DC and AC term.  Ignoring convection, the equations then become:  
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We may now divide equations (4) and (5) into time-dependent and time-independent 

equations.  For (5), we have: 
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Splitting the equations in this way presents no simplification unless we assume that the 

applied AC potential is at a sufficiently low voltage and sufficiently high frequency that 

the AC concentration, ci
AC

, tends towards zero.  Physically, this corresponds to a field 

changing so rapidly that ions in the fluid are unable to respond, driving the AC 

component of the concentration towards zero.  When this occurs, equations (6) and (7) 

decouple, and the DC concentration and potential can be determined by solving the 

Poisson-Boltzmann equation: 
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In equation (7), we also drop all terms involving ci
AC

, except for the time derivative, 

which will not necessarily be small at very high frequencies.  This gives us: 
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Since the DC concentration is known from equation (8), equation (9) is now linear, 

allowing us to treat the AC potential and concentrations as being sinusoidal in time, such 

that ∂/∂t → jω.  Substituting this result into equation (4) and considering only the AC 

terms, we have: 
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where the electrical conductivity, σ, is defined by: 
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Using (8) to solve for the DC potential, ion concentrations, and conductivity, we are then 

able to solve equation (10) for the applied AC potential.  We note that the AC potential is 

not governed simply by Laplace’s equation, since the conductivity in the vicinity of the 

electrodes is made non-uniform by the (DC) ion distribution. 

 As we have stated, the validity of our approach to this problem requires that the 

applied potential have sufficiently low amplitude and sufficiently high frequency.    

Others [1] have shown that the primary time scale governing diffuse-charge dynamics is 

given by λDL/D, where λD denotes the Debye length, L denotes the geometric length scale, 

and D denotes the characteristic species diffusivity.  Using typical values for these 

parameters suggests that our treatment of the model should be reasonably accurate at 

frequencies over 100 kHz. 

 



Finite Element Models: 

To solve for both the AC and DC 

potentials, we use the geometry 

depicted in figure S.1.  Here, we 

have exploited the symmetry of 

the structure in the planes both 

parallel (normal given by the x 

axis) and perpendicular (normal 

given by the y axis) to the 

electrode axis.  To solve for the 

electric fields associated with the 

fixed surface charge, we convert 

the assumed zeta potentials to an 

equivalent charge per unit area 

for the gold and the silicon 

dioxide surfaces.  The bounding 

walls are set as electrical 

insulation / symmetry, while the 

top surface is assumed to be 

sufficiently far away from the 

surface to serve as the bulk 

potential.  Because we do not 

know the precise ionic 

constitution of the solvent, we use the measured electrical conductivity of the water-

nanoparticle solution to approximate the full Poisson-Boltzmann equation (the volume 

fraction of nanoparticle to solvent is such that we expect the particles themselves to 

contribute negligibly to the bulk electrical conductivity).  This gives us: 
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For the effective bulk concentration, we use: 
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Here, σ0 (= 3.83*10-3 S/m) denotes the measured (bulk) electrical conductivity, and D (= 

0.66*10
-9

 m
2
/s) denotes the effective species diffusivity, taken to be that of citrate in 

water. 

 Once we have solved equation (12) for the potential and ion distributions 

associated with the fixed surface charge, we proceed to calculate the fields resulting from 

the applied potential, using equation (10).  Since we assume that these high frequency 

fields have negligible effect on the ion distribution, the significance of the non-uniform 

ion distribution enters only through their local modification of the media conductivity. 

 

Calculating EP and DEP Forces: 

Once we have solved for both AC and DC potentials throughout the fluid, we are 

able to determine the associated forces acting on a nanoparticle.  Although both AC and 

 
Figure S.1: 

Domain for finite element model (1 = 10
-6

 m). 



DC terms in the total electric field will exert an electrophoretic and dielectrophoretic 

force on the particle, we simplify the calculations by preserving only the electrophoretic 

contribution of the DC field and the dielectrophoretic contribution of the AC field.  

Comparing the ratio of the EP and DEP forces associated with the DC field, we obtain: 
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Where C is a dimensionless constant ~3, ζ denotes the zeta potentials of the nanoparticle 

(NP) and substrate, λD is the Debye length, R is the effective particle radius, and z is the 

distance from the substrate.  For λD ~ R, we see that even one Debye length from the 

substrate, the EP force associated with the DC potential is nearly one order of magnitude 

stronger than the DEP force.  To simplify the force associated with the AC potential, we 

assume that the EP force will displace the particle a negligible distance over one period 

of the field, so that the time averaged contribution is essentially zero.  These assumptions 

lead us to treat the EP and DEP forces as being defined separately by the DC and AC 

electric field solutions.  Calculations of the DEP force are performed using a subset of the 

streamforce program described in [2]. 

 

Radius of Influence: 

Given the EP and DEP forces associated with a particular electrode geometry, we 

determine the size of the region of influence (ROI).  To do this, we define the thermal 

force as being directed radially outwards with a magnitude of: 
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We then assign random starting positions to particles throughout the simulation domain 

and calculate their trajectories subject to EP, DEP and thermal forces.  If a particle comes 

in contact with the electrode or substrate inside the gap, it is counted as assembled.  

Repeating this process 10,000 times for each geometry and comparing the number of 

initialization points inside and outside the ROI gives us an estimate for the volume of the 

ROI, from which we extract an equivalent radius for further calculations.  

 

Behavior of particles in and around the ROI: 



To predict the behavior of 

particles in the vicinity of 

the gap and more precisely 

define the concept of the 

ROI, we perform Monte 

Carlo simulations on a 

restricted domain close to 

the electrodes, yet 

extending beyond the ROI 

by about 1 μm.  In this 

domain, we compare 

capture times for particles 

acted upon by DEP alone 

with those acted upon by 

both DEP and a randomly 

generated thermal force.  

Values for the x-, y-, and z-

components of this thermal force are generated using Matlab’s ‘randn’ command, and 

scaled to have an RMS value equal to equation (15).  We perform a numerical integration 

in time to determine the trajectories of the particles, and the simulation terminates when 

the particles are immobilized on the substrate (z = 0) in or near the electrode gap.  For 

each point in which the thermal force is included, the times represent an average of 

capture times over 100 Monte Carlo simulations.  Particles are initialized at varying 

heights above the substrate (x-axis).  We find that when the initial displacement first 

exceeds the size of the ROI, there is a rapid divergence between DEP and DEP + thermal 

capture times (figure S.2).  This supports our model of particle transport as consisting of 

two regimes (diffusion dominant and DEP dominant) defined by the surface of the ROI. 

 

First Correction for Non-linear Effects: 

The final component to our model is to introduce an approximate correction to 

nanoparticle assembly accounting for the interactions between particles in suspension and 

those previously assembled.  Since the particles are substantially more conductive than 

the surrounding solvent, assembled particles tend to focus the electric field into a more 

confined region.  When a large number of particles have been assembled, it is expected 

that the field will no longer penetrate far into the fluid, but will instead be confined inside 

the more conductive path which the assembled particles provide.  In this way, assembly is 

a self-limiting process. 

 

To approximately account for the effects of previously captured particles on further 

particle assembly, we calculate the dipole field induced around a perfectly conducting 

particle assembled in the gap.  Adding this field to the applied field, we recalculate the 

DEP force and the ROI.  Because the captured particles are conducting, the induced field 

will tend to oppose the applied field, resulting in a decrease in the size of the ROI.  We 

use this incremental decrease in a (ROI radius) with n (number of assembled particles) to 

obtain the linear term in a Taylor expansion for a(n):  

 
Figure S.2: 

Simulated capture times for particles initialized inside 

and outside the ROI and subjected to either DEP 

alone, or both DEP and a randomly varying thermal 

force. 
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In equation (16), we have introduced a new parameter, Δa/Δn, which must be determined 

numerically.  Calculating the change in the ROI (Δa) associated with a single assembled 

particle (Δn = 1) completes the formulation of this model.  Because Δa will, in general, 

depend upon where in the gap the particle assembles, we determine Δa for a range of 

particle positions, and use the average in the final model. 

 

Of course, since n = n(t), this modification implies that a = a(t).  This means that the 

solution given by equation (9) in the main article no longer strictly satisfies the transient 

diffusion equation, since a is now a function of time.  Still, if we restrict our interest to 

cases where a changes sufficiently slowly with time, this serves as a reasonable 

approximation.  Requiring that the region of influence vary much less rapidly than the 

diffusion over the same length scale, a, leads to: 
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which we combine with equation (11) in the main article to obtain: 

2

02 1
a

c a
n

 ( 18 ) 

For all cases considered in this paper, this condition is very easily satisfied, with the left 

hand side typically on the order of 10
-7

. 
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